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Abstract. We find a Holder Banach space in which the Bethe-Salpeter equation is a
compact integral equation as it stands. We study the properties of the solution in preparation
for an analysis of linear field theory models of 3-body amplitudes. In particular we study
the properties of the Regge poles of the solution and prove the existence and uniqueness
of on mass shell scattering amplitudes.

Introduction

We wish to consider the properties of linear field theory models for
three-body amplitudes taking as input solutions of the two-body Bethe-
Salpeter (BS) equation [1]. Previous work [2-12] on the BS equation
has shown that the integral operator of that equation can always be
related to a compact operator. This is achieved usually by either rotation
[3] in the complex energy plane or by the use of spectral representations
[8,10], the end product being the discussion of an If (Lebesgue) Banach
space and the elimination of the most objectionable if not all singularities
of the kernel. This is essential for numerical solution but results in an
unnecessarily complicated discussion of the mathematical structure of
the equation. In this paper we prove that the BS operator is compact as
it stands. We follow the idea of Faddeev [13] and look for a suitable
Holder Banach space for which the assertion is true. We find such a
space by first examining the spectral representation introduced by
Wick [3] and exploited by Pagnamenta and Taylor [10]. The BS equation
written as an equation for the spectral functions (Eq. (1.14)) has many
features in common with the non-relativistic Lippmann-Schwinger
equation [14] after removal of certain singularities by multiplicative
similarity transformations (relations (2.2) and (2.4)). A suitable space in
which to look for solutions of Eq. (1.14) is a simple generalisation of
that introduced by Faddeev. This Banach space is denoted by B$ with
norm specified in relation (2.6). Eq. (1.14) is a compact integral equation
in this space. The original BS equation is compact in the space B$ with
norm specified in relation (2.7) generated from B$. Construction of
B$ from B$ has the advantage that functions in B{$ have sufficient
analyticity for us to Wick rotate the BS equation for values of total
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energy below the elastic threshold and hence to relate properties of the
solution above threshold to the whole body of information [3,4,15]
obtained by analysis of the simpler Wick rotated equation below
threshold. Further, the spectral form sufficiently unscrambles the singu-
larities to enable us to give a simple proof of, for example, the unitarity
relation (Eq. (2.25)).

The argument in Section II establishing the central theorem is
specifically for a </>3-theory in the ladder approximation with equal
masses in the propogators, and in partial wave projection. These restric-
tions are made solely for simplicity of exposition. The result still holds
with unequal masses and with any potential consistent with the assumed
analyticity properties and certain boundedness conditions. With the
more general potential some modification of the argument has to be
made and this is sketched in Section III in the context of discussing the
method of proof for the full BS equation.

In Section II we establish the main features of the movement with
total energy of those poles of the meromorphic resolvent of the BS
integral operator, considered as an operator valued function of complex
angular momentum, that contribute to the scattering amplitude on the
mass shell. We deduce that there is always an on mass shell solution of
the BS equation in the elastic scattering region. For higher values of
total energy we need to consider 3-body equations and this we intend
to do in a further paper.

Throughout the analysis we will use the following notation
(i) Q = (qo>q)> (ϋ) 9=1*1, (ϋi) E = (E9 0), (iv) β + = β ± | £ , (v) β P
= QoPo -q P, (vi) β β = β2, (vii) δ± (x2 - a2) = θ{±x) δ(x2 - a2). To
avoid cluttering the equations with irrelevant constant multiplicative
factors we will take λ to denote the coupling constant and any constant
multiple of that coupling constant. Further, in the arguments to establish
inequalities between functions in the Holder spaces we will use the con-
vention of Faddeev [13] by denoting bounding constants by C, the
occurrence of C in any two statements not necessarily implying the
equality of those constants.

I. The Formalism

We consider the Bethe-Salpeter equation ina(/>3-theory in the ladder
approximation, namely the equation,

T=T0 + ίλKT (1.1)

where
(i) Dl = (Q-P)2-M2,

(iϊ) D2 = (P + $E)2-m2,
(iii) D3 = (P-iE) 2-m 2,
(iv) T=T((Q-R)2

9Q
2

+9R
2,E)9
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(v) To = T0((β - JR)2) = (2π)4 λ[(β - K)2 - M 2 ] " 1 is the Born term,
(vi) K is the integral operator over the 4-momentum P with kernel

K(Q\E\P) = {DίD2D3)~1. For simplicity we take m not equal to M If
m were equal to M then there are confluences of singularities that render
the analysis more difficult. Our results remain valid in this case although
the Banach spaces involved have more complicated norms.

The partial wave projection of Eq. (1.1) yields,

where

(i) Q = (ίo»
(ii) cosθqr =

(iii) Tf(Q\E\K)= ) d(cosθqr)P((cosθqr)T((Q-R)2,Q2

±,R2

±,E),

(1.2)

1(q r),

)-Γiq2
(iv) zQP = (2qp)-Γiq2 + p2 + M2 - (q0 - pof],
(v) Kf is an integral operator over the variables P with kernel

K<(Q\E\P) = (2q)-1p&(zQP)(D2D3)-1. Qe is the Legendre function of
the second kind. The Froissart-Gribov continuation off the positive
integers into the complex angular momentum plane is achieved by
continuation of the Qe function in the kernel of (1.2) [16].

To find an appropriate Banach space in which to look for solutions
of Eqs. (1.1) and (1.2) we will follow Wick [3] and Pagnamenta and
Taylor [10] in exploiting the analyticity properties of T. To understand
the properties of the consequent spectral functions we first consider the
Feynman integral Ti for the box diagram of Fig. 1. We know that the
Fourier transform of the function T± in the variable q0 has the form,

Clearly,

= θ(x0) σP(x0) + θ(-x0) ffV{x0).

+ 00

-(2π)* J rfβ0.

iΦj

ί = 2

(1.3)

(1.4)

E+R

Fig. 1
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where Qo = 4o — Po a n ( 3 D4 = (P — R)2 - M 2 . The inverse Fourier trans-
form of Eq. (1.4) yields,

o$\q0) = -{2π)2\dApδ±{Dί) £ ^ ( W l Ί DjV1. (1.5)
i=2 \i*j /

The supports of the three terms in the sum for σ^ are given by,

q0 ^ - \E + {q2 + (m + M)2f , (1.6a)

q0 ^ + \E + fe2 + (m + M) 2 )-, (1.6b)

^ o ^ r o + ( ( ^ - r ) 2 + 4 M 2 ) - . (1.6c)

The supports of the three terms in the sum for σί_1} are obtained from
(1.6a-c) by replacing q0 and r0 by -q0 and — r0. The relation between
Tx and σt1} is given by,

^ (1.7)

where J5X is an integral operator over g0' with kernel (q0 — q0' + is)'1 and
5 2 an integral operator over q0' with kernel —(qo — qo' — iε)'1.

We now wish to express the term KT of Eq. (1.1) in the form (1.7)
supposing that T can be written in this form with the support (1.6). The
Fourier transform of K T for x0 > 0 is given by

•i(2π)*fd3p

(L 8>

if T= i(Bl9B2)\ + I. We calculate the integral over p 0 by completing

v7-/
the contour in the lower half plane (Fig. 2). We then take the inverse
Fourier transform of Eq. (1.8) with the result that,

((κr)) (L9)

where
2 J (1.10)

(KT).=-(2π)2ijdipδ-(D1) (1.11)
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where the bar above an operator indicates the complex conjugate

operator. The spectral functions σ = " + 1 satisfy the equation,
\σ_/

σ = σ° + λKσ (1.12)

where
(i) V+ is an integral operator over 4-momentum with kernel δ±(Dί),

(ii) D+ is an operator corresponding to multiplication by the function

(iii) D is an operator corresponding to multiplication by the function
Ψ2D3)-\

(iv) po

mm (jpo

max) is the minimum (maximum) value of p0 for given
p, r, r0 of points lying in the support of σ(+\σ(})),

(v) #+(#_) is the operator corresponding to multiplication by the
step function θ(p0 - p o

m i n) (<9(po

max - po%

0
θj'

(x) Xi =
(xi) K2 = VDΘ,

(xii) K = Kγ + K
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-σ

Fig. 3

To project Eq. (1.12) into partial waves and thence to continue into
the complex angular momentum plane it is probably simplest to return
to Eq. (1.2) with kernel K{ already continued into the complex plane,
and then to apply to Ke the method of argument used in the progression
from Eqs. (1.3) to (1.12). In the Fourier transform equivalent to (1.4) we
have an integration of the form,

ί (1.13)

where ko = po — qo. Qt(zPQ) has cuts in the ranges — oo<fc 0 <—α,
a < k0 < oo where a = [(p — q)2 + M2~γ with the contour of integration
as given in Fig. 3. Hence for x0 > 0 we pick up the right hand discon-
tinuity and for x0 < 0 the left hand discontinuity. The projected spectral
functions σe satisfy the equation

u == u (1.14)

ίvί, o
[o, vί.

where V{(Vί) is an integral operator whose kernel is the right (left) hand
discontinuity of QAZPQ)-

e is obtained from K by replacing the operator V by Vs =

II. Compactness of the Integral Operator
of the Partial Wave Bethe-Salpeter Equation

The natural Banach space to choose to render Eq. (1.14) well defined
is the Holder space, which, for a one variable problem, is the complete
space B$ of bounded continuous functions with norm,

p I/W
\δ\"

(2.1)
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Besides the added complication of an extra variable, solutions of
Eq. (1.14) have divergencies other than in the Born term. These can be
removed by multiplicative similarity transformations. We define S and
T to be the operators,

where

(ii) Fξ =
(iii) G$ =
(iv) S% denotes multiplication by the function,

S? = qHl + q*)-1 | ί? |*( l + Iff I*)"1 |Gg|*(l + ICgl*)"1. (2.3)

We define new spectral functions yf=STσe satisfying the equation,

/ = v O l f + /lK>v (2.4)

where K!{ — SK^S~ι. We introduce the complete Banach space BfJ of
functions f(Q) with norm,

(2.5)

, f/ x, , I/too + <5g0, g + ̂ g) - /(go> q)\N

where rf = [{δq0)
2 + (<5 f̂)2]̂  and the complete Banach space BfJ of two

component functions f(Q) = I + ) with norm

/ $ =ll/+ll^+ll/-ll^ (2.6)

Further, we introduce the complete Banach space Bffl of functions f(Q)
of the form f = &Toe + g where α is a constant and g is analytic in the cut

q0 plane and of the form g = (Bl9 B2)S~1T~1 r+) with norm
\β-l

ll/ll = M + llffll$. (2.7)
In the space 5 $ Eq. (2.4), on iteration, is a compact integral equation.
In the space BfJ Eq. (1.2) is a compact integral equation. The proof of
these assertions is given in the Appendix and is based on the following
lemma:

Lemma 1. A sequence of functions bounded in the norm Bffie. is compact
in B$ where θ<θ', μ<μ'. We have the immediate corollary that an
operator which maps any bounded infinite sequence of functions in $
into a bounded sequence in Bfy, where θ < θ\ μ < μ' is compact.

9 Commun. math. Phys., Vol. 16
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The proof that our operator behaves in this fashion is given in a series
of Lemmas in the Appendix. We list these lemmas in a sufficiently
imprecise form to render their essential nature obvious.

Lemma 2. // f(x, y) e Bffl then,

] f{Xl] (2.8)
Q OX ~jΓ_ 13

belongs to Έ$)e where μ' <μ but can be taken arbitrarily close.

Lemma 3. // f(x) s B$ then

g{y) = y]a dxf(x) (2.9)
y — Λ

belongs to the space B^.

Lemma 4. // f(x, y) s B$ then,

'£>±* <2Λ0)

belongs to B$ provided,
(i) the function h(x, y), where h(x, y) = 0 is the equation of the boundary

of A(x, y), is a differentiable function of x, y.
(ii) this boundary never touches the lines x = a, y = b.

Lemma 5. σ ( 1 ) ' e5<§, TusB$ where (i) Tu is the partial wave
projection of the Eeynman integral corresponding to the box diagram of
Fig. 1 (ii) σ(1)<f are the spectral functions of Tu (iii) μ is less than but can
be chosen arbitrarily close to \.

We then have the following theorem:

Theorem. The integral operator K'e(Ke) of Eq.(2A) {Eq. (1.2)) is a
compact operator in the space B($(B$) with μ<^, ? < 0 < i if £e@
where 3) is the domain defined by the constraint R e / > — \ and Im/ is
arbitrarily bounded. Further, the Eq. (2.4) (Eq. (1.2)) is a compact integral
equation in B$(B$) if is 2.

Since Ke is analytic in the domain 3f the resolvent operator
Rj= [/ — ίλKj~]~1 is meromorphic in 3). Precisely,

Lemma 6. If i^K is an analytic operator valued function defined on
Θ and compact for each t s Si and if 3 is connected then either [I — iλKJ]
has a bounded inverse for no point in 2l or else this inverse exists except at
a countable number of isolated points in 3).

The proof is given in Ref. [17], part I, page 592.
We can now rigorously derive the usual properties of Regge poles

and by use of the Fredholm alternative prove the existence of a unique
solution to the Eq. (1.14) for E2 in the range 4m2 <E2 <(2m + M)2. In
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fact, suppose for E2 in this range there exists an eigenfunction σ of Ke in
Eq. (1.14) for £ real, that is

σ = λKeσ . (2.19)

Taking the imaginary part of thiί equation we find that,

ί σ ) . (2.20)

For there to be a solution (σ — σ) to this equation with (K^ — Kj)σ con-
sidered as the inhomogeneous term, the inhomogeneous term must be
orthogonal to all those elements of the dual space which are the eigen-
solutions of the dual equation, in particular orthogonal to

D(BuB2)σ;
#2/

J Jϊ-0
where (i) A = ί I, (ii) δ denotes the operator corresponding to multi-

\0 δ)
plication by the function δ+(D2) δ (D3). Since

Eq. (2.21) reduces to,
$dPφδφ = 0 (2.22)

where φ = p(Bίf B2)σ. Necessarily φ(P) = 0 if P = (0, φ). Clearly, this
does not eliminate the possibility of poles in R^ on the real axis for
4 m 2 < £ 2 < ( 2 m + M)2 but it does eliminate the possibility of poles in
Rj on the real axis that contribute to the scattering amplitude on the
mass shell as we now argue. In the neighbourhood of a pole t — ^0(E2)
in the resolvent R^ the solution Ύe of Eq. (1.2) can be written in the form

(2.23)

where % is analytic in a neighbourhood of £0{E2\ η is a multiplicative
constant, φ is an eigenfunction of Eq. (1.2) for £ = £0(E2) and the sum
is over all such eigenfunctions. The residue of the pole of 7} is zero when
7} is put on the mass shell. The solution of Eq. (1.2) evaluated on the mass
shell exists, therefore, for all values of E2 in the range (4 m2, (2 m + M)2).

The method of separating Eq. (1.14) into real and imaginary parts
can also be used to derive the unitarity relation [18]. Specifically

σJ~ f) < (2.24)
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Considering this equation as an equation for σe — σe with inhomo-
geneous term λ{Ke — Kj)σ* we obtain the relation

σ'-σ*=λRt(Ks-Kt)σ' (2.25)

Operating on the left with i(Bu B2) we find,

7}«21£|R) - %(Q \E\R) = λρ(E) T/Q \E\ P) %{P\E\R) (2.26)

where P = (0, φ\ the points Q, R do not lie in the support of σ and ρ(E)
is the two body phase space factor. Relation (2.22) follows immediately
from this unitarity relation.

For E2 > (2m + Mf we do not possess sufficient positivity to argue
that those poles of R€ that contribute to T€ on the mass shell stay off the
real axis. It may be that in models that contain more inelasticity than the
ladder model this positivity will be regained. We can say, however, that
as E2 tends to infinity all poles move out of the domain 3) and that the
poles never move to infinity in 3 whatever value E2 takes.

III. Concluding Remarks

We can treat the full Bethe-Salpeter equation (1.1) in a similar fashion
by looking for solutions within a Holder Banach space of functions
B$ defined over four dimensional momentum space. In the ladder
approximation the methods outlined in Lemmas 2-5 are not directly
applicable since now the integrations are reducible to integrals over
surfaces in a three dimensional space that move with the external para-
meters. One can get over this difficulty by iterating the operator once to
obtain an operator whose potential corresponds to the box diagram
of Fig. 1. The integrations are now over fixed regions of fixed manifolds
of at least three-dimensions. The lemma needed to prove that Eq. (1.1)
is a compact integral equation is a multi-dimensional generalization of
the following basic lemma:

Lemma 7. If f(y) belongs to Bfy; g(x, y) to B{2\, then

belongs to Bfi\e, where μ" is less than but can be chosen arbitrarily close
to μ'.

Further, the analysis, as in the partial wave case, is extendable to
complex values of E2 by taking the cuts in the complex q0 plane parallel
to the real axis from the threshold branch points ± \E + [q2 + m 2]*.
Eq. (1.1) is a compact equation and its resolvent R(λ, E) is a meromorphic
operator in λ and meromorphic in the cut E2 plane, and the solutions
are continuous on to the real axis in E2. For E2 < Am2 the poles in R(λ, E)
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in λ lie necessarily [15] on the positive real axis with an accumulation
point at infinity. For E2 in the interval (4 m2, (2m + M)2) there are no
poles on the real axis which contribute to the scattering amplitude on
the mass shell.

Acknowledgement. I would like to thank Professor J. G. Taylor and Dr. N. T. Peck
for their help in the course of this work.

Appendix

The method of proof of the lemmas leading to the main theorem of
the paper is a generalisation of the arguments of Faddev [13]. It seems
unnecessary here to give full proofs to all lemmas. We will give the proof
of Lemma 2 from which it should be clear how the proofs to the other
lemmas run.

For simplicity we suppose R is such that the support of v of Eq. (2.4)
lies in the regions

q0 ^ - \E + \_q2 + (m + M) 2 ]-, qo^E- \_q2 + (m + M ) 2 ] * .

Further we suppose ( e Θ.

Lemma 2. // v± belong to Bf${μ< i 0 < | ) and if 0<E<(M + 2m)

then the functions [ . P ) T(B1θ+,B2θ_)(σ+)\ (i = 2, 3) belong to
\ί+PJ W-/U=o

fy, where θ\μ') is less than but may be chosen arbitrarily close to θ{μ).

Proof. We must consider integrals of the form,

= ί («',»)
a — u'±iε

where
(i) u = po-p, v = p,

(ii) σl = 7V+,
(iii) a+(υ)= — \E — υ + [t

(A.1)

εl9 s2, take the values ± 1 . The integrand of / ( + + ) (v) possesses a pole
at uf = bi++) and square root singularities from S" 1. The integral of
/(_+)(ι;), however, has only the square root singularities.

We first argue that I{++)(v) is bounded. We write

where,

ί du'+ J du'll σ + { U ' V )

+ Λ (A.2)

() σ (u υ

= ί d*\ σ+iU>J]

+ • (A.3)



134 J. V. Greenman:

Since | v + ( w » | <C(1 +v)~θ(l + \u'\)~θ, I$+){v) is clearly bounded and
majorised by C(ί + υ)~θ. We write I$+)(v) in the form,

5 ( + + ) + l

+ f dfl'
bi++)-u'±iε

(A.4)

The first term is explicitly integrable, and majorized by C(l + v) θ. The
modulus of the second term is no greater than,

&(++) + !

C J (A.5)

since

The result,

| / ( + + ) ( t ; ) | ^ C ( l + i>Γ*
follows.

We now consider the differentiability of the function Ii++)(v).

J

(A.6)

(A.7)

), v) -σl(y + b(+ +)(υ + δ),v + δ)

The first term is clearly majorised by C(l + υ)~θ\δ\μ. To majorise the
second term we need the result,

V') - V+(M', V) - v+ (M, υ') + v+ (M, O)

\u' - - v\μλ
\v' - v

(A.8)
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where 0 ^ λ g 1. This lemma is proved in Appendix 1 of Ref. [13]. Hence
the second term is majorised by C\δ\μ'(l + v)~θ where μ' is less than μ
but may be taken arbitrarily close to μ. Similar arguments lead to the
bounds, ^

and

where μ' is less than μ but may be taken arbitrarily close to μ. We have
identical bounds on /(__}(z;). For J(_+)(ι;), however, α+(z;) — £>(_+)(ι;)
tends to zero as v tends to infinity necessitating the slightly weaker

where θ'(μ') is less than but can be taken arbitrarily close to θ(μ). Identical
bounds hold for /( + _)(ι;).

If E > M + 2 m the curve u = fc(_ +)(υ) intersects the support of σ_ and
J(_+)(t;) belongs to B^ only after the removal of a logarithmic factor

l n f " ΎE
 ίE2 ~
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