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Abstract. The method suggested earlier for the description of unrenormalizable inter-
actions of massless particles [1—4] is generalized to the case of interactions of particles
with non-zero rest mass.

1. Introduction

In a number of previous papers [1—4] the problem of the construction
of the Green functions in the momentum space in theories describing
unrenormalizable interactions was investigated. In the x-space these
functions have an essential singularity when their argument is zero.
Therefore the construction of the Fourier transforms of these functions
is a non-trivial problem.

In the case when the rest masses of particles are zero the problem
conserve all its characteristic features while the calculations become
essentially/simpler. This just explains the fact that in previous papers
one investigated the interactions of massless particles. The attention was
focussed on the main problem, the transition from the Green functions
constructed in the x-space to those in the momentum space. A method
has been developed which allows one to perform such a transformation.
It may be used in theories which describe a wide class of unrenormalizable
interactions. The Green functions constructed by this method satisfy
the conditions of causality and unitary of the S-matrix.

However, to complete the investigations performed it is necessary
to generalize the methods developed for the case of unrenormalizable
interactions of massless particles to the general case of unrenormalizable
interaction of particles with arbitrary rest mass. This paper is just devoted
to this problem.

A two-point Green function which depends exponentially in the x-
space on the propagator of a free scalar particle with rest mass m is
investigated. Such functions are often found in theories describing
local unrenormalizable interactions [1—8]. The calculations were carried
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out using an approximate expression for the free scalar particle propaga-
tor. The meaning of this approximation is cleared up further by the
example of the absorptive part of the two-point Green function. The
method suggested here for the construction of the Green functions in
the momentum space is in complete agreement with the conditions of
locality and unitarity of the S-matrix.

The last section is devoted to the generalization of the method
developed to the case of more general unrenormalizable interactions.

In the limit of high energies the results obtained here are in complete
agreement with those obtained earlier for the case of interaction of mass-
less particles [1-4].

2. Two-Point Green Function

Applying perturbation theory for the description of unrenormalizable
elementary particle interactions like e.g. pion-nucleon interaction of
neutral particles with pseudo-vector coupling [2, 4, 5] or parity non-
conserving interactions of a neutral meson with nucleons [8] we are
led to a two-point Green function of the type

F i ( x ) = Ψ i ( x ) Q X p { - i g 2 A ( x ) } 9 (1)

where g is the coupling constant, Δ (x) is the propagator of a free scalar
particle, Ψ^x) stands for a function of the free spinor particle propagator.
For the sake of simplicity we consider the case Ψ0(x) = 1. The generaliza-
tion to the case Ψί(x) = S(x) or Ψ2(x) = Sp{S(x)S(-x)}, where S(x)
is the propagator of a free spinor particle, is not difficult [2].

To construct the Fourier transform of the function F0(x) we intro-
duce a subsidiary function Φ0(x) differing from F0(x) by the sign in the
exponential. In the unphysical region p2 < 0 the Fourier transform of
this function will be constructed in a certain approximation. This
approximation well describes the exact function at large momenta.
Then a transition will be performed to the desired function by analytical
continuation with respect to the coupling constant in the same manner
as it was done in Ref. [2] for the case of massless scalar particles.

The Fourier transform of the function Φ0(
x) can ^e written in the

form

Φ0(p) = ΐ(2π)4 <5<» + 2 2 .fi + Φχ(P) > ( 2 )

where

φκ(p) - i J d4x eίpx {exp [i(2π)2 κ A (x)] - 1 - i(2π)2 κ A (x)} (3)
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and κ = — — . In the unphysical region p2 < 0 we choose the co-
\2πJ

ordinate system in which p = {0, p}. In this co-ordinate system the contour
of integration over the time variable in (3) can be rotated at angle

-- . As a result, we arrive at the Euclidean metric. By choosing the

polar co-ordinates and integrating over the angular variables we get
for the function φκ(p) the following equation

I vκι^.1. f / i »*f ts j I f I I A ^ i ^ r / i wyv μy ^ ΐ % Wl

\p\ J J V m

0

(4)

where \p\ = ]/ — p2 = ]//? and Ji (z\ K± (z) are Bessel function. For various
kinds of Bessel functions we shall use here and in what follows the
notations of Watson [9].

It is doubtful that the integral (4) can be taken exactly. However it
can be rather well estimated replacing the Kλ (r) function by an exponential
divided by r

K ι ( r ) - - . (5)

For very small and large values of the argument this function well
approximate the K^r) function. Therefore with such a replacement
one may expect to obtain a result which rather well reproduces the
behaviour of the true function φκ(p).

3. Qualitative Estimates of the Green Function

Before to proceed to the calculation of the integral (4) in the approxi-
mation indicated it is useful to consider more rough approximation. It

consists in that in the exponential the — - — function is replaced by the

function corresponding to the propagator of a scalar massless particle,
and the square of the K t(r) function before the exponential is replaced
as is shown in (5)

. ,6,
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In what follows we mark by double bars the functions calculated in this
approximation and by a single bar the functions calculated in the approxi-
mation (5). We need the approximation (6) in order to demonstrate by
more simple example the technique of calculation of the integrals of the
type (6) and the analytic continuation of the function obtained with
respect to the variable p2 from the region p2 < 0 in which Eq. (6) holds,
to the region 0 ̂  p2 ̂  4m2 as well as to the physical region p2 > 4m2.
Further these operations will be extended to the approximation (5).

In the integrand of Eq. (6) the exponential can be represented in the
form of the Mellin-Barnes integral [10]

κm2
, Aexp<-ί — τ-\=-— dz

2i J s inπzΓ(z+l) '
— α+ ioo

where 0<α< 1, Γ(z + 1) is the gamma function. We insert (7) into (6).
Then it is easy to make oneself sure that all the integrals converge
absolutely and therefore it is possible to alter the order of integration.
Integrating over the variable t and changing the order of integration
over r and z we rewrite (6) as follows:

vr/ v ' \p\ 21 J sinπzF(
— α + i oo 0

The integration over r leads to the appearance of a spherical function

4m2 f [x(4m2-p2)]z

(sinπz)2 cosπz Γ(z + 3) Γ(2z + 1)

(9)

17 p2 Y*Ί•'̂ •'Lί1-̂ ) J
Using for Pl\(z + l}(a) the representation [10,11]

l+a
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where F ( 2 z + 2, 2 z -h 3 2; - ) is the hypergeometric function,V α + ι y _
it is easy to see that the function P_\(z + ̂ (ά) has no singularities in the
right half-plane Re z > 0 and no zeros on the real positive axis. There-
fore, the integral over z is easily taken and the function φκ(p) is represented
in the form of a series. We do not write out here this series in an explicit
form, we show only how to derive from the function φ^(p) the function
f(p). This function is connected with the approximate expression for the
Fourier transform of the desired function by the relation

F(p) = i(2π)4 δ^(p) - 2 + (p) . (11)
p — m + z ε

Following Ref. [2] f(p) can be expressed in terms of φx(p) by means
of the formula

y {&,»(/>) + &e-.»(p)} (12)

Inserting (9) into (12) and integrating over z we get

_JLZ=L__P-ι I I ι _
3)Γ(2v + l) 2(v+1) I 4m2

(13)

The formula (13) is valid for the p2-values lying in the unphysical domain
p2<0.

In order to continue analytically f(p) into to the next domain
0 ̂  p2 ^ 4m2 it is convenient to return to the function φκ(p) written in the
form of (8). In the region we are interested in it takes on the form

<v I dz rp 2ι j smπzΓi
-α+ico 0

(14)

/ p \

where p = ]/p2, /i —r is the Bessel function of the imaginary argument.
\m J

The integration over r leads again to the appearance of the spherical

[7 P2 V Πfunction gP_2(z+l}\ 1 —τ which in the domain p <0 isLV 4m y j
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connected with the former by the relation [10,11]

(15)

The representation like (10) holds for this function too [10]. Therefore
for it there remains valid the assertion about the absence of singularities
in the right half-plane Rez > 0 and of zeros on the real positive axis.
Repeating _the operations which have been performed for the functions
φκ(p}_ and f(p) in the domain p2 < 0 we are led to the following expression
for f(p) which is valid in the region 0 ̂  p2 rg 4m2

P n = Q 0V

[κ(4m2-p2)]v

 j_l IT p2 x^

Γ(v + 3) Γ(2v + \}J -2<v + 1>[^ ~~^γ{

In the analytic continuation of the function /(p) in p2 to the physical
domain p2 > 4m2 it is necessary to assume that the mass has a small
negative imaginary part (see, e.g. Ref. [12]). Then we have

4m2 - p2 - iε = (p2 - 4m2) e~lπ . (17)

Using (17) as well as the formula of transformation of spherical functions
[10]

4m 2 '

P2

J/2πcos2πv (18)

it is easy to obtain for f(p) in the region p2 > 4m2 the expression

(19)
d

+
571 Γ(v + 3) Γ(2v + 1) Γ(2v + 3) Γ*
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The formula derived are in complete agreement with the earlier ones for
the massless particles. In fact, letting m tend to zero we get from (19) and (13)

00

Σ
(20)

I \ v I v I / v VI \:L(n2+.iA\ I ί-^n 2 )
a

dv l Γ ( v + l ) Γ ( v + 2)Γ(v + :

We obtained this formula earlier in the model of the neutral pion-nucleon
interaction with pseudovector coupling. It entirely satisfies the require-
ments on the local field theory with unitary S-matrix [2, 4, 13-15].

4. More Strict Approximation

After the qualitative consideration of the problem of the Fourier
transformation of the function F0(x) performed in the previous section,
more strict approach to this problem with the use of the approximation (5)
becomes much simpler. In this approximation the integral (4) reads

~ dt(ί-t) drr~2 ~

(21)

Anew we use for the exponential the Melin-Barnes integral representa-
tion. Integrating then over t and changing the order of integration over r
and z we write (21) in the form

s ι n π z z

-* co ° (22)

For the z-values in the domain — 2 < Rez < 0 the integral over r converges
and equals

π

2 m ̂  ' "' ύn2πzΓ(2z+ί) * V 'm2(2 + z)
(23)
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It is seen from this expression that all the assertions which were valid
when integrating over z in the function φκ(p) hold for the function
φ^(p) as well. Using Eq. (12) we return to the function f(p) and for the
unphysical domain p2 < 0 we get

(24)

P

In the next unphysical domain 0 ̂  p2 ^ 4m2 repeating the operations
described in the foregoing section we obtain

/(p)=-2(πκ)2 £ ~
n = ° V (25)

p2 Γ(v + 3)Γ(2v + l) -2v

Finally in the physical domain p2 ^4m2, using formulas similar to (17)
and (18) we have

f(p)=-2(πκ)2 £ A

^ L..V... r ^ yj ^-1 (1 —

+ l)Γ(2v-3) --""^ly mV

, Γ-l2 Lm J pi

-^ (26)

Γ(v + l)Γ(2v-3)Γ(2v-l)

Γ-l[mj
Here — denotes the nearest integer which is smaller than ]/p2/m2.

L m J
In the limit m = 0 Eqs. (24) and (26) as well as (13) and (19) reduce to
Eq. (20).

When the energy tends to infinity the real part of the function f(p)
tends to zero while the imaginary part increases exponentially. However,
this increase does not contradict requirements imposed on local theories
[13-15].
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5. Investigation of the Imaginary Part of the Green Function
and the Meaning of the Approximation (5)

It follows from the unitarity condition of the S-matrix that the
imaginary part of the two-point Green function must be expressed in
terms of the sum of the phase volumes of particles [1,2]

mi—m \ άπ
Im/(pH8π4 £ \—S-Qn(p), (27)

where

Ω.(P) = J <5(4) (p ~ Σ k>) 11 ~, <"* = Vkϊ + ™2 (28)

Comparing Eqs. (26) and (27) we get in our approximation the phase
volume to be equal

(29)

n \ n

It is easy to obtain from this expression the asymptotic estimates of the
behaviour of the approximate phase volume at different energies. Here
we give some of these estimates

2π~.—TVΓZ:—^7> p$>nm, (30 a)

nπ~, (30 b)
m

n^l. (30c)
*Γ(2n-3) '

Comparing the obtained formulas with similar estimates of the behaviour
of the true phase volume of n-scalar particles (see e.g. [16]) it is not
difficult to see that for p^>nm the behaviour of Ωn(p) entirely coincides
with that of the true phase volume and at threshold energies the former
tends to zero somewhat more rapidly than the true one.

Such a behaviour of Ωn(p) is clear if our approximation is formulated
in the language of the form factors. To this end let us consider the Green
function of a free scalar particle in the region x2 > 0, x° = t > 0. We
choose the co-ordinate system where x = {£, 0}.

πr
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The approximation (5) is equivalent to the introduction of the form

factor ——— to the integrand of A(~}(x). In fact,
\k\

ω-m _ _

" ' (32)

This is in agreement with the substitution (5). Therefore, the phase volume
Ωn(p) can be written in the form (28), but introducing a form factor
G(ω l 5ω2, ...,ωn)

Ω~ f*\ ?(4) / ^ v h \ ΓT l r*(f^ ^, s \ /T3\n(P)= ff >{p- L ki\ 11— G(ω1,ω2,...,ωn), (33)

where

G(co1 )ω2,...,ωπ)=π ί 7(ω t.), g(ω^\/^-^.. (34)

At low energies the form factor #(ωf) decreases as the first power of \ht\
and with increasing energy it tends to unity. Hence it follows

lim [Ωn(p)/Ωn(p]] = 1 (35)
p^oo

In conclusion we give the expression for the asymptotics of the
imaginary part of the Green function at high energies. To calculate it
Eqs. (27) and (30 c) may be used. Replacing the sum in (27) by the integral
and using the saddle point method we obtain

Constp-3exp 3 f κ - . (36)

Such a behaviour obeys the requirements imposed on local theories
[13-15].

Using Eq. (26) and the corresponding asymptotic equations for
spherical functions it can be seen that the real part of the Green function
decreases at large values of energy.

6. Local Unrenormalizable Interactions (General Case)

The general case of local and nonlocal unrenormalizable interactions
of massless scalar particles was investigated in Ref. [3]. A unitary method
of construction of the Green function in the momentum space was
developed there. The investigations performed above allow us to generalize
this method to the case of local unrenormalizable interactions of massive
scalar particles.
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In the general case the two-point Green function can be written in the
form of an infinite series in powers of the propagator of the free scalar
particle

fg«nW = ' Σ Φ)ί-ig2Δ(x)T, (37)

where the coefficients c(n) for local interactions obey the condition
[13-15] _

lim|φ)|* = 0. (38)
n~* oo

As before we start the construction of the Fourier transform of the func-
tion (37) from a preliminary consideration of the function Φgen(.x)

Φ genW = i Σ c(n)[ig2Δ(x)γ. (39)
n = 0

Using the approximation (5) and the intermediate regularization we go
over to the momentum space

Γ(p) = i Σ Φ)*" d ^ e ^ - . (40)
-

We consider the unphysical domain p2 < 0. We choose the system of
co-ordinates where p = {0, p}. Passing to the Euclidean metric and inte-
grating over angles, we get

OO

φfn(p) = (2πκ)2~ Y (-κm2)"φ + 2) drr~2(n + l} e-(n + 2}rJΛ~ι\ (41)
IPI n = 0 J V m /

I

Here 1 is the cutoff parameter.

Now following Ref. [3] we reconstruct the analytic function χ(z, r)
which is regular in the right half-plane Rez>0 and obeying the condi-
tions (z = x + i y)

a) |χ(z, r)| <BeA |z| (Re z > 0, A > 0, B > 0) , (42)

b) \χ(iy,r)\<Be(π~εM (- oo < y< oo,ε>0) (43)

using its values χ(n, r) in a given sequence of points n = 0, 1, 2, . . .

Γ e~r~\n

2) xm 2 — 2-
L r J

(44)
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The obtained function is written in the form

(45)

Making use of the properties (42) and (43) of this function one can find for
φjen(p) the following integral representation

— α —ίoo oo

m Γ (κm2Y f „ +1. , _ f\p\
— dzc(z + 2)±τ-L\drr-2^"e-(z+2*JΛ^
\P\ J smπz J \m

-α + ίco / (46)

This representation is convenient by that it permits one to eliminate the
intermediate regularization and to put 1 = 0.

On the other hand, the conditions (42) and (43) ensure unambiguous
reconstruction of the function χ(z, r) using its values χ(n, r). This is a
very important feature of the transition from (41) to (46).

After omitting the intermediate regularization in the right-hand
side of (46) we are led to the integral which was calculated earlier (see (23)).
Now we may return to the function /gen(p) in question, using anew
Eq. (12). This can be done both before and after calculation of the integral
over z. As a result we get for the unphysical domain p2 < 0

The analytic continuation of the function /gen(p) in p2 into the ^domain
p2 = 0 proceeds in just the same way as that of the functions /(p) and
/(p) considered in the third and fourth sections. Therefore it is not
wirth giving here these calculations.

In conclusion we indicate the conditions which should be satisfied
by the coefficients c(n) so that it will be possible to reconstruct un-
ambiguously the function χ(z, r) with the properties desired using its
values χ(n, r). As is shown in Ref. [3] this condition can be written in the
form

ϊim nk |φ)|" - a(r) , (48)
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where a(r) is a function of r and k obeys the condition

0 < k ̂  2 . (49)

Comparing the condition (48) with (38) it easily seen that the unrenor-
malized interactions considered here are local.

7. Conclusion

The investigation performed is a natural generalization of the
methods suggested earlier by the author for the description of unrenor-
malizable interactions of massless particles [1-4] to the case of massive
particles. The approximation which has been used in constructing the
Green function in the momentum space is the most interesting one from
the point of view of the right qualitative description of the Green function
behaviour on different domains of the variable p2. At the same time, at
high energies this approximation gives a good quantitative description.
At energies close to the threshold one we have somewhat under-
estimated results.

The method developed is applicable to the description of a rather wide
class of local unrenormalizable interactions of elementary particles and
obeys the requirements imposed on the theory with unitary S-matrix.

In conclusion the author is grateful to Prof. D. I. Blokhmtsev for the interest in the
work, and to Dr. G. V. Efimov for useful discussions.
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