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Abstract. Let s£ be a C*-algebra and G be a locally compact group acting as strongly
continuous automorphisms on si. Let π be a representation of s/ then we say π is a co-
variant representation if there exists a strongly continuous unitary representation of the
group acting on J^π which implements the automorphisms. We give necessary and sufficient
conditions on a representation π of si such that a) π is subrepresentation of a covariant
representation and b) π is subrepresentation of a covariant representation quasi-equivalent
to π.

I. Introduction

Almost every physical problem is connected with the action of some
group, sometimes as a symmetry-group of the problem, very often as the
group of time development and not seldom as the combination of both.
This is also true in those cases where C*-algebras have been used for the
description of physics, as for instance quantum-field-theory and statistical
mechanics. In these cases such groups appear as automorphism-groups
of the C*-algebra. Although it is widely believed that all physical in-
formation should be purely algebraic, this means, independent of the
special representation [1], everyone prefers to use special representations
adapted to the special situation. Common to all such representations
which have been used so far is the property that the group of auto-
morphisms which are of physical interest are implemented by a con-
tinuous unitary representation of the group in question.

At this point we interrupt the discussion in order to introduce some
terminology. We denote the C*-algebra by si (for the definition see
J. Dixmier [2]) and by G a locally compact group. We assume that we
have a representation a : G —• Aut si of this group as automorphisms
acting on si (Aut si denotes the automorphism-group of si). Speaking
about representations π of si we mean always representations which
are not degenerated.

I.I. Definitions. A representation π of si is called
a) covariant if there exists a strongly continuous unitary representa-

tion ρ:G->^(J^ π ) (all bounded operators on J-fπ) such that π(α^x)
= ρ(g)π(x)ρ~1(g) for all xesi;
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b) quasicovariant if π is quasi equivalent to a covariant representa-
tion π';

c) covariant extendίble if π is unitary equivalent to a subrepresenta-
tion πt of a covariant representation π 2 .

We will denote by a'g the transposed mapping of ocg defined on the
dual space of si by the relation (ocgω) (x) = ω(ocgx).

1.2. Definitions. We say the automorphisms ag, geG act
a) norm continuous if for every ε > 0 exists a neighbourhood (7 C G

of the identity such that \\ocgx —x\\ ̂ ε ||x|| for g e U\
b) strongly continuous if for every x e s i and every ε > 0 exists a

neighbourhood ί/ C G of the identity such that \\agx — x\\ < ε for g e U.

Since only covariant representations seem to be of use for physics
it is natural to ask for conditions under which a representation will be
a covariant one. This question has been solved by R. Kadison and
J. Ringrose [3] in the case where the group acts norm continuous, using
the result of S. Sakai on derivations [4]. However, it is also known
that norm continuous groups of automorphisms are not useful in physics
because of too much analyticity [5]. The next class to ask for would
be automorphism-groups acting strongly continuous on the algebra.
Indeed, from examples in field theory and in statistical mechanics it is
known that this situation does occur in physics.

Most investigations of covariant representations are based on in-
variant states where the covariance of the representation is guaranteed
by the invariance of the state (see e.g. Doplicher, Kadison, Kastler, and
Robinson [6] where one finds also further references). A completely
different piece of information has been found by Doplicher, Kastler,
and Robinson [7] namely that covariant representations are in one to
one correspondence with representations of a related algebra which they
called covariance algebra. But also here no attempt has been made to
give conditions on the representations which guarantee that this re-
presentation is a covariant one. The first real attempt of proving the
covariance of a given representation has been made in connection with
abelian groups and the spectrum condition by G. F. DelΓAntonio [8].
Recently H. J. Borchers [9] gave necessary and sufficient conditions for
a representation being covariant with a group-representation fulfilling
the spectrum condition. This case, however, has been a favourable one
since the spectrum condition implies, according to Borchers [10], that
the group representation, if it exists, can be chosen in the weak closure
of the representation.

If one tries to give conditions for the covariance of a representation
in the general situation it becomes clear that one has to cope with co-
homology and with multiplicity problems. In order that we do not have
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to deal with these problems we will restrict ourselves to the case of finding
conditions under which a representation is covariant extendible re-
spectively under which it is a quasi covariant representation. These
problems can be solved and have simple answers.

In the following it is always assumed that G acts as a strongly con-
tinuous group of automorphisms.

II. States which are Continuous under the Action of the Groups

We will denote by E ( J / ) the set of states on s/ and by P ( J / ) the set
of pure states of <s/.

Π.l. Definition. We say (x'g acts strongly continuous on a state ωeE
if \\aΐgω — ω|| -•0 for g-^-1 and denote by Ec the set of states such that
(x'g acts strongly continuous on them.

The importance of this set follows from

Π.2. Lemma. Let π be a covariant representation then every vector-
state of π belongs to Ec.

Proof. Let ρ . ' G - ^ p f J be the strongly continuous unitary re-
presentation of G implementing the automorphisms ag and ξe3tfn

the a'gωξ{x) = ωξ(agx) = (ρ~1(g)ξ, π(x) ρ~1(g)ξ). From this follows
\a'gωξ(x) - ωξ(x)\ = \{{ρ-1(g)-l)ξ,π(x)ρ-1(g)ξ) +{ξ,π(x){ρ~1(g)- l)ξ)\
^2 | |x | | ||(ρ ί(g)—l)ξ\\^O for #->l since ρ is a strongly continuous
representation. But this implies ||α^ω —ω||-»0 for g->l.

This Lemma tells us that states giving rise to covariant extendible
representations must lie in Ec. Thir makes it worthwhile to study Ec

more closely. Its properties are collected in

Π.3. Theorem. Ec has the following properties:
1. Ec is convex.
2. Ec is norm closed.
3. Ec is invariant under a'g.
4. ωeEc and xesrf such that ω(x*x) = l then ωxeEc where ωx(y)

= ω(x*yx).
5. ωe Ec and ω = λωx + (1 — λ)ω2 with 0 < λ < 1 and ω1, ω2 e E

then follows ωuω2e Ec.
6. ωeE then exists a unique decomposition ω = λω1 +(1 — λ)ω2

with 0 ^ / 1 ^ 1 . ωιeEc and ω2eE such that ω2 does not majorise any
state belonging to Ec.

1. There exists a family Eβ

c C Ec, indexed by a semiordered set, such that
a) EζcElfσrβ<γ,
β) Eβ

c is convex and weakly closed and invariant under ot'g,
y) [JEβc-Ec.

β

The rest of this section is devoted to prove this theorem.
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Proof. 1. Let ω1,ω2eEc and 0 ^ / 1 ^ 1 then \\ag(λωι +(1 -λ)ω2)
- μ ωx + (1 - λ) co2)\\ = \\λ(af

gω1-ω1) + ( 1 - λ ) K ω 2 - ω 2 ) | |
^ λllα^ωi - ω j + (1 -λ) \\ocgω2 - ω 2 | | ^ 0 for #-»l.

2. For proving the second statement we remark first that the trans-
posed mapping of an automorphism is a norm preserving map of the dual
space j / * of s$. Let now ω be a limit point in norm of Ec then exists a
sequence ωneEc such that Hω,, —ω||->0 for n-*oo. Hence also
\\θί'gωn — ocgco\\ ->0. Let now ε > 0 then exists n such that ||ωw — ω|| ^ε/3
and U such that \\ocgωn<ωj :gε/3 for # e ί / . Hence \\otgω — ω\\
S II α^(ω — ωn) || + || ωn — ωn \\ + || ωn — ω \\ g ε for g e U. This implies oc'g acts
strongly continuous on ω and hence ωe Ec.

3. This follows immediately from the group property \\otgoc'hω — cc'hω\\
= \\oc'h-ighω -ω\\-+0 for g->0.

4. This follows from the relation

<xfgC0χ(y) ~ ωχ(y) = ω ( x **g(y)x) -ω(x"yx)

= (ω(x"CLg(y)x) -ω(<xg-i(x")y α^-i(x)))

+ (ω(ag-1(x*)yGcg-ί(x))-ω((xg-ί(x*)yx))

+ (ω(ocg

ι(x*)yx)-ω(x*yx)).

This implies ||a^cux — ω j | ^ | |a^ω — ω | | | | x | | 2 + 2 | | a ~ 1 x — x| | | |x| | ->0 for
g-+l.

5. From 4. and 2. follows that with any state ωe Ec also every vector-
state belonging to π ω is an element of Ec ([2] 2.4.8). Now every state
majorised by ω is a vectorstate ([2], 2.5.1). This implies 5.

6. We have seen that with any state ωeEc also every vectorstate
belonging to πω is an element of Ec. Since Ec is convex and norm closed
we see that all vectorstates of direct sums of respresentations, whose
vectorstates are elements of Ec, belong also to Ec. We will collect these
results in a proposition. To this end we give first a

Π.4. Definition. We say a representation π is affiliated to Ec if every
vectorstate belonging to π is an element of Ec. We write πηEc.

Π.5. Proposition. 1. Let πηEc and πγ be a subrepresentation of π
then πtηEc.

2. Assume n^Ec, iel then ^ ®n^Ec.
iel

3. Let πηEc and πt quasίequivalent to π then πηEc.

Proof. The first statement follows immediately from the definition
of affiliated representations. The second statement follows from the
remarks given just before the definition II.4. It remains the third state-
ment. Since π and π1 are quasiequivalent there exists a representation π 2

quasi equivalent to π such that π and πx can be identified with sub-
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representations of π 2 ([11], I, §4 Corollaire). Taking into account the
result of statement 1. we need only to prove that π 2 is affiliated to Ec.
Now, according to ([2], 5.3.1) we can choose for π 2 a multiple of π.
Hence π 2 η Ec by the second statement.

We are now turning back to the proof of the theorem. Let us denote
by π = Σ θ π ω which is by Proposition II.5. affiliated to Ec. If we

ωeEc

denote by πu the universal representation then exists a unique central
projection P of the weak closure of πu such that π is quasi equivalent
to Pπu and therefore PπuηEc by Proposition Π.5. On the other hand
if ω is a vectorstate of (1 — P)πu then a'g does not act strongly continuous
on ω by construction of P. By definition of the universal representation
πu every state ω is a vector state ωξ. Now λωί = ωpξ, (1 — λ)ω2 = <%_p K

with λ— \\Pζ\\ gives the decomposition of ωξ such that ωx e Ec and ω 2

does not majorise any state belonging to Ec. The last statement follows
from the fact that every state majorised by ω2 is a vectorstate of (1 — P)πu.

For proving the last part of Theorem II.3 we remark first that for any
ω e Ec the expression \\a'gω — ω|| defines a continuous nonnegative
function on G which vanishes at the identity. We call ^(G) the maximal
ideal of bounded continuous functions vanishing at the identity, /^(G)
is a semiordered set.

Π.6. Definition. For every function β e Iι(G) we define Eβ

c as the set
o f ω e £ c such that \\a'gω — ω\\ Sβ(gY

It follows from the definition of Eβ

c that Eβ

c C E\ for β < γ. Further-
more, every ω belongs to all Eβ

c with β\g) ^ \\θLr

gω — ω|| hence (J Eβ = £ c .

Since the set of functions which are smaller then a given one is a convex
set follows that Eβ is a convex set. Let now ωα be a weakly convergent
net in Eβ then we have for every x e stf the relation |ωα(α0x — x)| S \\x\\' β(g)
hence this relation holds also for the limit point ω, this means ω e Eβ.

Π.7. Remarks. 1. We want to emphasize that the extremal points
of Eβ are not pure states in general. This can easily be seen from the
example of continuous functions on G vanishing at infinity having the
translations as a strongly continuous group of automorphisms.

2. From the fact that ocg acts strongly continuous on jtf follows that
Ec is not empty. For / e J ^ ( G ) with / ^ 0 and $f(g)dg = l defines
x-»x(/) = J f(g)(xgxdg a linear order preserving map from jtf^s/.
This implies for any ω e E we have a state ωf(x) = ω(x(f)). Now

\(x'gωf-ω)(x)\ = \ω(x(fg)-x(f))\\ω(x(fg^
for 0->l

This implies ωf e Ec(fg(h) = f{g~ι A)).
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III. Construction of Covariant Representations

In this section we want to prove that every state belonging to Ec

is vectorstate of a covariant representation. The main result of this
section will be

III.l. Theorem. The following statements are equivalent
1. π is covariant extendible.
2. πηEc (see 11 A. for the definition of affiliation).
3. π is the direct sum of cyclic representations such that the states

ωξί, {ζi}iei the cyclic vectors, belong to Ec.

Proof of the first part: l.=>2. follows from Lemma II.2.
2.=>3. Since every representation is direct sum of cyclic representa-

tions ([2], 2.2.7).
3.=>2. ωξi belongs to Ec. Hence πωξηEc by Theorem II.3, 4 and 2.

Hence π = 2^®7tωξiηEc by Proposition Π.5.
iel

For proving the implication 2. => 1. we will use the covariance algebras
introduced by Doplicher, Kastler, and Robinson [7]. For the covenience
of the reader we will collect the main definitions and facts about these
algebras.

One defines sίγ as the set of functions J F : G - > J / , i.e. F(g)esrfMg
such that F(g) is a measurable function on G and | |F | | : = J \\F(g)\\ dg < oo.
siγ is a vectorspace in a natural manner and in particular a Banach-
space. Given two elements F, G e s/f there exists a product defined by
(F*G){g) = $F(h)(χhG{hg-1)dh which fulfills the property | | F * G | |
^ | |F | | | |G|| *. Furthermore there exists on sί% an involution defined by

(F*) (g) = Λg(F{g-χ))* Δ{g-1) with the properties F** = F and | |F* | | = | |F | | .
The product and the involution have all properties which are required
for converting s/f into a 5* -algebra. Having established that ^ f
is a 2?*-algebra one defines a homomorphism of J / resp. G into the bounded
linear operators acting on stff by (H(g)F)(h) = agF(gh~1), geG and
(H(x)F)(g) = xF(g), xestf. The norm of these operators are given
by ||H(gf)|| = 1 and ||H(x)|| = ||x||. The main result of Doplicher, Kastler,
and Robinson is the following:

[7] Theorem 3. There is one-to-one correspondence between co-
variant representations π of si and representations π of «s/f. π-»π
is given by π(F) = J π(F(g)ρ(g)dg, Festff and ρ(g) the given strongly
continuous unitary representation of G implementing the automorphisms
oίg. The integral is defined in the strong operator-topology. The inverse
correspondence is defined by the relations π(x)π(F) = π(H(x)F), xestf
and ρ(g)π(F) = π(H(g)F), geG.

1 dg denotes a left invariant Haar measure and Δ the modul function.
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By means of this correspondence between representations of srff and
covariant representations of sit we have a natural map φ from the
states of si? into the states of si. Since for a given covariant representa-
tion might exist several different group representations implementing
the automorphisms ocg the mapφ will in general be many to one. But
we have

111.2. Theorem. The image of the mapping φ from E(si?) into E(si)
is onto Ec(si)9 i.e. φ E(siγ) = Ec{si).

Proof. From Lemma II.2 follows φE(si?)cEc{si). It remains to
show the converse inclusion. Let J e si? such that J(g) is a continuous
function with compact support. (J* * F * J) (g) is a continuous function
m 9 ([7], Theorem 2). In particular F->(J** F * J)(l) defines a linear
positive map !Fj from si? into J/ . Hence the transposed map Ψj sends
positive linear forms of si into positive linear forms of si?. This map
is given by ΨjCύ(F) = ω(J* * F * J) (1)). ([7], Lemma 5). The rest of the
proof of Theorem III.2 will be given in the following two lemmas.

111.3. Lemma.Lβί ω e Ec(si) then exists a sequence Jn e siγ con-
tinuous and with compact support such that φ o ψ'Jn ω converge in norm to ω.

Proof. We have

From this follows

Ψ'Jω{F) = Sdgdhω(ag{J*{g-1))*g{F{g-'W

Now construct φo ψjco(x) by replacing F(g) by χ-δ(g) where denotes
the Dirac measure at the identity of G. Hence we get

Since we have assumed that I G J / we can put Jn(g) = 1 f(g), f(g) con-
tinuous function with compact support on G. Thus we get

Since a'g acts strongly continuous we can choose fn(g) such that
l/nto"1)!2 ^te" 1 ) converges to δ(g) in the dual space of the continuous
on G. Hence φoψ'Jnω converges in norm to ω.

This lemma tells us that φE(sii) is normdense in Ec(si). Therefore
the proof of Theorem III.2 is established by the following

III.4. Lemma. The image of E(s/f) under the map φ is closed in norm.

Proof. Let ω be a limit point of φE(s#i) then exists a sequence
such that ||ωn - ω | | -+0.



312 H. J. Borchers:

Let ώneE(s/?) such that φώn = ωn. Denote by π = ^ © π ά n the
n

representation of j / f induced by {ωn}. By the correspondence-theorem
exists a covariant representation π of s/ such that φώξ = ωξ for every
ξeJtffi. Since the vectorstates are norm closed (R. V. Kadison [12])
exist a vector η e Jf- with ω = ωη = φώη.

After the proof of Theorem III.2 we can complete the proof of
Theorem III.l. Let π be a representation of J / with πηEc then it is the
direct sum of cyclic representation. π = ^ 0 π ω . . Since ωt belongs

iel

to Ec exists ώ f e E(^) such that ^ώ,- = ω f. Now £ © π ά i is a representa-
iel

tion π of j/f. Let πx be corresponding covariant representation of s/
then one checks easily that π is a subrepresentation of πv This proves
Theorem III.l.

After having established necessary and sufficient conditions for the
existence of covariant extension of a given representation we will ask
next for the class of quasicovariant representations.

Before we are going into the details of the discussions we have to
recall the condition for quasi equivalence in terms of states. Let π1 and
π2 be two quasi equivalent representations then every normal state of πx

defines a normal state on π 2 and vice versa. Hence πί and π 2 have the
same sets of normal states. Now the set of normal states of a representa-
tion π is normclosed and coincides with the convex closure of its vector-
states.

III.5. Definition. Let π be a representation then we denote
1. E(π) the set of all vectorstate of π.
2. C0E(π) the norm closed convex hull of E(π).
Since for any state ω e Co E(π) the representation πω is quasi equivalent

to a subrepresentation of π follows that £ © πω is quasi equivalent

to π. But this implies two representations πx and π 2 are quasi equivalent

After this discussion of quasi equivalent representations we can
state the result.

III.6. Theorem. Let π be a representation of stf then π is quasi co-
variant if and only if

α) πηEc and
β) a'gC^E(π) = C^E(π) for all g e G.

Proof. Let π be a quasi covariant representation then exists a co-
variant representation πγ which is quasi equivalent to π. Hence E(π) C Ec

and since Ec is convex and norm closed follows EcjC0E(π1) = C0E(π)
but this implies πηEc. Since πγ is a covariant representation follows
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(x'gE(πί) = E(π1) and hence also the convex closure of E(π) is invariant
under the action of oc'g.

Let now π fulfil the conditions α) and β) then by Theorem III.l exists
a covariant representation πί such that π is a subrepresentation of πv

Let now P be the central carrier of π (in the center of the weak closure
of πx) then Pπί is quasi equivalent to π. It remains to show that P π x

is a covariant representation. To this end let us denote by ρ(g) the
strongly continuous unitary representation of G on Jfπi implementing
the automorphisms. Let ζeJ^πι such that Pζ = ξ then by condition β
ρ(g)ξ defines a normal state of Pπί and since the representations Pπx

and (1 —P)πί are disjoint follows Pρ(g)ξ = ρ(g)ξ. This implies P com-
mutes with ρ(g) and hence Pπγ is a covariant representation. This
proves the theorem.

Remarks. 1. We refrain from investing conditions under which a
representation is covariant. The necessary condition that E(π) is in-
variant under a'g is not sufficient for solving the problem as we will see
in an example. As far as I have looked into this problem the invariance
of E(π) will probably be sufficient in the cases where π" is purely infinite
and in the case where π" is finite only when the coupling is smaller or equal
to one, this means if π' is small compared to π".

Example. Let si be the continuous functions on the real line IR
vanishing at infinity with the translations as automorphism groups.
Let π 0 be the natural representation in i^i(lR) and P be a projection in U'Q
such that P φ 0 and 1 - P φ 0. Let X be any Hilbertspace of at least
two dimensions. Define J f = P J£?2(IR) <g) Jf Θ (1 - P) ^2 W and
π(x) = Pπ o(x)(g)10(l — P)πo(x). One sees immediately E(π) = E(π0)
and hence E(π) is invariant under the action of ccg. However ag is not
unitary implementable since multiplicity is an unitary invariant.

2. From the way we have constructed states on the covariance-
algebra siγ in the proof of Theorem III.2 follows that there exists a
faithful covariant representation of si (compare also [7], Lemma 5).
From this we will see that a twosided ideal in si is kernel of a covariant
representation if and only if it is invariant.
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