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Abstract. A classification of all translationally invariant states over the algebra of anti-
commutation relations which satisfy criteria of finite mean density, finite mean kinetic
energy, and finite mean entropy is given. It is demonstrated that these concepts can be
discussed in terms of affine, semi-continuous, functionals which respect the barycentric
decompositions of invariant states. Many other pertinent results, both local and global,
are derived.

1. Introduction

It is generally accepted that the states of physical systems can be
theoretically identified with the mathematical states over suitably chosen
C*-algebras, the algebras of observables. For reasons of economy,
however, one usually restricts attention to the subset of states which
satisfy general conditions characteristic of the particular physical setting
under consideration. In particular in statistical mechanics it is to be
expected that a broad enough description is provided by states satis-
fying requirements of spatial homogeneity together with certain density
restrictions. Following the original papers [1-3], the homogeneity
requirements have been extensively studied to give a classification of
invariant, periodic, and almost-periodic states. The density restrictions,
which were particularly emphasized by Ruelle [3], have however
attracted less attention. It is the purpose of the present paper to attempt
to fill this gap by giving a detailed discussion of these restrictions in the
case of Fermi systems. We consider the particle, kinetic energy, and
entropy densities.

Each state ρ over a C*-algebra 91 determines a representation πρ of
91 on a Hubert space 3?Q and a cyclic vector Ωρ such that

e(A) = (Ωβ,πβ(A)Ωβ).

If 91 is the algebra associated with the canonical anti-commutation
relations then the concept of particle density is usually discussed in terms
17 Commun. math. Phys., Vol. 14
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of positive, but unbounded, number operators NΛ^e on $' e which are
defined for each finite subsystem A. Of course such operators exist only
for certain states. We will principally discuss a situation which is a l i t t le
more restrictive. We consider states such that the NΛtβ exist with the
property that

i.e. Ωρ must be in the domain of the (NΛtQ)*. States of this nature are
physically interpretable as states of finite particle density. The discussion
of these states is simplified by extending the functionals NA defined
above by setting NΛ(ρ) = +00 if ρ is not a state of finite particle density.
It is shown that the NΛ are affine lower semi-continuous functionals and
that the properties of the states of finite mean density are completely
determined by the properties of these functionals. Further if ρ is trans-
lationally invariant one finds that NΛ(ρ) is proportional to the volume
V(A) of the subsystem A and the proportionality functional determines
the properties of homogeneous states of finite density. This study can
finally be reframed in terms of density operators Nρ which we show to
be proportional to the identity operator on jj?e in the case that ρ is an
ergodic invariant state of finite density.

Discussion of the states of finite kinetic energy density follows
essentially the same lines as the above. A number of new difficulties arise
which are mostly traceable to the lack of uniqueness of boundary con-
ditions in the description of finite systems of freely moving particles. Note
that our investigation of this latter problem is not motivated by interest
in the free system but by the hope that the states considered should be
useful both in the discussion of the time development of interacting
Fermi systems and in the description of equilibrium phenomena. In
particular we proceed to demonstrate that a satisfactory assignment of
mean entropy can be given for the states of finite particle and kinetic
energy densities.

2. The Algebra of Observables

We begin by giving a brief survey of the properties of the C*-algebra
used to describe systems of fermions i.e. the C*-algebra associated with
the canonical anti-commutation relations. We specialize to the frame-
work encountered in statistical mechanics by taking the Euclidean
space in v-dimensions Rv as underlying configuration space and recall
the properties most relevant to this setting and the subsequent analysis.

The C*-algebra 91 associated with the canonical anti-commutation
relations is algebraically generated by elements a(f) and their adjoints
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a(g)* which are defined for all /, g e L2(RV\ the Hubert space of complex
square integrable functions over Rv. The elements a(f) and a(g)* are
assumed to depend linearly and anti linearly on / and g respectively
and also satisfy the algebraic relations

MΛ <%)*] * - a(f)a(g)* + a(gfa(f) = (gj) ,

[*(/), a(gft 4 - α(/)0(0) 4- α(#)α(/) - 0 ,

where (,) denotes the scalar product in L2(RV). The algebraic norm || ||
of the element a(f) coincides with the L2-norm of the function / i.e.

l/|2 = N/)ΊI
The algebra 91 is both separable and simple (for a detailed discussion of
the construction of 91 and its properties the reader is referred to [4]).

If yd is a bounded open set in Rv then the elements a(fΛ), a(gΛ)*9

which are defined for all fΛ,gΛGL2(Λ) generate a C*-subalgebra 9l(/l)
of 91. The family of subalgebras defined in this manner will be referred to
as local algebras. They satisfy the isotony relationship 9l(/t)C 9I(/Γ) if
A C A'.

Two groups of automorphisms of 91 are of special importance. The
first is the group Rv of space translations. There exists a representation
τ of the group Rv as strongly continuous automorphisms of 91. The
action of this group on the generating elements of 9ί is defined by

where fΛ +x e L2(Λ -f x) is given by

Secondly there exists a strongly continuous representation σ of the
compact one-parameter group of gauge transformations of 91. The action
of this latter group on the generating elements of 91 is defined by

where /α is given by

/.(*) = *'*/(*).
The gauge group can be used to classify odd and even elements of 91 as
follows/An element A e 9Ϊ is defined to be odd, or even, if the relation

σπ(A) = +A

holds with the minus, or plus, sign, respectively. A unique decomposition
of a general element A e 91 as a sum of odd and even elements is given by
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The even elements of 91 form a C*-subalgebra 9Ϊ£ C 91 whilst the odd
elements span a Banach subspace of 91. This classification can of course
be made for the local subalgebras 9I(/1) and is useful for a general presen-
tation of the commutation properties of elements of 91. These properties
are included in the following list which also summarizes the features
discussed above.

The fermi algebra 91 and its local subalgebras 91 (Λ), A C R\ possess
the following structural properties.

.0. 91 = {9l(Λ), A C Rv} is separable and simple.'

2. If ΛίnΛ2 = Q and Aie^ί(Λi)9 A2eM(A2) are both odd then
[Ai9 A2~\+ =0 if however Ai9 or A29 (or both) is even then

3. The group Rv acts as a group of strongly continuous automorph-
isms of 91 such that

A e M(A)^>τxA e 9I(Λ + x), x e Rv .

4. If A9 B e 91 are both odd then

ll[^τx£] + i

if however either A, or B is even then

In the statistical mechanics of fermi systems the elements of 91 are
considered to describe the physical observables and the possible states
of the system are identified with the mathematical states over 9t or sub-
classes of these states. We next consider the details of this description.

3. Physical States

The states, the normalized positive linear functionals, ρ over 91 form
a convex weakly compact subset E of the dual 9Ϊ' of 9ί. Associated with
each state ρ by the Gelfand-Segal construction is a representation πρ of
91 as bounded operators acting on a Hubert space jjfβ with cyclic vector
Ωρ such that

= (Ωβ,πβ(A)Ωβ).

As 91 is algebraically generated by the local algebras 91 (A) each state ρ
is determined by its restriction to {9I(/1); A C Rv}. We begin our discussion
of the physical restrictions to be imposed on the states ρ by considering
the basic irreducible Fock representations of the local algebras 9I(/1)
and their associated vector states.
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Let L2_ (Λn) denote the Hubert space of totally antisymmetric square
integrable functions of n points in A and define the Fock space <tffF(A) by

-̂  ( Λ\ _ /T\ T 2 ( A n\JτF(Λ) — (ĵ  L_(Λ ) ,
«^o

i.e. an element of 3FF(A) is a sequence Ψ = (Ψ(n))n^0 where Ψ(0) is a
complex scalar, Ψ(n) e L2_(An) for rc ̂  1, and such that

The Fock representation πΛ of 5Ϊ(Λ) is defined on J^F(A) by prescribing
the action of the generating elements as follows:

»(Xl, ...*„) = (n + 1)* J dxf(x) Ψ("\Xl ...xn),

where xm denotes that the argument xm is omitted. Physically πΛ(a(f))
and ^(a(^f)*) are interpreted as operators which annihilate and create
particles and a vector Ψ(n) represents a state of n particles. This last point
may be made more explicit by the introduction of a positive self adjoint
operator NΛ on J4fF(A) which measures particle number by the definition

Alternatively NΛ can be characterised by the following criterion. Let
&* ={f\}i^\ be a complete orthonormal basis of functions /jeL2(Λ)
and define 2 & by

1
' i=1

 Λ J

Now from [5], we know that for Φ, Ψ e

(Φ, NΛΨ)=Σ (Φ, π>(
ί=l

and further that 3)^ = @(N\) the domain of A/J, is independent of the
basis. Finally concerning NΛ we note that if we introduce the group UΛ

of unitary operators on ^F(A) by the definition

UA(OL) = exp{ίNΛa}, 0 ̂  α ̂  2π

then the group £7^ implement the gauge automorphisms

UΛ(«)πMf))UΛ(«Γl = πΛ(σ.(a(f))) etc. ...

Thus the Fock representation of 2Ϊ(Λ) and its vector states describe
a finite number of particles in the finite region A of configuration space.
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In statistical mechanics one would like to restrict ones attention to just
those states ρ over $ί which have thisφfoperty for all A C Rv. Fortunately
this form of restriction can be well characterised mathematically and
the relevant results are contained in the following proposition which is a
summary of known results [6-9].

Proposition 1. Let ρ be a state over 91 M.) and (πΰ, Jfρ, ΩQ). the repre-
sentation, Hubert space, and cyclic vector, associated with ρ by the Gelfand-
Segaί construction. The following conditions are equivalent.

L The representation πρ is a sum of copies of the Fock representation.
2. There exists a density matrix QΛ on ^F(Λ) such that

Q(A) = TtχF(Λ)(QΛπ^M))> '4 e ί

3. There exists an orthonormal basis {fl

A}i>\ In L2(Λ) such that the
linear variety <$Q e ̂ e defined by

is dense in $?0.
4. There exists an orthonormal basis {/ί]/>ι in L2(A) such that

for one vector Ψ e Jfϋ cyclic for πρ.
5, There exists a one-parameter strongly continuous group Uρ of

unitary operators on Jfρ which implement the gauge automorphisms i.e.

Uϋ(a)πβ(A) Uΰ(<*Γl =? (̂(7^-),- A e SIM), 0 g α g 2π

and such that the infinitesimal generator G, defined by i7ρ(α) = exp.{ι'Gα}
is semi-bounded,

The equivalence of Conditions 1, 2 and 3 is proved in [6, 7]. These
conditions obviously imply 4 but the converse statement is also true as
is remarked in Footnote 8 of [7] without proof. As this implication is of
importance -to us in the sequel we give the following proof,

Assuming Condition .4. it is sufficient to deduce that

N(πβ(A) ψ, πf(A) ψ)= Y (πβ(A) Ψ, πβ(a(f^ a(n))nβ(A)Ψβ) < +00
i = l

for A e 91M) a polynomial in creation and annihilation operators. But
noting that

+ 2N(πβ(A2)Ψ,πβ(A2)Ψ)
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it is sufficient to prove the statement for monomials. Now let A be
given by

and note that

where the (anti-)commutator occurring on the right hand side vanishes
unless i = ip for 1 Ξ p :£ r. Hence one immediately finds that

£ (πe(A)Ψ, πβ(α(/jί
;=1

£ 4r + Σ
i = l

and Conditions 3 follows.
The equivalence of Conditions 1 and 5 is proved in [8,9] for the

algebra associated with the canonical commutation relations/The proof
is valid in the present context and can even be simplified greatly.

The above proposition gives us a number of methods of charac-
terising the states which describe a finite number of particles in each
bounded region but as the physically relevant objects are the states the
most useful criterion appears to be furnished by Condition 2. A state ρ
over yi(A) which is determined by a density matrix on Fock space is
called normal (with respect to the Fock representation) and thus a state
ρ over 91 is called locally normal if the restriction of ρ to each local sub-
algebra 91 (/I) is normal. Each state ρ is determined by its restriction to
{$l(A)'9.AcRv} and hence a locally normal state is determined by a set
of density matrices {ρyί; A C Rv}> The ίsotony conditions relating the local
subalgebras 91 (A) place the following consistency conditions on the
density matrices

for ΛI π A2 = θ and A e 9ϊ(4ι).
We will return to the discussion of special subsets of locally normal

states in the following sections but we next recall the physical restrictions
imposed by invariance criteria and the relevant mathematical results
which have been derived. The translationally invariant states ρ over 91
play a special role in statistical mechanics. These Rv invariant states, i.e.
the states such that

for all A e 91 and x e Rv, form a convex weakly compact subset
of the state space E. The Gelfand-Segal construction applied to

yields a unitary representation Ue of Rv which implements
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the group τ of automorphisms i.e.

UQ(x)πQ(A)UQ(xΓl=πQ(τxA}

and leaves the cyclic vector Ωρ invariant i.e.

Uβ(x)Ωρ = Ωβ .

In [10] it is demonstrated that all translationally invariant states are
eveni e e(Λ) = o
if A E 91 is odd and this property and the commutation relations listed
above imply that 9Ϊ is #v-abelian in the sense of Lanford and Ruelle [11]
i.e. if EQ is the projector on the subspace oϊj^ρ spanned by the Uρ invariant
vectors then the algebra {EρπρEρ} is abelian. This last property then
yields the following result.

Proposition 2. // ρe£nL^v is a translationally invariant state over
91 then there exists a unique probability measure μρ with barycentre ρ
concentrated on the extremal invariant states ^(£nL^v) of 91 i.e. ρ has
a unique integral decomposition

in terms of extremal invariant states ρ'.
Further if ρ is locally normal then μρ is concentrated on extremal

invariant states which are also locally normal.

The existence and uniqueness of the barycentric decomposition is
proved in [2, 3, 11] and the fact that the property of local normality is
respected by this decomposition is a consequence of a more general
result obtained in [3] and Proposition 1. Results of this same general
nature are also derived in the following sections.

4. Density and Mean Density

In this section we consider the assignment of a density and mean
density to states over the algebra 91. Although the concept of a state
with finite density is closely related to the notion of a locally normal
state, i.e. a state describing a finite number of particles per unit volume
of configuration space, the first concept is a little more stringent. If ρ is a
locally normal state there exists a family of semibounded self adjoint
number operators {NΛ,ΛcRv} acting in the representation space J^ρ

associated with ρ. Physically one wishes to interpret the cyclic vector
Ωρ e Jfρ associated with ρ as the vector representing equilibrium of the
system and hence the local density of ρ should be proportional to

NA(ρ) = (ΩQ9 NΛΩρ) = (NJΩρ, Λtf Qρ)
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However unless ΩQe@(N\) this latter expression is meaningless. Thus
the states with finite local density are a subclass of the locally normal
states satisfying certain domain requirements. We will now study this
class of states avoiding, as far as possible, the consideration of unbounded
operators in Hubert space. Instead we consider certain affϊne functional
over the state space of 21 which we introduce through the following
definition. The definition is motivated by Condition 4 of Proposition 1.

Definition 1. Let 2F — {fΛ} be a finite family of orthonormal functions
fAeL2(Λ). The number functional NΛ is defined as a function from the
state space E^(Λ} of 91 (A) to the interval [0, +00] by

Λd(e) = sup Σ e(β(/Λ*β(/Λ)

In terms of the number functional introduced in this manner we can
state the following theorem which is to a large extent a restatement of
information contained in Proposition 1.

Theorem 1. NΛ is an affϊne lower semi-continuous function over the
convex weakly compact set E^(Λ} of states over 2I(Λ). The following con-
ditions are equivalent

1. NΛ(ρ)<+co.
2. ρ is normal with respect to the Fock representation, i.e. ρ is determined

by a density matrix ρΛ on J^F (Λ\ and

where NΛ is the self-adjoint number operator associated with the Fock
representation.

3. There exists in L2(Λ) a complete orthonormal basis {/i}/^ι such that

lim ΣβK/i)WJi))<+oo.
00 i = l

// these latter conditions are satisfied then

NA(β) = Tr^OfcΛy = Lim | <?(«(/ί)*α(/ί)) -

Proof. NΛ is defined as the supremum of a family of continuous
functions and hence is lower semi-continuous.

Condition 1 trivially implies Condition 3. The equivalence of Con-
ditions 2 and 3 follows from using the Gelfand-Segal construction,
Proposition 1, and the characterization of semi-bounded self adjoint
operators supplied by [5]. In order to prove that Condition 2 implies
Condition 1 introduce a complete orthonormal basis {/jj}/^! in L2(Λ)
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and let {Ψj}j>ι be the vector states, in JjfΓ(A), associated with the density
matrix ρΛ< From our discussion of the Foek representation we have

jϊl

-sup £ρ(fl(/i)*α(/AJ).

The validity of this inequality for all basis immediately implies
NΛ(ρ)< +00. But now if the conditions are valid we have

OO

where the middle equality follows from Proposition J and [5].
Finally we see from Condition 3 that

N^λQi + (1 - λ)ρ2) = ΛA^te) + (1 - λ)NA(ρ2), 0 < λ < I

if NΛ(ρ1)<+co and NΛ(ρ2)< -f oo. On the other hand if these latter
finiteness conditions are not satisfied the affine property follows from the
definition of NA.

Thus one sees that the study of the domain of the affine lower semi-
continuous function NA9 i.e. the set of states ρ such that NA(ρ)< -f.oo, is
equivalent to the study of the set of states ρ which generate representa-
tions with number operators JVρ such, that ρ can be extended to N0. This
characterization is technically of use because the study of affine func-
tionals with continuity properties is less complicated than the study of
unbounded operators in Hubert space,

The above theorem gives properties of JV^ as a function over the
states ρ of 31 (yd); next we wish to examine the function Λ C Rv~* NA(ρ)
with ρ fixed. This is a straightforward study which we make as a pre-
liminary to the introduction of a mean density functional over the set of
translationally invariant states of 91.

Lemma L Let A, A' be bounded open sets in Rv. If A C A then

if however A r\A = θ then

• NAόΛ.(ρ)=NΛ(ρ) + NΛ,(ρ),. ρe
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Finally ij ρe£nL^v is a translationally invariant state over ΪΓ then

Proof. Let 3FΛ — { f λ } and ^Λ /A = {j ΛΊΛ} be two finite families of
orthonormal functions in L2(Λ) and L2(Λ'/Λ) respectively then

fΛ^&Λ fΛ ' I A e ̂ yl '/ vl

£ Σ ί?HΛι)*«(/J)SίO.
/yl G ̂ i

But the family {fΛ,fΛΊΛ} forms a finite family of orthonormal func-
tions in L2(Λr). Thus taking supremums over the possible families 3FA

and ^A'iA we find the first statement of the lemma. To deduce the second
statement we note that it is sufficient to assume

NA(ρ)<+Φ9. ΛΓΛ<(ρ)<+oo

because in the contrary case the statement is a consequence of the first
result. However under these assumptions we know from Condition 3
of Theorem 1 that

NΛ(Q) + NΛ.(ρ) - Lim £ ρ(β(/i)*«(/J) + a(fΛ,fa(f^ < +00

where {/J}f^ι and {f^}t^\ are any two complete orthonormal basis in
L2(Λ) and L2(Λ') respectively. But the family {/i,/i'}jj^ι forms a com-
plete orthonormal basis in L2(ΛuA') and hence the result follows from
Theorem 1. The in variance property is an immediate consequence of
the action of the group of space translations.

Thus we see that Λ-* NΛ(ρ) is a positive, increasing, additive function
over the open bounded sets A C Rv. One may also remark that if A = 0,
the empty set, then NΛ(ρ) = 0. Further if ρ is a translationally invariant
state over $1 then A-*NA(ρ) is a translationally invariant function. These
properties are sufficient to deduce that if ρ is invariant then A^(ρ) is
proportional to the Lebesgue measure (volume) V(A) of A The coefficient
of proportionality introduced in this manner can then be considered as a
functional over the invariant states; physically this functional corresponds
to the mean density. This latter functional is of course of primary physical
importance and we now study its properties.

Theorem 2. The mean density functional N, defined over the set
of translationally invariant states over 2ί by
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is independent of the open bounded set ACRV occurring in its definition.
N has the following properties:

0. N(ρ)e[0, +00].
1. N is affine i.e. if ρ l9 ρ2 e Er\L^v and 0 ̂  λ ̂  1 then

2. N is lower semi-continuous.
3. If the domain FN of N is defined by

FN = {ρ;ρe EnL^v, N(ρ) < +00}

then ρe FN(= Er\LfivΓ\FN) implies that ρ is locally normal.
4. If ρeEnL^v and μρ is the unique probability measure with bary-

centre ρ concentrated on ^(EnL^v) then

N(ρ)=$dμβ(ρ')N(ρ')

and ifρeFN(=Er\L^vr^FN) then μρ is concentrated on
s V βι>Q2££(EnLRJnFN and N(ρι) + N(ρ2) then the representa-

tions πρι, πρ2, generated by ρi and ρ2 respectively, are quasί-inequivalent.

Proof. The fact that the definition of N is independent of A is a staight-
forward exercise in measure theory which utilises the properties of the
function Λ->NΛ(ρ) which we have derived above. We omit the details.
The first four properties of N are an immediate consequence of the
analogous properties of NΛ derived in Theorem 1. The existence of the
integral representation of N follows from Properties 1 and 2 and the
proof of Lemma 10 in [13]. We now prove that if ρ e£nL^vnFN then
μρ is concentrated on

Define the set GM by

and let μρ = μ' + μ" where, \\μ'\\ + ||μ"|| = 1, μ' is carried by GM, and
μ" by ^(£πL^v)/GM. Then for ρ e FN we have

+00 > ΛΓ(ρ) = μβ(N) ^ μ'(N) ^

Thus || μ'|| ̂  N(ρ)/M and hence μQ must be concentrated on S(E n L^v) n FN .
It remains to prove Property 5. The proof rests upon the following

property [2]; ρ l9 ρ2 e^(£nL^v) generate quasi-equivalent representa-
tions if, and only if, ρι=ρ2' But now if

N(ρι)<N(ρ2)<+oo
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then by Conditions of Theorem 1 we can choose a basis {/Jij^i, of
orthonormal functions in L2(A) and an integer N0 such that

NO NO

Σ Qί(a(fίΛYa(fi

Λ))^N(Qί)V(Λ}< £ ρ2(α(/i)*α(/j)) ̂  N(ρ2)V(Λ).
i = 1 / = 1

Hence ρ1 Φ ρ2 and the proof is complete.
It is often technically disadvantageous that neither the set of invariant

locally normal states nor the set of invariant states with finite density is
weakly compact. However as a result of the lower semi-continuity of N
we can deduce the following.

Corollary 1. The set FjJ defined by

is convex and weakly compact.

The set is obviously convex but due to the semi-continuity it is closed.
As EnLflv is weakly compact it follows that F^ is also weakly compact.

Note that one could have drawn a similar conclusion concerning
states over the local algebras 91 (A).

The above theorem characterizes the properties of states with finite
mean density. Note that from Property 4 it follows that the barycentric
decomposition of invariant states respects the property of finite mean
density or, equivalently, the property of local normality given in Theo-
rem 1. This is a weaker form of the result of Ruelle [3] which we recalled
in Proposition 2.

In Theorem 1 we have seen that there exists a local number operator
associated with each state of finite local density. It is natural to ask
whether one can associate an unbounded density operator with each
state of finite mean density. Our next aim is to demonstrate that this is
indeed the case and thereby obtain a more explicit explanation of the
decomposition properties of states with finite mean density and a
characterization of ergodic states which share this property.

Theorem 3. Let ρ e Er>L^vnFN be an invariant state with finite mean
density N(ρ) and let (πρ, UQ9 <ffρ, Ωρ) be the representation of 21, the unitary
representation of Rv, the Hίlbert space, and cyclic invariant vector, asso-
ciated with ρ by the Gelfand-Segal construction.

There exists a positive self-adjoint operator Nρ on fflQ with the
following properties:

1. N(Q) = (Ωρ, NρΩρ) and in particular Ωρ e &(N*)9 the domain of N|.
2. The following commutation relations are valid

| = 0, Ae<Ά

\_Nβ,Ua(x)j=0, x e R v
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and in particular, πρ and Uρ leave the domain of Nυ invariant. Hence Nρ is
affiliated with the ahelian algebra {πρ, Uρ}' of operators on Jfρ.

3. If ρ6(f(£nL^v)nFΛ r then Nρ^N(ρ)lρ where lρ is the identity
operator on J-fρ.

Proof. The proof relies upon the combination of the techniques
developed above and the Hubert space techniques developed previously
for the discussion of invariant states [2].

The major point that has to be demonstrated is the following. For
each /4e9I let QA be the vector state associated with ρe£nL^ v by the
definition

= Q(A*BA) Be SI.

Further define the parallelepiped Λl by

AΛ - {x; x e R\ -lt < xf < lh i - 1, ... v} .

We wish to prove that if N(ρ) < -f oo then the limit

N(βj= Lim ̂ f
^Af ι , . . . « v - > o o V(Al]

exists for a dense set of A e 21 and is invariant in the sense that

Once we have done this we will construct a self-adjoint operator Nρ on
Jffe such that

N(ρA) = (πρ(A)Ωρ,Nρπρ(A)Ωρ)

and demonstrate that this operator has all the properties stated in the
theorem.

Let ni9 / = 1,... v be positive integers and denote by nl the v-vector
(«!/!,..., nv/v). We first show that if the limit

\T ( n \

Nt(ρA) = Lim
V(Λnl)

exists then it is independent of /15 ...,/ v. To deduce this we introduce
vectors /i = (/n, ..., /ιvλ '2 = ('21 » « ^2v) and note that for a given value
of nt it is possible to choose an integer mi such that

Hence applying the increase property of NΛ(ρ) deduced in Lemma 1 to
the state ρA where A is assumed strictly local we find

V(Λmh) NΛmh(ρA) NΛmlι(ρA)

F(/lmί2) - F(ylm/1) - V(Λ(m+1)h) V(Λml)
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In the limit nί9 ..., πy~»oo we have m l 5 ' ...,m v-»oα and hence

A similar argument based on the increase property and the trans-
formation law

establishes that if Nt(ρA) exists then

We will not elaborate on this point but turn our attention to proving
the existence of NL(QA) for a suitably chosen set of A e21.

Let 3FAl = { f j j j ^ i be a complete orthonormal basis in L2(Λt). Under
the assumption N(ρ) < -h oo Theorem 1 tells us that

ΛUte) = kim Σ («,, πMfΛ)*a(fti)ΩQ)
N->00. = ][

and hence for ε > 0 one can choose ΛΓ0 such that

< ε for N > N0 .

However if A 6 2ϊ(/lί) is a polynomial in the annihilation and creation
operators a(fΛl), a(fΛl)* then we can choose N0 such that

ΛF2

^ i W i i ^ Σ
for all N2*z Nv> N0. The last statement follows from the same calculation
used in proving the equivalence of Conditions 3 and 4 in Proposition 1
it is a consequence of the anti-commutation relations. Thus for ε > 0 we
can choose N0 such that the above estimate and the estimate

N

< ε for N > N0

are simultaneously valid. Note: that if x e Rv is such that (Al + x) n Λl = θ
then it also follows that

N

- Σ (ΩQ9ιtβ(ϊxA*a(fAl)*a[fAt)τxA)Ω^ <ε for N>N0.

This latter uniformity criterion is essential in the following proof.
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Introduce the set θn C Zv by the definition

θn = {m; m e Zv, — n{ ^ mt g πj

and let N(θn) denote the number of points in θn then from the additivity
and transformation properties of NΛ(ρA) we have

ί ) ι ) N(θn) mθn

Hence combining this formula and the estimates given above

ί <ε

,) N(θn)

4*) £ πβ(τml(a(fti*a(fti))πβ(A)Ω,
meθn

for all N>N0.

Next let us introduce the notation

1 N

V"1 ( fi\* ( fi\

l i

Then, noting that ANtl e 91, we have from [2] that the limit

exists and defines a bounded operator M(ANJ) whose action is such that

ρ, M(ANjπQ(A)ΩQ) = (βρ, πρ

where E'ρ is the projector on the subspace of Jfρ spanned by all vectors
Ψ such that

UQ(mt)Ψ=Ψ9 m e Z v .

Combining the above results we immediately have the existence of
N(ρA) and in fact

N(ρA) = lim (πρ(^)flρ, M(Am)nQ(A)ΩQ)
JV — > oo

= im (Ωβ, πβ(A*A)Έ*βπa(A,,3Ωβ)

where the last statement follows from the characterization of the number
operator given in Section 2 and the results of Theorem 1 (NΛl denotes the
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number operator which is associated with πρ by virtue of Theorem 1). But
having deduced the existence of N(ρ) we then know from the discussion
at the beginning of the proof that

and hence

where Eρ is the projector on the subspace of J^ρ spanned by the Rv in-
variant vectors i.e. the vectors Ψ such that

Uρ(x)Ψ=Ψ, xeRv.

The introduction of the self adjoint operator Nρ is now made in the
following manner. The operators M(ANtl) form an increasing sequence
of positive bounded operators and we have deduced above that

Hm (πβ(A*)ΩQM(ANjπQ(A)Ωβ) = \ΩQ9 πρ(A*A)Eρ -̂ - Ωρj < +00

for a dense set of A e 91. Hence from [5] there exists a positive self adjoint
operator Nρ on ^fρ which is such that

(π.μ^Ω.^.π.^Ω^^jm^μ^Ω,^^^,^)^)

whenever the limit exists and whose other matrix elements are obtained
by polarization and closure of the bilinear form introduced by the limit.
All stated properties of Nρ follow immediately from the above characteri-
zation, Proposition 2, and the characterization of extremal invariant
states [2].

We remark that the existence of Ne and its affiliation with the abelian
algebra {πρ, UQ}' explains essentially the reason why the barycentric
decomposition of invariant states respects the property of finite mean
density. This decomposition is induced by decomposition of the re-
presentation πρ obtained by "diagonalization" of the central subalgebra
{πρ, Uρ}' (see [2]) and of course any affiliated unbounded operators. The
ergodicity of ρ is equivalent to the triviality of {πρ, Uβ}' and this is why
ergodicity implies that Nρ is a multiple of the identity.

Physically the criterion of ergodicity ρ6^(EnL^v) corresponds to
the absence of large fluctuations in the space averages of local observables.
In this light the requirement ρ e ^(Er\LL

RV)r\FN corresponds to the con-
sideration of states with small density fluctuations. This qualitative

18 Commun. math. Phys., Vol. 14
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property is however a little difficult to formulate quantitatively because
for Q e FN it does not necessarily follow that Ωρ is in the domain of the
unbounded number operators NA.

5. Kinetic Energy and Mean Kinetic Energy

Our next aim is to analyse the states over 9Ϊ which can be physically
interpreted to have finite mean kinetic energy and finite particle density.
Our analysis follows the same general pattern as that developed in the
previous section.

We begin by considering the kinetic energy of a finite system and
again introduce this concept by reference to the Fock representation
πΛ of 2I(Λ). Let @0(Λ) be the dense subspace of the Fock space J^F(A)
spanned by twice continuously differentiable functions vanishing on the
boundaries of A. On @0 (A) we can define a positive symmetric operator
Γ? by

where V% is the Laplace operator. Physically one expects the kinetic
energy operator to be given as a self adjoint extension of TΛ. At this
point however a certain ambiguity arises; TA is not essentially self
adjoint but has many different self adjoint extensions. These different
extensions arise from different choices of boundary conditions. We will
circumvent this set of ambiguities by choosing one particular self adjoint
extension TΛ of TA which is particularly suited to our present purpose.
Note that insofar we derive properties of states of infinite systems these
should be independent of the particular self adjoint extension chosen for
the description of finite subsystems; however we have not explicitly
verified this independence.

We now proceed to give various characterizations of the kinetic
energy operator TΛ. Let 2F ' = { f Λ } be a complete orthonormal basis of
L2(A) formed by once continuously differentiable functions fA which
vanish on the boundaries of A. Define the set 2 (A) by

(Ψ9 πΛ(a(VfΛ)*a(VfΛ))Ψ}< +ool .
Z& }

The proofs of [5] establish the existence of a self adjoint operator TΛ with
the property that

(Ψ, TΛΨ)= sup X (Ψ9 πΛ(a( VfΛ}*a( V
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for all Ψ e @(Λ] and further show that 2 (A) = @(Tχ\ the domain of Γj.
A straightforward computation involving partial integration and the
completeness of 3F establishes that TΛ is an extension of Tj.

The abstract definition of TΛ given above is of great use .but fails
to give very detailed knowledge of the properties of TΛ, e.g. it is not clear
whether TΛ is independent of the basis 3F occurring in its definition.
Next we argue that TΛ is the extension of Γj whose eigenfunctions
Ψ(n} e ^fF(A) satisfy the differential equation

- Σ %Ψ(n)(xι...xn) = EnΨ
(n}(xί...xn)

i = l

with the boundary condition Vx. Ψ
(n) (xί ... xn) = 0 across the boundary

of A. Note that it is sufficient to establish this property on the one particle
subspace of 3ΊfF(A) because one sees from the definition of TΛ that the
multi particle eigenfunctions are formed by taking suitably antisym-
metrized products of the one particle eigenfunctions. Now let Ψ be a
one particle eigenfunction of TΛ with eigenvalue E and take ΦeS$(A) then

E(Φ,Ψ)= Σ (Φ, VfΛ

F<F]bound.

The first step uses the action of a( Vf) on the one particle subspace of
3?p(A\ the second step follows by partial integration and the complete-
ness of &*. The third step involves another partial integration and intro-
duces a surface term which we have denoted by [Φ FΨ]bound. For con-
sistency this surface term must vanish for all Φ e 2 (A) regardless of the
values of Φ on the boundary, i.e. VΨ must vanish across the boundary.
In particular, for Ψe®(A),(Ψ, TΛΨ) is independent of the basis &
used in its definition. Further if {/„} is the complete orthonormal basis
of L2(A) formed by the one particle eigenfunctions of TΛ and εn are the
associated eigenvalues and the indices are ordered such that

0 = εo < ει = ε2 = * * *
then we have

TΛ = Σ «.«>(/.)*

This last formula allows us to deduce that

i.e. TΛ dominates NΛ in the sense given.
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In the following section we will need certain estimates involving the
eigenvalues of TΛ and these are most easily obtained by restricting A
to be a parallelepiped, the lengths of whose sides we denote by / 1 5 . . . /v.
Then the one-particle eigenfunctions Cn

Λ of TΛ are given by

QM = Π β*
ί = ί i

and n = (nί9... nv) where the nt are non-negative integers the normali-
zation constants a{ are given by a{ = ]/ϊ/li ^ nt = Q and at = J/2//J if
Hi > 0.

The associated eigenvalues εn are given by

πn{

and we have for β > 0

^ expjfl fl + J dx expί-^π2x2/'?)j
U=ι \ o L /J

Motivated by the above characterization of the kinetic energy
operator TΛ we now introduce the concept of a kinetic energy functional
in a manner analogous to that previously adopted for the number
functional.

Definition 2. Let ̂  = { f Λ } be a finite family of orthonormal once
continuously differ entiable functions fΛ e ll (A) which vanish on the
boundaries of A. The kinetic energy functional TΛ is defined as a function
from the states E^(Λ) of ^Ά(A) to the interval [0, + 00] by

This definition allows one to characterize the states with finite
kinetic energy and especially those which also have finite density.

Theorem 4. TΛ is an affine lower semi-continuous function over the
convex weakly compact set E^(Λ} of states over 9Ϊ(/1). The following con-
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ditions are equivalent
1. TΛ(ρ) < + 00 and NΛ(ρ) < +00.
2. ρ is normal with respect to the Fock representation, i.e. is determined

by a density matrix QΛ on 3?F(A\ and

where TΛ is the self adjoint kinetic energy operator associated with the
Fock representation.

If these latter conditions are satisfied then

TΛ(ρ) = Ύτ^F(Λ)(ρΛTΛ) = Σ Q(a(VfΛ)*.a(VfΛ)}
fΛZP

where 2F = { f Λ } is any complete orthonormal basis in L2(A) formed by
once continuously differ entiable functions fΛ which vanish on the boundaries
of A.

Proof. TΛ is defined as the supremum of a family of continuous func-
tions and hence is lower semi-continuous. It is also evident that TΛ is
convex but the following argument due to Lanford establishes that it is
affine. Consider

TΛ(Q'^)= Σ e(fl(F/J*.α(P/Λ).
fΛe&

The finite family 3F = { f Λ } spans a subspace S of L2(A). If we choose any
basis ^s of S again formed by once differentiable functions vanishing
on the boundary of A then a simple calculation involving a unitary
transformation shows that

i.e. Tλ(ρι ^) depends only on the subspace S. Thus TΛ(ρ) is actually the
limit over the net of finite dimensional subspaces of L2(A). Hence TΛ is
the limit of a family of affine functionals and is consequently affine.

Now NΛ(ρ) < +00 implies that ρ is normal with respect to the Fock
representation due to Theorem 1 but then TΛ(ρ)< +00 implies that

where the last step is a consequence of the above characterization of the
kinetic energy operator TΛ and the monotone convergence theorem [12].
Hence Condition 1 implies Condition 2. Now we have seen that the
kinetic energy operator TA dominates the number operator JV^ in the
sense that there exists on εΛ > 0 such that
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Hence +oo>Ύr^F(Λ)(ρΛTΛ) implies +ao>Tr#F(ρANA) and hence by
Theorem 1 we have NA(ρ)<+ao. TΛ(ρ) < +00 follows straightforwardly
as a consequence of Condition 2.

Before proceeding we remark that an inequality of the form

is valid under the assumption that ρ is normal with respect to the Fock
representation but it is possible that this assumption is not necessary. In
particular in one dimension (v = 1) we have for the interval A = (0, /)

= Σ

where S"Λ and C"Λ are given by

= | / 2 / Z s i n π - - , C"(x) = 9 ,,... .

If this inequality is in general valid then the statement of the theorem can
be strengthened because TΛ(ρ) < +00 would imply NA(ρ) < +00.

Next we analyse the properties of the function ΛcRv->TΛ(ρ) with
ρ fixed.

Lemma 2. Let Λ, A be bounded open sets in Rv. If AC A' then

If however Ac\A = θ then

Q *

and the equality sign holds if TΛ^Λ,(ρ) < + oo, NΛ^Λ,(ρ) < + oo. Finally if
ρ e EnL^v is a translationally invariant state over 91 then

TA(ρ)=TA+a(ρ), aεR\

Proof. The proof of the lemma is similar to that given in the previous
section, Lemma 1, for the function Λ-+NA(ρ). The additivity of TΛ(ρ) in
the case stated above is a consequence of the monotone convergence
theorem and the properties of the kinetic energy operator TΛ; specifically
we have for any complete orthonormal basis 3F = { f Λ } in L2(A) of once
continuously differentiable functions vanishing on the boundaries of
Λ that

TA(Q) = Σ β(*( P/Λ111. a( VfΛ)} = Ί^F(Λ)(QΛ TΛ)
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whenever TA(ρ)< + oo and NΛ(ρ)< + oo due to theorem 4. Using the
fact that the definition of TΛ(ρ) is basis independent the additivity follows
as in Lemma 1.

Before proceeding we remark that the additivity property derived in
the Lemma implies that if ρ is a state of finite density and kinetic energy
then

Tr^FMuΛ')teΛuΛ'^UΛθ = T^

Now TΛ and ΎA, can be considered, by extension, as operators on
and this equality implies that

and

\\TjuA Ψ\\2=\\T}Ψ\\2+\\T}.\\2

for Ψ 6 ®(T|uyl')- However this in no way implies that the operator TΛ is
additive, i.e. that TΛ^A. = TΛ + TΛ,, and indeed this is not the case as one
can deduce from counterexamples.

Secondly we note that this additivity property is fundamental for the
extension of proofs of existence of thermodynamic functions to the case
of the hard wall boundary conditions which we are using.

Combination of the above theorem and lemma now leads to the
following result concerning the mean kinetic energy of translationally
invariant states.

Theorem 5. The mean kinetic energy functional T, defined over the set
Enl4v of translationally invariant states over 21, by

Γ(ρ)= lim T^ρyVM
/ i ... lv~+ oo

exists and has the following properties
0. Γ(ρ)6[0,+oo].
/. T/s affine.
2. T is lower semi-continuous.
3. If ρeEnLβv and μρ is the unique probability measure with bary-

centre ρ concentrated on d'(EnL^v) then

4. If the domain Fτ of T is defined by

then ρe FT(E FNnFT) implies that μρ is concentrated on

5. If ρί9 Q2 e ^(£πL^v)nFΓ and T(ρl) Φ T(ρ2) then ρ1 and ρ2 generate
quasi-inequiυalent representations.
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6. The set FNnFT is weakly dense among the set of locally normal
translationally invariant states and ρe FNnFT implies that

a) T(ρ)=TA(ρ)/V(A) for all AcR\

Proof. The existence of T follows in a standard manner from the
increase and super additivity properties derived in Lemma 2 and indeed
one has

T(ρ)= sup TAl(ρ)/V(Λί).
/ 1 . . . Ϊ V

Thus T is the supremum of a family of lower semi-continuous functions
and Property 2 is evident. Properties 0 and 1 follow immediately; 3 is a
consequence of 1 and 2; 4 and 5 are proved in the same manner as similar
properties given in Theorem 2; 6α follows as TΛ(ρ) is an additive function
of A if ρ E FNr\FT and 6b is proved as follows. For ρeFNr^Fτ

T(ρ) = TAl(Q)/V(Λί> = Ί^F(Λύ(QΛlTΛ)

= £ s(n)

L /l/2 ..ί, .

for /! ^ /2, ... /v (we use the notation introduced in the discussion before
Definition 2). Choosing ^ = 12 = ••• = ίv - (2N(ρ)/v + 2)1/v we find the
maximum of the right hand side gives the lower bound quoted. It remains
to prove the density property of FNπFτ.

Let ρl be an arbitrary invariant locally normal state and consider the
weak neighbourhoods

Take A1 e ^(A^ such that \\A - A±\\< ε/6 and let A be a parallelepiped
such that ΛiCΛ and (V(Λ2)/V(Λ)) \\Aί\\<ε/6 where

Λ2= U' (Λi + x)
χeRv

and the prime indicates the restrictions Ai-\-xr\Aή=Q and Al-\-x(^A
are to be placed on the union. Consider the Fock space 3fF(Λ] and a
basis of it constructed with functions fΛ e CJ (A) and their antisymmetrized
products. Denote by Em the projector on a subspace of J4?F(A) spanned by
a finite number m of elements of this basis. For each vector Ψ e E
the sum of the kinetic energies of the particles is bounded. Now ρί 1
is determined by a density matrix ρlΛ and we now define Q'Λ = EmρίΛEm.



Physical States of Fermi Systems 259

Using Q'Λ we construct a periodic state ρ' over 91 in a standard manner;
in each parallelepiped ΓCRV which is formed by a finite union of dis-
joint translates of A we define ρ"Γ to be the tensor product of the ρ'Λ and
we define the density matrix corresponding to any other bounded s6t in
jRv by use of the compatibility conditions. Finally we construct an
invariant state ρ" by averaging ρ' over translations i.e.

By construction it follows that ρ"GFTr\FN but we now show that the
neighbourhood i^ρίtAίE contains such states. Note that

and

\ρ"(A,) - Tr^^π^i))! ̂  2 V(Λ2)/V(Λ) \\A, || ̂  y.

Thus we have

\ρ"(A) - ρ^A)] < — ε + |Tr^F(yl)((ρ^ - ρ ί Λ ) π Λ ( A ί ) ) \ .

The right hand side can however be made less than β by choosing m
sufficiently large. This proves that all weak neighbourhoods of locally
normal states contain states belonging to FNnFT.

Finally we note that the properties of the locally normal invariant
states with finite mean kinetic energy, i.e. the states ρeFNπFτ, can be
expressed in terms of unbounded operators.

Theorem 6. Let ρ be a locally normal invariant state with finite mean
kinetic energy T(ρ) and let (πρ, Uρ9 3^ρ, Ωρ) be the representation of 9ί, the
unitary representation of R\ the Hilbert space, and cyclic invariant vector,
associated with ρ by the Gelfand-Segal construction.

It follows that the mean density N(ρ) of ρ is finite and hence the con-
clusions of Theorems are valid. Further it follows that there exists a
positive self-adjoint operator Tρ on J^ρ with the following properties.

1. T(ρ) = (Ωρ,TρΩρ)
and in particular ΩQe@)(T^\ the domain of T*.

2. The following commutation relations are valid

[Tβ,

and in particular πa and Uβ leave the domain of Tβ invariant. Hence Tβ is
affiliated with the abelian algebra {πβ, Ue}' of operators on 2Ce.
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3. Ifρe£(EnL+

Rv)nFNnFτ then Tρ=T(ρ)lρ where lρ is the identity
operator on Jfρ.

Proof. That N(ρ) < +00 is a consequence of property 0 of Theorem 5.
Now from Theorems 4 and 5 and the discussion of the Fock representa-
tion we have

Γ(ρ)=ϊWTr

for all parallelepipeds A. This last form of T(ρ) allows us to repeat the
arguments used in establishing Theorem 3. One first deduces that for a
dense set of A e 2ϊ, namely polynomials in a(C"Λ)*, a(C"Λ) the limit

T(ρA) = Urn
! i . . . / v - » α o Y(Λ) „

exists and then one constructs an operator Tρ such that

= (ΩQπQ(A*)TQπβ(A)ΩQ)

= (Ωeπβ(A*)TQπβ(A)ΩQ)

(note that as ρ is locally normal TΛ(ρA) is additive by Lemma 2). As the
proof is essentially identical to that of Theorem 3 we will not repeat the
details.

6. Entropy and Mean Entropy

The aim of this section is to give a definition of the mean entropy of
translationally invariant states over 21. As we shall see however this
problem is rather difficult in general and we only obtain a satisfactory
solution by restricting discussion to the set of locally normal states with
finite mean kinetic energy. The difficulties which arise stem from states
which describe physical configurations with such a high degree of dis-
order that the entropy is infinite. Heuristically one would expect large
disorder to be associated with high kinetic energy and conversely one
might expect states with finite mean kinetic energy to have finite mean
entropy. We will demonstrate that this latter expectation is indeed
justified by analysing the entropy with the mean kinetic energy fixed.
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Before proceeding let us make a few heuristic comments on the
connection between the definition of the entropy and our foregoing
discussion of the density and kinetic energy. If ρ is a normal state over
91 (Λ) determined by the density matrix ρΛ then the local entropy is
naturally introduced as a functional SΛ over E^(A) by

However we can also rewrite this definition on 3tfq the carrier space of
the representation πρ generated by ρ. Noting that ρΛ e π"Λ we can identify
QΛ, as an operator on J^ρ. with an element BQεπ"Q. Hence

is the extension of the state ρ to an unbounded operator — logBρ which
is affiliated with π"Q. [Note that log£ρ only has a dense domain of
definition if ρΛ is invertible e.g. if Ωρ is separating for πρ.] This is the same
situation encountered with the number operator etc. but now the un-
bounded operator occurring has a direct connection with the state ρ
rather than the representation πρ. As a consequence we have to adopt
different techniques of analysis.

The methods which we will use were first developed in [10] but we
will need strengthened versions of the results given in this reference.
The essential statements can be phrased as theorems concerning states
over algebras of compact operators. As this is possibly of interest in its
own right we develop the results in the following separate subsection.

a) Algebra of Compact Operators

Let jff be a Hubert space and consider the C*-algebra &<e(jίf) of
compact operators on 3tf. . Recall that each state ρ over j£?^(jf ) is deter-
mined by a density matrix ρ on J f, i.e. each state is normal with respect
to the basic defining representation of the algebra. Thus we can define
the entropy S as a function over the states of Jέf^pf ) as follows

S(ρ) = — Tr^(ρ logρ) if ρ logρ is of trace class

= +00 otherwise .

We will also have cause to consider a related concept, the relative,
or conditional, entropy. Let σ be a fixed state over j£?^pf ); the relative
entropy Sσ is defined as a function over the states of 5£ <6(2tf ) by

Sσ(ρ) = -Tr^(ρ log ρ - ρ log σ) if ρ log ρ - ρ log σ is of trace class

= — oo otherwise .
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The analysis of the properties of S and Sσ is aided by the following
result

Lemma 4. Let ρ and σ be positive trace class operators on Jίf then if
Ψ e J#* is an eigenvector of ρ, or of σ, the following inequality is valid

if, further, σ^ρ then

0^-OP,{ρlogρ-ρlog(7}!P)

for each eigenvector Ψ of ρ.

Proof. This result is contained, but not stated, in [10]. The first
statement follows by using the convexity of the function x -> — x log x
in the form

— x(logx — logy) + x — y :g 0, x, y ̂  0 .

Further the convexity of the function x->logx implies that

for each normalized Ψ e ̂  whilst the convexity of x-> — x logx implies
that

-OF, ρ \ogρΨ) £ -(Ψ,ρΨ) \og(ΨρΨ) .

The first statement of the lemma follows by a straightforward combina-
tion of these inequalities.

The second statement is a consequence of the fact that σ ̂  ρ implies
that

logσ ^ logρ

a property which follows from the theory of monotone operator functions.
Application of the above lemma now leads to the following result

concerning the entropy S and the conditional entropy Sσ.

Lemma 5. The entropy S as a function over the states of 3P(&(Jtf')
satisfies the extremal principles

S(ρ) = inf- ΊI#(Q log τ - τ) - 1
τ

= sup - Tr^ (ρ log (ρ 4- τ))
τ

where the sup and inf are taken over the class of positive trace class
operators τ on ffl. Hence S is positive and such that

ί. The following inequalities are valid for 0 ̂  λ ̂  1

a) S(λQl + (1 - λ)ρ2) ̂  λS(Qί) + (1 - λ)S(ρ2)

b)
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2. S is lower semi-continuous in the weak* topology.
The conditional entropy Sσ has the properties
0. Sff(ρ)e[0,-αo].
1. The inequalities la and Ib above are valid with the replacement

of S by Sσ.
2. Sσ is upper semi-continuous in the weak* topology.

Proof. From the foregoing lemma we have

-Tr^(ρ log(ρ + τ)) ^ -Tι>(ρ logρ)

^ -Tι>(ρlogτ + ρ-τ)

for τ ̂  0 of trace class and hence the extremal principles follow. From
the first extremal principle we have

S(λρ1 + (1 - λ)ρ2) = inf { - λ Tr^(^ logτ - τ) - λ

-(l-λ)TΓ j P(ρ2logτ-τ)-(l-λ)}

^ λ inf { - Ίr^(ρί logτ - τ) - 1}

-λ) inf {-TΓjr(ρΛ

2 logτ- τ)-l

The second inequality follows from a similar calculation using the second
extremal principle; we omit the details.

To prove the lower semi-continuity of S we use the second variational
principle in the slightly different form

S(ρ)= sup -Tι>(ρlogτ).
l ^ τ ^ ρ

Now let (Ψtyi^i and (Ψί)j^ι be complete orthonormal basis in J^ formed
by eigenvectors of ρ and τ respectively. Then using ρ ^ 0 and logτ ^ 0
we have

S(ρ)= sup sup- ^(Ψ^ρΨ^KΨ^Ψ^logiΨ^τΨί).
l ^ τ ^ ρ N,M i<N

JΪN

It follows however from perturbation theory that the expression occurring
on the right hand side is continuous in the weak* topology on E^^(^>y

Hence S is the upper envelope of a family of continuous functions i.e.
S is lower semi-continuous.

The negativity of Sσ follows from its definition and the first statement
of Lemma 4. As Sσ and 5 differ by an affine function only it follows that
Sσ satisfies extremal principles similar to those given for S and hence
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similar inequalities are valid. If (^) ι̂ and (Ψί)j^ι are now complete
orthonormal basis in J^ spanned by eigenvectors of ρ and σ respectively
we then have as a consequence of the above definitions and the first
statement of Lemma 4 that

Sσ(ρ) = inf Γ- X (<F<, {ρ logρ - ρ + σ} Ψl

β)
I ΐ < N

1 But, again from perturbation theory, the function occurring on the right
hand side is continuous in the weak* topology and hence Sσ is upper
semi-continuous.

We now apply the above information to the states of the Fermi
system.

b) Algebra of Fermions

We begin by considering the local entropy and the local conditional
entropy. To introduce this latter concept we use the kinetic energy which
we have previously discussed. The principal definition is the following.

Definition 3. The local entropy SΛ is defined as a functional over the
states of 21 (Λ) which are normal with respect to the Fock representation by

// the density matrix QΛ which determines ρ is such that ρΛ \ogρΛ is of trace
class; if this latter condition is not satisfied then we define SΛ(ρ) = +00.

For each β > 0 a conditional entropy is defined over the normal states
of 2l(Λ) by

if the operator occurring on the right hand side is of trace class and by
SΛtβ(ρ) = — oo if this is not the case [TΛ is the kinetic energy operator on
Fock space~\.

Two remarks are in order concerning this definition. Firstly we could
extend the definition of SΛ and SΛtβ to all states over M(Λ) by assigning
the values SΛ(ρ) = +00, S Λ t β ( ρ ) = -oo if ρ is not normal with respect to
the Fock representation. We have refrained from doing this because of
our inability to discuss the continuity properties of SΛ and SΛtβ over all
states in E^(Λ) (see below). Secondly we could have introduced a con-
ditional entropy by first defining a density matrix σAfβ on J^F(Λ) by
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and then considering

Mathematically SΛtβ is a more natural object to consider than SΛtβι
however physically the latter functional is of the most direct relevance.
As SΛtβ and SΛ>β only differ by a constant the properties of the former
are easily derivable from the latter.

The results of the previous subsection can now be applied to obtain
the following properties of SΛ and SAtβ.

Theorem?. Let KcE^(A) be any convex weakly compact subset of
locally normal states. The function ρeK^> S(ρ) has the following pro-
perties :

0. SΛρ)e[0,+oo].
/. SA is lower semi-continuous over K.
2.Ifρ1,ρ2eK and 0^/1^1 then the following inequalities are valid.

- λ)ρ2) ^ λSΛ(ρι) + (1 - λ)SΛ(ρ2) ,

SA(λQl + (1 - λ)ρ2) ^ λSΛ(βl) + (1 - λ)SΛ(Q2) - λ logA - (1 - λ) log(l - λ).

The function ρ e K->SA β(ρ) has the properties
0. SΛtf(ρ) e [- co, logTr^,M)(e-'r^)].
1. SΛ>β is upper semi-continuous over K.
2. The inequalities 2 above are valid with SΛ replaced by SΛίβ.
The following conditions are equivalent:
L TΛ(ρ) < +00 and NΛ(ρ) < +00.
2 SΛ,β(Q) > -co far one β>Q.
3- SA>β(ρ) > -oo for all β > 0

and each of these conditions implies that

0 ̂  SΛ(ρ) ^βTΛ(ρ) + logTr^U)(^Γ-) < +αo.

Proof. The properties of SΛ and SAtβ are similar to those obtained in
Lemma 5 for the corresponding quantities discussed in the previous
subsection and the proofs are identical. In the present case one uses the
assumed weak compactness of K to discuss the continuity properties.
We will not discuss the details of the derivation of these properties
further.

To prove the equivalence of the three conditions we note that from
the definition of SΛ and Condition 1 we have
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and hence 3 is satisfied. However Condition 3 trivially implies Con-
dition 2 and it remains to prove that 2 implies 1. Take 0<β0<β then
using the upper bound for SΛ>β_βo we have that

^ -SAtβ(Q) +

Hence ρΛ TΛ is of trace class and Condition 1 follows from Theorem 4.
The upper bound on SΛ follows directly from the upper bound on SA>β.

Note that it is possible that SΛ(ρ) < +00 but TΛ(ρ) = +00 as can be
seen from explicit examples.

Next we wish to examine the properties of the functions Λ->SΛ(ρ)
and Λ->SAίβ(ρ) with ρ fixed. Actually the necessary results have already
been obtained in [10] and we recall them in the following lemma.

Lemma 6. Let A and A' be disjoint bounded open sets in Rv and let ρ
be an even state over 2I(Λu/Γ). The entropy SΛ(ρ) and conditional entropy
SΛίβ(ρ) then satisfy the subadditivity properties

SA,tβ(ρ)9 An A = θ.

flV is a translationally invariant state over 9ί then

SΛ+a(ρ) = SΛ(ρ\ SA + a t β ( ρ ) = SAtβ(ρ)9 aeR\

We refer to [10] for the proof of the lemma; again it is dependent
upon the inequalities of Lemma 4. [Actually only properties of SΛ(ρ)
are derived in [10] but the properties of SΛίβ(ρ) then follow directly
from Definition 3 and Lemma 3.]

Our next aim is to introduce an entropy per unit volume for suitable
translationally invariant states over 21. It is well known that a mean
value of this type can be defined if A-^SΛ(ρ) is a sub-additive, invariant,
set function with certain measurability properties. It is in the last point
that the functions A^SΛ(ρ) and A-*SΛ tβ(ρ) differ. We first consider the
mean conditional entropy as a basis for a later discussion of the mean
entropy.

Theorem 8. Let A C Rv be a bounded open parallelepiped with edges
of length I l 9 l 2 9 ••• lv, and let ρ be a translationally invariant locally normal
state over 21. The following limit exists
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and defines a mean conditional entropy with the following properties

2. Sβ is affine i.e. if ρl9ρ2^Er\L^v are both locally normal and
λ^l then

Sβ(λQί + (1 - λ)ρ2) = λSβ(ρ) + (l-λ) Sβ(ρ2) .

3. Let K C EnL^v be any weakly compact set of locally normal states.
Sβ is upper semi-continuous over K.

4. If ρeEπLβv is locally normal and μρ is the unique measure with
bary centre ρ concentrated on ^(EnL^v) then

Sβ(e)=ίdμe(ρ')Sβ(ρ').

Proof. From Theorem 7 we have

and using the estimate of the trace given in the previous section

for each parallelepiped A with sides of length Il9 ... lv. This property
together with the sub-additivity and invariance of the set function
A-^>SΛfβ(ρ) ensures, by a standard argument, the existence of Sβ(ρ) and
the first two properties quoted. The affine property follows from Prop-
erty 2 of Theorem 7 and the lower semi-continuity arises because Sβ is
given as the infimum of the family V(A)~1SβtΛ of upper semi-continuous
functions. It remains to prove Property 4.

Let K be a convex weakly compact set of locally normal states and
decompose ρ in the form

ρ = ρκμρ(K) + ρR(l-μρ(K))
where

As μQ can be weakly approximated by a finite sum of point measures we
deduce that ρκ e K. Now as Sβ is affine, and also upper semi-continuous
over K, we have

Sβ(ρ) = J dμρ(ρ')Sβ(ρ') + (1 - μρ(K))Sβ(ρR) .
K

19 Commun. math. Phys., Vol. 14
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However

and hence

βγ^ = W- J

= -β(T(ρ)-$dμβ(ρ')T(ρ'))
\ K )

where the last equality follows from Theorem 5. Thus from this estimate
and the decomposition properties of T we deduce that if Ka is any net
of convex weakly compact sets of locally normal states with the property

then it follows that
^(ρ) = Limί dμρ(ρ')Sβ(ρf)

* KΛ

i.e. Sβ is μρ-measurable and

This completes the proof of the theorem.
Thus we have established that

exists for each locally normal state. Hence if we next restrict our attention
to the locally normal states with finite kinetic energy we deduce the
existence of the mean entropy S where

Although S has no apparent continuity properties we can straight-
forwardly deduce a decomposition property through use of our know-
ledge of Sβ and T.

Theorem 9. Let A C Rv be a bounded open parallelepiped with edges of
length Iί9 ... lv. The following limit exists

S(β)= Lim
/ ι . . . / v - »

for each ρ e FNr\FT and defines a mean entropy with the following prop-
erties.

0.
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1. S is affine over FNnFΓ.
2. If ρ 6 FN n Fτ and μρ is the unique measure with bary centre ρ con-

centrated on <ί(Enl4v)nFNnFΓ then

S(ρ)=$dμρ(ρf)S(ρ').

3. If ρ1? ρ2 e ^(£πL^v)nFNnFΓ and ̂ (ρj φ S(ρ2) then the represen-
tations πρι, nQ2 generated by Q^and ρ2 respectively are quasi-inequivalent.

Proof. As mentioned the existence of 5 and Properties 1 and 2 can be
deduced from Theorems 5 and 8. Actually one could deduce the existence
of S from the property

0 ̂  SA(ρ) ^ βTΛ(ρ) +

for ρ e FNr\FT, and the sub-additivity and in variance derived in Lemma 6.
One then finds

Minimizing the upper bound with respect to β we find property 0 above.
Finally we note that if S(ρί) < S(ρ2) we can choose A such that

But then from Lemma 4 we have

However we can choose a sequence At e 21 (Λ) such that nA(At) tends
weakly to the unbounded operator — logρ lyl. Hence for i large enough

Qι(Ai) = Tr^^ρ^π^ )) < TrJfFU)(ρ2^πyiμί)) = ρ2(Ai) ,

i.e. there is an A e 91 such that ρ^A) Φ ρ2(^4), which implies the extremal
invariant states ρx and ρ2 generate inequivalent representations.

Thus we see that by restricting our attention to the subset of states
FNπFτ we can discuss the mean entropy in a satisfying manner. We
leave open the question whether 5 is an isomorphy invariant i.e. whether
5(ρ1)φ<S(ρ2) for ρ1,ρ2eF J vnFΓ implies that πρι and πρz are unitarily
inequivalent.
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