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Abstract. The purpose of this work is to join Lie field structures with certain infinite-
dimensional Lie algebras with locally convex topology. These topological Lie algebras
allow topological groups which are a generalization of the connected nilpotent Lie groups.
We showed the existence of the continuous unitary representations of the gained groups
and then we proved the analogue of Garding theorem. Using this theorem we established
the existence of representations of Lie field structures into Lie algebras of skew-symmetric
operators on Hilbert spaces.

Introduction

Infinite-dimensional Lie algebras with topological structures were
already the object of the investigation. The semisimple Lie algebras
with the topology of the Hilbert space and a particular property of the
composition rule were considered by Schue [17, 18] and by
Balachandran [1]. Also the infinite-dimensional Filtred Lie algebras
with a topological structure were regarded by Veisfeiler [19]. Our aim
is to concentrate on the infinite-dimensional Lie algebras with the locally
convex topological structures which are the analogue of the nilpotent
finite-dimensional Lie algebras and to look for possible groups related
with these algebras.

The work is divided into sections with the following content. De-
finitions of different classes of the locally convex Lie algebras the analogue
of which in the case of the finite-dimensional Lie algebras are always
the nilpotent Lie algebras are given in Sections 1, 2, 3, and 4. We have
shown in Sections 5 and 6 the relation between certain topological
groups and the locally convex Lie algebras of Section 3. A construction
of the groups is offered in Section 5 and the connection of the unitary
representations of the groups and the representations of the related locally
convex Lie algebras is considered in Section 6. We proved an analogue
of the results of Garding [8] which is proved for the locally compact
groups. In Section 7 we indicated the possible application of the developed
theory in some problems of theoretical physics.
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1. Definition of Locally Convex Lie Algebra

1.1. A lLc. (locally convex) space over the field K of real or complex
numbers will be denoted by capital letters like X, E, ..., and its elements
by small letters like x,y,u,v,.... The base of absorbing, absolutely
convex and balanced neighbourhoods of zero of a l.c. space X will
be denoted by % (X). Elements of a l.c. space will be called vectors when
only the property of the l.c. space is meant irrespectively on its possible
other algebraic structure.

An abstract Lie algebra over K is the object consisting of a vector
space X over K and a mapping L: X x X 3 (x, y)— L(x, y) € X, where
L(x, y) is K-linear function in every variable, satisfying two conditions

L(x,x)=0, L(x, L(y, z)) + L(y, L(z, x)) + L(z, L(x, ))=0, (1.2)
X, y,z€ X. The second condition is called Jacobi identity.

1.3. Definition. A l.c. Lie algebra {X, 1} over K is the abstract Lie
algebra X over K and the complete l.c. space X over K with the lc.
topology 7, such that the mapping L is continuous in the first variable
for any fixed second variable.

In the sequel we shall write X instead of {X,t} if such shorthand
does not cause any misunderstanding. For two l.c. spaces {X, ¢} and
{X, 7} we shall write {X, o} C {X, 7} and ¢ > 7, if the o-topology is finer
than the t-topology.

2. Simultaneous Continuity of Mapping L

2.1. For the purpose of the Section 5, where the groups corresponding
to certain l.c. Lie algebras are considered, the simultaneous continuity
in both the variables of the mapping L of 1.1 from X x X in X is needed.
If the mapping L is not simultaneously continuous in both the variables
for a particular l.c. Lie algebra {X, t}, we have a subsidiary task con-
sisting in looking for some other topology o on X such that the mapping L
would be continuous simultaneously in both the variables from {X, o}
x {X, o} into {X, g}. We do not know how to obtain this other topology
for the general l.c. Lie algebras and we can only tender a partial solution
to this problem.

If X is a metrizable l.c. space then the mapping L is simultaneously
continuous in both the variables (Bourbaki [4], § 4, No. 1). In this case
the tensor produce X ® X can be endowed with such topology w, that
the canonical imbedding of the bilinear mapping L from X X X into X
to the linear mapping from {X ® X, w} into {X, 7} is continuous (Gro-
thendieck [12]). It follows in particular that for every U e % (X), there
are Vy, V, €% (X) such that py(L(x, y)) < py,(x) py,(y), where py is the
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Minkowski functional of W e % (X). The right-hand side of the inequality
can be made symmetrical by use of the semi-norm p, defined by p,(x)
= sup{py,(x), py,(x)}. Therefore we shall always have for the metrizable
l.c. Lie algebras

pu(LAx, y)) < py(x) py(¥) .

2.2. Let {X, 1} be the L.c. Lie algebra and {4,, A} a family of homo-
morphisms from X into the l.c. metrizable Lie algebras Y, such that for
every xe€ X, x+0, we have an a € A with A,x =+ 0. The linear space X
furnished with the topology t(K) of the locally convex kernel of the spaces
Y,isal.c.space {X, 7(K)} (see K&the [14]). It is an immediate consequence
of the construction and of 2.1. that the induced mapping L from {X, 7(K)}
x{X,t(K)} into {X,t(K)} by the mapping L from {X,7}x{X,1}
into {X, 1} is simultaneously continuous in both the variables, if for
every a€ A only a finite number of elements o, a,,...,o, €A exists
such that L(Y,,, Y, )n Y, % {0}.

3. Classes of Complex Nilpotent Locally Convex Lie Algebras

3.1. For the subsets Y, Z of the l.c. Lie algebra X, we denote by
L(Y, Z) that subset of X consisting of all the elements of X which are
of the form L(y, z), ye Y, ze Z. A subalgebra Y of the l.c. Lie algebra X
is the subspace Y of the space X such that L(Y, Y)C Y. A subalgebra Y
is called closed if the subspace Y is closed in the space X.

Lemma. Every commutative subalgebra A of the l.c. Lie algebra X can
be imbeddgd into the closed commutative subalgebra A, where the closed
subspace A is the closure of the space A.

Proof. Let A be a commutative subalgebra of the l.c. Lie algebra X.
Then L(ay, a,)— L(a,,a,)=0, a;,a, € A. On the other hand if 4 is a
subspace of the l.c. space X such that L(a,,a,)— L(a,,a,)=0, a;,a, € A,
then because of (1.2) we have L(a,, a,)=0 for any a,,a, € 4,1e. A4 is the
commutative subalgebra of the l.c. Lie algebra X. Hence to prove the
Lemma one has to show that L(a;, a,) — L(a,, a;) = 0 also for a;,a, € 4.
This can be done as for any topological algebra.

3.2. The normalizer B of a subalgebra A of the l.c. Lie algebra X is the
set of all the elements be X for which L(b,a)e A for any ae A. The
normalizer B of a subalgebra A is again the subalgebra. The subalgebra A
is called the ideal of the I.c. Lie algebra X if X itself is the normalizer of A.

Lemma. The normalizer B of a closed subalgebra A is the closed sub-
algebra. For every ideal A of X, the closed subspace A is also an ideal of X.

7%
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Proof. For the closed subalgebra A the sets B'(a)=(ada) !(4), a
fixed, are the closed subalgebras containing the algebra B. The inter-

section B' = ﬂ B'(a) is the closed subalgebra which contains the algebra
acA
B and B’ is the normalizer of A. Because of the maximality of B it holds

B=B=B. For the proof of the other part we notice that ad x(4)C 4.
As X D A it follows that L(4, A) C 4, so that 4 is the subalgebra. Evidently
A is the ideal of X.

3.3. Let A; and A, be subalgebras of X where 4,D A;. The sub-
normalizer B of the algebras A,, 4,, is the set of all the elements be X
for which L(B, A,) C A;. It is easy to prove as in the last two similar state-
ments:

Lemma. The subnormalizer of two closed subalgebras Ay, A,, A; C A,,
is also the closed subalgebra.

The subnormalizer of the pair A; = {0}, 4, is called the centralizer.

3.4. Let X be the lc. Lie algebra. Denote by X* the closure of the
set of all the elements of the form L(y, x), ye X*™!, xe X, and X' = X.
Thus X*= L(X*" 1, X).

If X is a finite-dimensional Lie algebra for which X" = {0} for some
natural number n we call this algebra nilpotent. Let us take now any
subalgebra X, C Z, where Z is the center of the nilpotent Lie algebra X
and construct the subnormalizer X; for the pair X,, X. The algebra
X, is an ideal of X containing X,,. Extending this prescript we come to
a sequence X, C X; £ X, € --- € X,. For the nilpotentalgebras X we have
X,=X for a natural number n and therefore the finite-dimensional
Lie algebra X is nilpotent if and only if it has a finite chain of ideals
X, C X, C-- CX,=X, where X, is the center of X and X is the sub-
normalizer of the pair X, _;, X. This nice situation brakes off when we
go to the infinite-dimensional l.c. Lie algebras. In particular there are L.c.

Lie algebras for which lim X" = lim (") X*={0}, although X has no
n— o n->00k=1

center. An illustration of this mischief gives the following example.

Let X betheset ofall the elements x = {x;; | x;; =0fori=k, i, k=1,2,...}
and x;, are complex numbers. Hence X is the set of all triangle matrices
with the vanishing diagonal elements. X is the linear space if the opera-
tions of the linear space are defined as usually with matrices. Let us
introduce the norm on X by the non-negative function X 3 x—|x||

0 1
=2 < Y Ix; k12>2 € R,. The algebraic operation

k=1

L(x,y)= { Z (xikykj_yikxkj) li,j=1,2, }
k=1
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mapps X x X into X continuously simultaneously in both the variables as
I LG, I Z x| [yl In this way we formed a L.c. Lie algebra. The elements
XM ={6,,0;m1,j=1,2,...;n,m fixed n<m} form a basis of the lc.
Lie algebra X. There is no non-trivial central element z € X, as the con-
dition L(x™™, z)=0 for any pair n, m,n <m, tells us that z;, =0 for all
i,k=1,2,...,i<k. The subalgebras X*=L(X, X*™ '), X' = X, form the

properly decreasing sequence of the ideals of X. If Y=1im () X*

R0 =1

were the ideal different from {0}, an element y={y;|ij=1,2,...},

Iyl >0, would belong to Y. But ||y =0as |[y|>*=4 ) |y;*and yeX*
i,j=1
for every k, ie. y;;=0 for every izj+k, k=1,2,... .J

This forces us to operate with different kinds of Lie algebras the
analogue of which in the case of the finite-dimensional Lie algebras is
always the same object — the nilpotent Lie algebra. Here we define two
kinds of the nilpotent lc. Lie algebras which will be handled easily
and usefully in our further investigations.

3.5. Let X be the Lc. Lie algebra with the center Z. The center is the
closed ideal of X because of its maximality and the Lemma 3.3. Denoting
X, =Z, we consider the sequence of ideals X,C X, C---, where X,
is the subnormalizer of the pair X, _;, X, k=1, 2, .... All X, are the closed
ideals according to the Lemma 3.3.

Definition. The properly nilpotent l.c. Lie algebra X is such l.c. Lie
algebra X for which a chain X; < X; € X, C --- exists, where X, is the
center of X and X, is the closed ideal and the subnormalizer of the pair

X1, X, k=1,2,...,and X = () X,.If X = X, for some natural number
n=0
nX is called the finitely nilpotent l.c. Lie algebra if L(X, X)CX,_,.
3.6. In accordance with 3.4 the next reasonable class of the nilpotent
l.c. Lie algebras is given by

Definition. A lc. Lie algebra X for which lim (| X*={0}, where

— n=00 =1
X*=L(X*"', X), X' = X, is called the nilpotent l.c. Lie algebra.

3.7. The Theorem of Engel states that a finite-dimensional Lie
algebra X is nilpotent if and only if ad x, for every x € X, is the nilpotent
operator on X. For the infinite-dimensional L.c. Lie algebras no analogous
statement can be made in general. To see this we offer an example of a
normal Lie algebra X for which ad x, x € X, is bounded, quasinilpotent
operator on the Banach space X,but X isneithertheproperlynilpotentnor
nilpotent l.c. Lie algebra. This example shows in the same time that
restricting our interest to the properly nilpotent and nilpotent Lc. Lie
algebras we occupy ourselves only with two classes of the l.c. Lie algebras
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the analogue of which in the finite-dimensional case is the nilpotent
Lie algebra.

Let I be the interval [0, 1] and C(I x I) the linear space of all the con-
tinuous functions on Ix1. The semi-norm C(IxI)s x—|x|.eR.
defined by |x|2=f|x(p,q)*dpdq gives the Hilbert space L>(I xI)
=C(IxI)/{xe CIx1)||x|.=0} with the scalar product o(x,y). The
structure of a Lie algebra on L*(I x I) can be introduced by the following
bilinear mapping

L2(IxI)x L2(IxI)s(x, y)—L(x, y):
={If [x(p, ) y(r, q) — y(p, 1) x(r, )] dr | p, qel} e2(IxI).

It is easy to see that actually an abstract Lie algebra is gained in this way.
This abstract Lie algebra is inverted to the normed Lie algebra by the
norm X 5 x— ||x|| =2[o(x, x)]* € R.. By the direct inspection one sees
that ||L(x, y)| < x| |yl for every x, ye L*(I x I) and therefore L*(I x I)
is the complete normed Lie algebra. The subspace X of the space L*(I x I)
determined by all the vectors x € [*(I x I) for which a representative
x(p, q) exists such that x(p, q) =0 if p < g gives us the complete normed
Lie algebra X already accomplished with all the desired properties.

Let z, ||z|| =1, be a central element of X represented by the function
z(p, q). For any two closed intervals 4; and 45 of (0, 1) such that 4, > A4,
we shall denote by A, a closed interval between them and by y,5(p, q)
the characteristic function of 4, x A5 CI x I. Because of L(z,,3) (p,q)=0
almost everywhere an A, x A4, the function | z(p, r) dr of one variable p

Az
almost everywhere vanishes on 4. The intervals 4, and A4, are arbitrary
such that 4; > A; and z(p,q)=0 almost everywhere on {p,q|p=q}
CIxIsothat | z(p,q)dpdq=0foranytwoclosedintervals 4, B C (0, 1).
AxB
Hence z(p, g) vanishes almost everywhere on I x I contrary to the sup-
position | z|| =1. This means that X cannot be the properly nilpotent
normed Lie algebra.

Suppose now that X is the nilpotent normed Lie algebra, i.e. L(X, X) C X.
For any three non-trivial closed intervals Ay, A,, A5, A; = A, = A3,
of the interval (0, 1) we consider two characteristic functions 3;, and y,;
ofthe sets A; x A, and 4, x A; respectively. The function L(x,, %23) (P> 9)
is proportional to the characteristic function of the set 4; X A5. In this
way we can construe the characteristic function of any square A x B
such that A > B which contradicts the supposition L(X, X) C X. Hence
our algebra cannot be the nilpotent normed Lie algebra.

It remains to show that adx, x € X, is the quasinilpotent operator
on X. The vector (ad x)"y of the space X is the sum of 2" vectors each
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having the following form
Z(p; (I) = j. xal(p> rl) drl xaz(rla r2) er drn xac,.+1(rna q) P

where the integration is extended on the interval IxIx---xI,
—

n-times
pzr2r,z--2r,2q, and one of x,,Xx,,,...,x,,,, is equal to y

and all the others are equal to x. Thus we have |z(p, q)| < || x||" | y]|/2"** - n!
and therefore

Ix]"

n!

[(adx)" y[ < Iyl

It follows from the attained estimation that ad x is the quasinilpotent
operator on X.

Let X be a complex complete l.c. space and A4 a continuous operator
from X into X. If A — A1 has the two-sided continuous inverse (4 — AI)~?
for every complex 4, A+ 0, we shall say that 4 is the quasinilpotent opera-
tor on X.

In view of the example we have to be aware of the existence of the
objects defined in the following way.

Definition. The complex l.c. Lie algebra X for which adx, xe X,
is the quasinilpotent operator is called the quasinilpotent l.c. Lie algebra.

4. Relation between Complex and Real Lie Algebras

4.1. A real finite-dimensional Lie algebra X has the extension to the
complex Lie algebra X¢ such that dim,  X°=dimy X. This extension X*
is called the complexification of the real algebra X. We shall define in
analogy with the finite-dimensional case the complexification of the
lc. Lie algebra over the field of real numbers. The tensor product
X°¢=C ® X isfurnished by the topology of bi-equicontinuous convergence
(Grothendieck [12], see also Pietsch [16]. In the latter reference the
topology is named e-topology). The mapping Cx X3 (4, oy.x;)
— Y Aoy x;, € X¢iscontinuousso that X after completionisthe completel.c.
space. If the mapping L from X x X into X is extended to the mapping
L from X*x X° into X° by

L(x, y) = kZ o By L, y1) (4.2)

for x=Y a,x, € X* and y=3 B,y,€ X, then we check easily that this
mapping satisfies (1.2). The continuity of L in the first variable for the
fixed second variable is induced by the corresponding continuity from
X into X and the definition (4.2). Hence X¢ is the L.c. Lie algebra.
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4.3. The real L.c. Lie algebra X is properly nilpotent or nilpotent if and
only if its complexification is properly nilpotent or nilpotent respectively.
This statement is easily verified. The l.c. Lie algebra over the field of real
numbers is called quasinilpotent if its complexification is the quasi-
nilpotent l.c. Lie algebra.

5. Topological Groups Allowed by the l.c. Lie Algebras

5.1. We try now to associate certain groups to the algebras which
were pondered in Section 3. We shall use the construction of the group
proposed by Birkhoff [2] or Dynkin [7] lent on the Campbell-Hausdorff
formula. Birkhoff and Dynkin construed the local topological group
for every normed Lie algebra (finite-dimensional or infinite-dimensional
as the construction is the same). We found that the Dynkin’s method is
the most appropriate one for our case. Even more, because of nil-
potency in one or the other way of the algebras considered here, it is
possible to construe the whole connected group but not the local one only.

The aim of this work is not to consider unitary representations of the
constructed groups but only to use these representations in order to show
that there are representations of certain classes of l.c. Lie algebras into
a Lie algebra of operators on Hilbert spaces which are skew-symmetric
on a common invariant domain. The lack of an invariant measure on
the groups forced us to use the invariant means and invariant functionals.
For the survey of the invariant means the modern book by Hewitt and
Ross [13] would be of a significant help for an uninitiated reader.

5.2. We shall say that the l.c. Lie algebra { X, t} allows the topological
group G if the underlying space G is homeomorphic to the l.c. space
{X,y}L{X,y}n{X, 1} is a dense linear subspace of {X, 7}, such that the
unity e e G is mapped to 0 € {X, y} by this homeomorphism. Hence the
induced mappings {X,y}x{X,y}3(x,y)—>xoye{X,y} and {X,y}
sx—x"te{X,y} are continuous in the y-topology and the former one
is continuous simultaneously in the both variables.

Lemma. The properly nilpotent l.c. Lie algebra X = | ) X,, for which
n=0

the mapping L is simultaneously continuous in both the variables, allows

the topological group G the topological space of which is the strict inductive

limes of X,, n=0,1,2,... .

Proof. Let X = U X, be properly nilpotent L.c. Lie algebra and X, the
n=0

subnormalizer of the pair X, _;, X,n=1,2, ..., X, the center of X. X, is

the ideal of X and we can easily construct the group allowed by X,.
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Let us remind that adx; adx, ... adx,_,(x,)=0 for any n elements
X1 Xg, ..., X, € X,. By the Campbell-Hausdorff formula for any two
X, y € X,, we have

< =r 1 1
Z=XO y =
m§1 pl,ql,z...,qm m  >(Pi+q) pildi! gw! (5.3)
pi-times g1-times...qm-times .
—_——

x L(x, L(x, ..., Ly, ..., L(x,}\)) )

where p;+¢,>0,i=1,2,...,m; q,,=0 or g, = 1. Because of p;+¢; >0,
i=1,2,...,m, and the nilpotency of X, only the finite number of terms,
depending on n only, is different from zero in (5.3). We shall show now
that for every neighbourhood U e#%(X) a neighbourhood Ve %(X)
exists such that ¥V x Va(x, y)—xoye U. According to the supposition
on L for every neighbourhood U, € #(X), there is a neighbourhood
U, € %(X) such that the corresponding Minkowski functionals py,, py,
satisfy py, (L(x, y)) < py, (%) py,(y). For the argumentation see 2.1. In this
way we choose a sequence of the neighbourhoods U="U,, U,, ..., U,
for which py, (L(x, ) = py,.,(X) Pu,,, (1), k=1,2,....,n—1. Now we
have the estimate

@ 1 1 1
py(xoy) = —
v m; p‘,q,;,qm m Y(pi+a) pildi!.. gy

pUz(X) Pug(x) PU,(Y) >

where the index [ has the value ) (p; + ¢;). Because of py, < py, ., in our
construction we can estimate this inequality as

py(xoy) £ e max {py, (x)' "2, py, (V)" *} (Py, (%) + Py, (V) -

If V=e¢"2"U, then for every pair x,ye V we have xoye U what we
wished to prove. It is not difficult to see that (xoy)oz=xo(yoz),
xo(—x)=0. This enables us to recognize the following topological
group:

The l.c. space X, is the underlying space of the topological group G,
with the base %(G,) =% (X,) of the neighbourhoods of the unity e€ G,,
e=0¢€ X,,ifthe group operation is defined by (5.3) and the inverse element
g ' eG, of the element g€ G,, g=x€X,, is defined by g7' = —x € X,
The mappings G, X G, 3(g;,82) = (X1, %) & x;0x; = g 8,€G, and
G,92g=x— —x=g ! eG, are continuous.

We now have the sequence of the groups G, < G; €G, C --- allowed
by the l.c. Lie algebras X, X;, X,, ... . We shall define a topological

o

group G allowed by the properly nilpotent Lc. Lie algebra X = () X,

n=0
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as the topological group G= () G, the underlying space of which is
n=0

the strict inductive limes of X,, n=0, 1,2, ... . The strict inductive limes

is possible as the topology of X,_; is the induced topology by

X,,n=1,2,.... Even more the space X =str. lim X, is complete as X, _,

is closed in X,, n=1,2,.... This finishes the proof.

It is not obvious that the abstract group G becomes a topological
group when furnished with the described topology. In general this
statement is valid if G,, Gy, ..., have special properties. In our case the
Lc. Lie algebras X,, X, ..., are finitely nilpotent and the statement can
be easily verified.

54. The nilpotent lLc. Lie algebra X, () X"={0}, X'=X,

m=1

X™=L(X,X™ '), can be mapped into the finitely nilpotent lc. Lie
algebra Y,,= X/X™ in a natural way and the corresponding mapping
A,, is the continuous linear homomorphism from X onto Y,,. Let us
introduce the topology on the set X by the kernel topology of the locally
convex kernel K, 4,*({Y,,t,}), where by t,, is denoted the topology
of the space Y,,= X/X"™ induced by the 1-topology of the space X. The
kernel topology will be denoted by 7(K). The neighbourhoods of zero
of {X, t(K)} are the sets {4; *(U,), 45 '(U,), ...}, where U, are the neigh-
bourhoods of zero of the spaces Y, for the finite number of indices
k=1,2,...,and for all other k, U, =Y,. In fact {X, t(K)} is the topological
projective limes of the complete l.c. spaces Y,,. This results to the com-
pleteness of the space {X, t(K)} (see for instance K&the [14]).

Lemma. The nilpotent l.c. Lie algebra X, for which the mapping L
is simultaneously continuous in both the variables, allows the topological
group G the underlying space of which is {X, t(K)}.

Proof. For every neighbourhood U ={A[(U,), A5%(U,), ...} we
consider the associated neighbourhoods U, U,, ..., of the finitely nil-
potent lc. Lie algebras Y;, Y,,.... By 52 a neighbourhood V, can be
picked for every Y,, k=1,2,..., such that V,xV,3(x,y)—»xoyeU,
i.e. the mapping Y, x Y, (x,y)—>xoyeY, is the continuous mapping.
The mapping Y, 3 x— — x € Y, is already continuous. Then for the neigh-
bourhood V={4;1(V,), 451(V,),...}, where V,=Y, if U,=Y,, we
have VxVs(x,y)»>xoyeU and, of course, Usx— —xeU. We
obtained the topological group of the Lemma.

5.5. Let G be the topological group allowed by the l.c. Lie algebra X.
Then every subalgebra Y of X allows some subgroup H of G and every
ideal Y of X allows some normal subgroup H of G. These assertions are
the quick consequences of the formula (5.3) which defines the group
operation (see for instance Birkhoff [2] or Dynkin [7]).
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5.6. Let G be the topological group and X a real l.c. space X with a
basis {¢, | k=1,2,...}. We shall say that the topological group G admits
a coordinate system Ga3g—T(g)={t(2)|k=1,2,...} if a homeo-
morphism T from the underlying space of G onto X exists such that 7(g)
=>1,(g) e, for every ge G and T(e)=0 for the unit element eeG.
Hence the Lc. space X can be considered as the underlying space of the
topological group G where the group operation X X X 3 (x=2Y s,e,
y=2 trer) = 2.z, (S, by, S2, b5, ... ) €, € X is defined by the sequence of
real functions z,, z,, ..., of real variables sy, t;, S, 5, ... . The functions
z,,k=1,2, ..., receive finite values for those values of s, t,S,,t,, ...,
for which ) s, e, e X and ) f,e.€ X.

Definition. The topological group G for which three conditions listed
below are satisfied is called the real entire Lie group.

1) Any two elements g, g, € G can be placed in a subgroup HCG
admitting a coordinate system Hah— T(h)={t,(h) | k=1,2,...}.

2) If T(g)=2%sce and T(g)=3 e, 81,8, €H, then T(gg,)
= z,(S1, 1, S5, ba, .)€ and z(sy, £y, S5, 85, ...), k=1,2, ..., are entire
functions of any finite number of variables with all other variables fixed.

3) 2,(0,0,0,...)=0 and — 0 z(0,0,0,...)= g 2,(0,0,0,...) = 0, -

Jsy ot

5.7. Theorem. Every real properly nilpotent l.c. Lie algebra X for
which the mapping L is simultaneously continuous in both the variables
allows a real entire Lie group.

Proof. The Lemma 5.2 offers a topological group G for every properly
nilpotent l.c. Lie algebra {X, 7} of the theorem. As the underlying space
of G is identified with the subspace {X,y} of the space {X,7} the homeo-
morphism T of 5.6 is trivial whenever the conditions 1) of 5.6 is fulfilled.
Therefore, we write x instead of g. Any two elements x,, x, € G ={X, 7}
are in some G, = X, as every bounded set of the strict inductive limes
X =str. lim X,,, where X, is closed in X,,,, n=0,1,2, ..., is contained
in some X, and is bounded there (Dieudonné and Schwartz [5]). The
elements x,, x, of the Lie algebra X, generate a real nilpotent finite-
dimensional Lie algebra Y. Then the elements x,, x, of the group G, = X,
can be placed in the real nilpotent finite-dimensional Lie subgroup H,
the Lie algebra of which is Y. Thus the conditions 1 —3 of 5.6 are fulfilled.
The theorem is proved.

5.8. Theorem. Every real nilpotent l.c. Lie algebra X for which the
mapping L is simultaneously continuous in both the variables allows a
real entire Lie group.

Proof. A topological group G allowed by the nilpotent L.c. Lie algebra
X, () X™=/{0},is constructed in the Lemma 5.4. We shall show now that
m=1
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this group is actually the real entire Lie group. As in 5.7 T is trivial map-
ping so that for g,,g, € G we have x; =g,, x, =g,, X1, X, € {X, ©1(K)}.
The subalgebra Y of the algebra {X, t(K)} generated by two elements
X1, X, € {X, 1(K)} has a basis. We shall order this basis {e¢, |[k=1,2,...}
such that e, , ;e X", m=n,n+1,..., if ¢, € X".

Let x,ye Y, x=3 s.e,, y=2 tye. The continuous linear mapping
A,, of 5.4 maps {X, t(K)} onto {X/X™, t}. The subalgebra Y is mapped
to the nilpotent finite-dimensional Lie algebra A,(Y)C{X/X™ t}.
Hence because of the special choice of the basis {¢,|k=1,2,...}CY,
only a finite number N, of terms in the formula (5.3) contain the vector e,
foradefinite k (N, . ; = N,). This implies that the function z, (s, t1, S, t5, --.)
is a real polynimial in a finite number of variables so that the conditions
of the Definition 5.6 are satisfied. The theorem is proved.

5.9. One-parameter subgroups of the entire Lie group G are analytic
homomorphisms from R into G. The entire Lie groups of 5.7 and 5.8
have one-parameter subgroups of the form g (t)=tx, xe {X,y} and
they are the only ones. Even more for any two one-parameter subgroups
g.(t) and g, (¢) we have

lim = 2,0 ,(0 8.~ g,(~) = L(x, ).

The formula (5.10) together with the shape of any one-parameter
subgroup of the groups of 5.7 and 5.8 suggests to us to term the lc.
Lie algebra {X, y} as the Lie algebra of the real entire Lie group of 5.7
and 5.8. We shall name in the following these two groups as the real
properly nilpotent and nilpotent entire Lie group respectively.

Perhaps, it would be of interest to see whether every real entire Lie
group G has the Lie algebra, ie. a real l.c. Lie algebra X and a homeo-
morphism T from G onto X such that all the one-parameter subgroups
have the form g ()= T "(tx), te R, and

tlzl_l"l'(l) T(gx(t) gy(t) gx(_ t) g}( - t)) = L(X, J’) € X 5

for any pair x, y e X. However, this is out of the scope of our work as
we are focused on the properly nilpotent and nilpotent l.c. Lie algebras
and their possible Lie groups.

6. Invariant Functionals and Representations

6.1. The space C(G) of all the continuous functions on the topological
group G is a Banach space with the norm C(G) f-|fle

=sup{|f(g)l|g€ G} eR,.
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A function f(g), f € C(G), where G is the real entire Lie group having
Lie algebra X, is called infinitely differentiable in the g-direction if the
function f7(t)= f(g.(1), g«()=T '(tx), g(1)=g, belongs to C (R).
A function f(g), f € C(G), will be called infinitely differentiable on the
group G if this function is infinitely differentiable in every g-direction,
g € G. The set of all the infinitely differentiable functions on the group G
span a linear subspace C®(G) of the space C(G).

The linear space C*(G) is not empty for the real entire Lie group G
having Liealgebra X. Let H be any subgroup of G admitting the coordinate
system related with the homeomorphism T from G onto X. The function

f(g) defined on H by f(g) = fr(t;, ts, ..., t,), where T(g)= ) tie +x,
k=1

and fr(t;,t,,...,t,) € C®°(R,), is certainly a vector of C*(H). Let us

extend the domain of the function f(g) from H to the whole of G setting

f(g) =fT(t1’ t29 (RS tn)for T(g) = z tkek+x’ Whereg’T_l(e1)5 ERRE] T_l(en)a
k=1

belong to any subgroup admitting the coordinate system related with
the homeomorphism T. The defined function is a vector of C®(G).

It is easy to see that the linear subspace C®(G) of the space C(G)
is the invariant space under the left and right translations. Furthermore,
it £€C2(6) then — Ly f(g),-0€C™(G) and ~ Ry, [(@=0€C*(G)
for any one-parameter subgroup h(t) C G, where L, and R, are operators
of the left and right translations respectively.

6.2. Let A(G) be the linear space of all the almost periodic functions
f(g) on the topological group G. The intersection A (G)= W(G)nC(G)
i8 the linear subspace of the space C(G).

Lemma. For the real properly nilpotent entire Lie group G the linear
space WU (G) is a non-trivial subspace of the space C(G).

Proof. Let H be the connected, finitely-dimensional Lie subgroup
of G defined in the point 5.7. The group H has the non-trivial 2 (H).
The linear mapping ¢@:C(H)3fy—o(fy)=fs€ C(G) defined by
@(f) (®) = fu.1(ty, ... 1,) is continuous as [¢(fp)llg =sup{l /() | g € G}
= sup{| fy(h)| | he H} = | fylly. Hence the image of every compact set
Ky is a precompact set K;=¢(Ky) in C(G). Consequently the set
Ks={L,fc|g€G}CC(G) is precompact as K; is the image of the
compactset Ky={L,fy | he H}, fy € U.(H). This proves that the function
f¢ 1s an almost periodic function on G. As f; e C(G) it follows that

J6 € W(G).

6.3. Lemma. For the real nilpotent entire Lie group G the linear space
A.(G) is a non-trivial subspace of the space C(G).
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Proof. The real properly nilpotent entire Lie group H = G/G,,
defined also by H = 4,G and A4, is the mapping of the point 5.4, has the
non-trivial A (H) according to the Lemma 6.2. For every fye U.(H)
we define f;(g)= fy(gy) and gy € H is the element of H which is the
image under the natural mapping w:Gsg—-yw(g) =gy=g G, H.
Then the linear mapping ¢ :C(H)3 fy—¢(fu)=fc€C(G) is con-
tinuous so that by the same argumentation as in 7.2 we conclude that
A (H) 3 fg—o(fg) = fc € U(G).

6.4. We denote by E the normed space with the norm Esu— |ul|eR .
Let GXEa(g,u)»U(g)ue E be a continuous representation of the
topological group G on the space E. The linear functional M e E*
will be called invariant if M(U(g)u)= M (u), g€ G, ue E. The existence
of such functionals follows from a simple consideration by Dixmier [6]
of an equivalent problem for semigroups. Let F be the subspace of the

space E spanned by all the vectors of the form f= ) (u,— U(g,) u),
k=1

where u,,...,u,, and g;,...,g,, are any n vectors from E and any n
elements from G respectively. Let us define M(u)=0, ue F. There is a
continuous non-trivial functional M on the space E which is a continua-
tion of the functional M defined by M (u) =0 on F. The acquired functional
is invariant as M (u) — M(U(g)u) =M (u— U(g)u)=0.

Let E = C(G) and F a left and right translationally invariant subspace
of C(G) which contains the constant function on G. An invariant func-
tional M e F* for which M(1)=1 and M(f)=0 if f(g)=0, feF, is
called a left invariant mean on F. Similarly one defines the right in-
variant mean and the invariant (two-sided) mean on F. The name is
justified as the conditions are equivalent to

inf{f(g)lge G} =M(f)<sup{f(g)lge G}, f(g)=0.

There are groups for which no invariant mean exists on C(G). How-
ever, for every G the unique invariant mean exists on the subspace 2(G)
of all the almost periodic functions on G (von Neumann [20]).

Let M be the invariant mean on 2, (G). The function ¢(g) = M((L, /) f)
for every fe A.(G) is a continuous positively definite function on the
group G. The continuous positive definite functions on the topological
group G and the continuous unitary representations of G are in one-to-
one correspondence (Gelfand and Raikov [9]). Hence the real properly
nilpotent and nilpotent entire Lie groups G with Lie algebra X have
continuous unitary representations according to the Lemmas 6.2
and 6.3. This shows that the next theorem has a sense.

6.5. Theorem. Let Gx 9 3(g,u)—> U(g)ue ® be a continuous unitary
representation of the real entire Lie group G having Lie algebra X on the
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separable Hilbert space 9. Then $ is the direct sum ). @9, of the sub-
k=1

spaces 9y, k=1,2,..., each being the closure of the linear manifold
D, where D, k=1,2, ..., are invariant under the representation of the
group and invariant under the associated representation of the Lie algebra
X of G into the Lie algebra of skew-symmetric operators on D,.

Proof. The construction of ®,, k=1,2, ..., is in the full analogy with
the construction of the Garding’s domain. Let us take u,ve $ and let
us consider the function f(g, v, u, f) = £(g) (v, U(g) u)g, where f (g) € C*(G).
Because of the continuity of the representation f(g,v,u,f)e C(G)
for a continuous left invariant functional M on the space C(G) we have
M(f(v,~ u, f)) = M(L,f(v, u, f)). The functional $x$xC(G)
—M(f(v,u, f))e C is antilinear in the first variable linear in the last
two variables and simultaneously continuous in all three variables.
Hence

M(f(,u, £))= (v, Q(f) u)g »

where Q(f) for a fixed /e C*(G) is a bounded operator on § with the
norm not higher than «| f||s, x is a positive constant.

Now we define D, : ={Q(f) u, | f € C*(G)}, where u; €9 is a fixed
vector. D, is a linear subspace of the space H as Q(f; + f2)=0(f1)+0(f>)
and QA f)=20(f), fi, f2, fEC®(G), Ae C. f D =9, +$H we choose

u,€e HO9; and proceed in construing D,. If () D, +9 for every n
k=1

0
then a sequence Dy, D,, ..., exists with | ) D, = 9.
k=1

The invarinace of D, under the representation of the group follows
from the invariance of the functional M as M(f (v, u, f))=M(L, f (v, u, f))
implies (v, Q(f)u)g = (v, U(g) Q(L, f)u)g. This gives us

U@ Q(N)=0(L, /).

From the unitarity of the representation and our construction we have

D, LD, if k+1 Hence H= Y @, where $,=D,.
k=1

The vectors ¢~'(U(g,(t)) —I)v, where g.(t) is the one-parameter
subgroup defined by T(g,(t))=txe {X,y}, have the strong limes as
t—0 for every ve®,, k=1,2,..., and every one-parameter subgroup
2.(t) C G. The statement is the consequence of the continuity of the map-
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ping C*(G) 3 f = Q(f) e (9, H):

I [U60) 1 0w~ QA= 0| s == 1]

oS = 1)~ &

<k

lell s
G

where f.(h)= dt gni—1) S (MW]=0 € C*(G). We read that the element

xe{X,y} is represented by the skew-symmetric operator dU(x)

d
= U(g,(t))l,=0 on Z D,. The theorem is proved.

6.6. Let ¢:{X,v} 9x—+Q(x) € 2(D;, D) be the representation of
the Theorem 6.5 and let us suppose that the vectors u, € D, are of norm
Iilullg=1, k=1,2,.... The functions p,: (D, D)3 e(x)—psle(x))
=| f.ll¢ € R, define the convex, positive functionals because of

d
f/hxl +).2x2(g) = E Lg;.lxl +,12xl(—t)f(g)lt=0

d

=i Ly, -0 Lg;;_zxz(—t) J@i=o=41 f1,(8) + 42 [+, (8):

The vector space £(D,, D,)-furnished with the topology defined by the
family of seminorms p,, f€ C*(G), is the lc. space £4(D;, D,) and in
the same time the L.c. Lie algebra if the mapping L of 1.1 is defined as the
bracket operation of two linear operators on ®,. The absolutely convex
hull of £4(D,, D), k=1,2, ..., is denoted by L4;(D, D). It follows that
2,(D, D) is the l.c. Lie algebra.

Lemma. The homomorphism ¢ : {X, 7} 3x—0(x) € L,(D, D) is contin-
uous.

Proof. It suffices to prove the continuity of ¢ from {X,y} into
L6(D, D) for every k=1,2,.... The mapping {X,y} x G>3(x,g)

- % (txoT@)i=o=2 TrﬁiT)'— [adT(g)]" xe {X,y} is continuous.
The topological spaces {X,y} and G are homeomorphic and, therefore,
the continuity of Gag— f(g)e C, fe C*(G), implies the statement of

the Lemma.

6.7. Corollary. Real properly nilpotent and nilpotent l.c. Lie algebras
{X, y} which are Lie algebras of real properly nilpotent and nilpotent Lie
groups G have continuous representations into the l.c. Lie algebra £4;(D, D)
of skew-symmetric operators on the common invariant dense domain D
in a Hilbert space.
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7. Remarks on Representations of Lie Field Structures

7.1. We do not intend to enumerate the works in theoretical physics
which deal with the infinite-dimensional l.c. Lie algebras of any type,
but only those works in which to our knowledge properly nilpotent or
nilpotent l.c. Lie algebras are considered. Bernstein and Halpern [3]
obtained a Lie algebra of operators on a Hilbert space which is the sum
of a nilpotent ideal and a semisimple finite-dimensional Lie algebra.
As this algebra is already an algebra of operators on a Hilbert space
we have not much to say about it.

7.2. More we can say about so called Lie field structures. A model of
a quantum field theory which is formally a Lie algebra of operators on a
Hilbert space was proposed by Greenberg [10]. The existence of Lie
field structures as the l.c. Lie algebras regardless of its possible representa-
tion is proved by Lowenstein [15]. We do not know whether the LSZ-
axioms are satisfied for this model of quantum field theory but if they
are the model gives only the trivial S-matrix in sense of LSZ formalism
as is shown by Greenberg [11]. This question is still unanswered as the
information of our note is still far from being sufficient to respond to
this problem.

We can make a supplement to these considerations only concerning
the existence of the representations of Lie field structures into the Lie
algebra of symmetric operators on invariant common domain in a
separable Hilbert space.

Let Y be the linear space of functions x(p) : R, 3 p— x(p) € C such that
Y is invariant under the representation of the Inhomogeneous Lorentz
group ILGx Ya({A,a},x)>U(A,a)x: ={e?*x(A" ' p)|peR,} € Y. Let
{x,} be a one-dimensional Lie algebra and let us consider the following
composition rule for X =Y + {x,}:

XXxX3(x,y)—»L(x,y):
{xo f A(P) x(p) y(—p)dp* + [ c(p—q,9) x(p—q) y(@) dq* | pe R} € X ,

where X, is the central element of X. Under certain conditions on the
functions 4(p) and c(p, q) (see for instance Lowenstein [1]) the mapping
L satisfies the conditions (1.2) so that X becomes the abstract Lie algebra
over the field of complex numbers. The algebra X is the complexifica-
tion X = X of the real Lie algebra of all the functions x(p), x € Y, for which
x(p)= x(— p). We have an additional feature which indicates the nilpotency
of Lie field structures. Let us denote H, ={peR,|p2—p*>m? m>0}.
Then supp(f c(p—q) x(p — ) y(q) dg*) C Hy, 4, " H,, if supp(x(p)) C H,,
and supp(y(¢)) C H,,,, where p>0 is the minimal mass of the theory.

7.3. An example of Lowenstein [1] shows that c¢(p, ¢) may be a func-
tion bounded by 1 on R, x R,. For such function ¢(p, q) we can introduce

8 Commun math. Phys., Vol. 14
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a topology 7 on the linear space Y. Let K,,, m= 1,2, ..., be closed bounded
balls of R, centered at the origin with radii m. We take a sequence of
monotonically increasing functions g,(p), ¢,(p),..., of the variable
p3 +p?. p€ Ry, where ,(p) < 0,(p) < -+, such that g, _, (p)/g,(p) tends to
zero as p—oo, k=1,2,..., and every g,(p) fulfills the conditions:
a) o(p)lp=0=1, k=1,2,...; b) o,(p)214(p)| on every K, nH,,; and
¢) 0k(p+ q) S 01 +1(p) + 01~ 1(q). To satisfy this last condition it suffices to
put Ing, ,,(p) = Ing,(2p). The metrizable l.c. space Y with the topology
defined by the sequence of seminorms Y 3 x — p,(x) = [ 0,(p) | x(p)|dp*eR
admits the l.c. Lie algebra {X, 7} if we postulate p,(xo)=1, k=1,2,...,
because of

Pe(L(x, ) S p1(%) pr (V) + Pros 1 (0) P 1 () 2D 1 (%) i1 () -

The l.c. Lie algebra {X, t} is the nilpotent l.c. Lie algebra and for its
real nilpotent entire Lie group of 7.2 we can apply the results of Section 6.
By the Corollary 6.7 we know that the nilpotent lL.c. Lie algebra {X, y}
with the topology y of the Theorems 5.8 has the continuous representa-
tions into the l.c. Lie algebra of skew-symmetric operators on a common
invariant domain of a Hilbert space.

7.4. The Lie field structure with the l.c. topology and the positive mini-
mal mass allows the real nilpotent entire Lie group G by the Theorem 5.8.
If the answer to 5.9 is affirmative the inverse would be possible, i.e.
the real nilpotent entire Lie groups with certain Lie groups of auto-
morphisms (for instance the Inhomogeneous Lorentz group) would give
the Lie field structures. In this case the real nilpotent entire Lie groups
might be more convenient objects in searching for Lie field structures.
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