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Abstract. For internal symmetries it is shown that it is possible to construct auto-
morphisms for a Haag-Araki local ring system {{%(&)} from a local current affiliated to it.
Although the "charges" Qv for finite volume V do not converge for F-»oo we prove the
convergence of the corresponding automorphisms of {&(&}}. For external symmetries
which map bounded space-time regions into unbounded ones (e.g. translations) we have
to require some additional continuity condition on the isomorphisms corresponding to
Qy to get convergence.

In the usual Lagrangian formulation of Quantum Field Theory
one derives in a formal way a local current jg(.) for every one-para-
meter transformation group G which acts nontrivially on the fields.
Formally the space-integral $JG(X, 0 d3x serves as infinitesimal generator
for a unitary representation of G in the Hilbertspace of states. However,
because of vacuum fluctuations, the locaΓ'charges" Qv(t) = $f(x, t) d3x

v
for finite volume V turn out not to converge in any useful way (strong
or weak topology for operators) for increasing volume [1], Theorem 3.1,
even if one takes care of distributional difficulties and smears the current
in space and time with CJ-functions. So the question arises how to
construct symmetry transformations for the algebra of fields or observables
from a given local current /. This problem also arises in the usual for-
mulation of the "Goldstone Theorem" [1,2] where one assumes the
existence of a group of automorphisms of the algebra of quasilocal
observables generated by a local current jμ. One may ask then if these
assumptions are compatible.

Since one is not primarily interested in a global unitary trans-
formation to implement the symmetry, which may not even exist as
in the case of spontaneously broken symmetries, it would be sufficient if
the local symmetry transformations a.v(τ)A = eiτQv A e~iτQv for the
algebra of fields or observables 0t(&) from some bounded space-time
region 0 would converge with increasing volume V. This problem is
studied in the framework of local v. Neumann algebras in the Haag-
Araki [3] sense. In Section 1 we provide some mathematical tools
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giving the connection between the generator Q of a unitary group
^(τ) = eίτQ in a Hubert space H and the generator of the corresponding
group of automorphisms u(τ)A = <tί(τ) AW^(τ) of the algebra of bounded
operators @t(H) equipped with several interesting topologies.

In Section 2 we give a solution of the problem mentioned above for
internal symmetries under rather natural assumptions. In Section 3 we
consider the case of space-time symmetries and give a solution under the
further assumption (not very natural from a field-theoretic view-point)
that the local automorphisms ακ(τ) are strongly continuous in τ in the
uniform operator topology on the local algebras 91 (&).

1. On Generators of Unitarily Implemented Automorphism Groups

Throughout this section Q is assumed to be an essentially self-
adjoint (e.s.a.) operator on some domain D(Q) dense in a Hubert space H.
&(H) denotes the algebra of bounded operators on H. Then Q* is the
uniquely determined self-adjoint extension of Q in H. It is the generator
of a strongly continuous group of unitaries <%(τ) = elτQ* which gives
rise to a one-parameter group of automorphisms α(τ)y4 = <%ί(τ)A %~l(τ)
of &(H). oί(.)A(AeΛ(H)) is a continuous map of Rl^>&(H) equipped
with the strong or weak topology from vectors in H 1, but not in general
with the norm topology of operators on 3S(H). For fixed τ, α(τ) is a con-
tinuous map of &(H)-+&(H) for all these topologies. The family
{α(τ)}teJRι is an equicontinuous set in general only for the norm topology
on

Lemma 1. Q e.s.a. on D(Q\

) Vx, j;

Proof. Lemma 1 is an immediate consequence of Stone's theorem [4],

Lemma 2. Q e.s.a. on D(Q\ A e @(H\ AD(Q*)CD(Q*)=>

Proof.

ft->o

α(τ + Λ)-α(τ)

h
1 In the following "weak" is always to be interpreted in this sense.
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which tends to zero for Λ->0 for all xeD(β*).

Lemma 3. β e.s.a. on D(β), A e &(H)9 AD(Q) C £>(β*) ,

Proo/. Let x 6 D(β*) arbitrary, then there exists a sequence xn e D(Q)
with xw n^ao >x and βxn y l^00'>β8 |ex since β* is the closure of β. We

derive β M x - ^ x + [ * > ^ ] x ^ * x + [ * , ^ i - χ 2 . From

Q* being closed we get Ax e D(Q*).

Lemma 4. For a map u(.) from R1 into a Banachspace X the following
statements are equivalent:

i) w(.) is analytic at ί = 0.
ii) u(.) is infinitely differ entiable in some neighbourhood \t\<δ of

ί = 0 and there exist M>0, α>0 wiίΛ ||tt(B)(ί)ll ^Mnla" for all \t\<δ
and n e N.

Proof. i)=>ϋ): u ( . ) may be continued to a holomorphic function
ύ ( . ) in some disk |z| < JR and we get

If we set M = sup ||w(z)|| and a = 2/R we get the desired estimate for

n-l

ί £"Π_ τ)«-ι
—7 ^—u ( u ) ( tτ)dτ, V r c e N

(n-l)!

—»0 for |ί|<l/

denotes the closure of B.
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Now we are able to prove some propositions which give us the announced
connection between the infinitesimal properties of α(.) and <%(.):

Proposition 1. βe.s.a. on D(Q\ A e @(H\ a(τ)A = eiτQ* Ae~iτQ* then
the following statements are equivalent:

i) AD(Q)CD(Q*\ | |adβ*Λx| |£c| |x| |, VxeD(ρ),3

ii) a(.)A : fl1-* J>(//) is weakly differentiate4,
iii) u(.)A:l£-+0i(H) is strongly differentiate,

and under the extra assumption that a(.)adQ*A is continuous in the uni-
form (norm) topology on @t(H\

iv) a(.)A: R1 -*&(H) is differ entiable in norm;
from i)-iv) it follows

ατ

Proof, iv) => iii) => ii) are trivial.
ii)=>i): From Lemma 1 we know

_d_
άτ

d*(τ)

Ay

(1.1)

a(τ)AyeD(Q*)

for all yeD(Q) according to the Riesz representation theorem.
So we have ΰί(τ)AD(Q)CD(Q*) and from Eq. (1.1) we deduce

Γ because [Φ(τ),β*]CO.
ατ

So we get | |adβ*Xx||g| |δ>4|| ||x||, VxeD(Q*) with the definition

' τ = 0 '

i)=>iii): From Lemma 3 we have AD(Q*)cD(Q*) so we can apply
Lemma 2 to get

ατ

3 adβ*/4 denotes [Q*, X], inductively = [β*,(adβ*)""1^].
4 Differentiability means existence of the limit lim A i
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Using the identity
i

α(JQ-l

h
Ax =

da(th)

at
Axdt = i adQ*a(th)Axdt,

we arrive at

Ax

h

Consequently the family {l/ή(α(τ H- ft) - α(τ)) A}heRl of bounded operators
on H is equi-bounded since ||α(τ)X|| ̂  \\A\\, converging strongly on the
dense set D(β*) for λ->0. Thus it converges strongly on all of H and

= ί(adβ*α(τ) A) Vx e H .

α(τ + ft) - α(τ)

J(α(tΛ +τ)- α(τ)) adQMxdt
o I

(α(ίΛ + τ)-α(τ))adβM|| ||x

α(τ + Λ)-α(τ) A

£ sup |](α(τ + ίfc)-α(τ)) adfi*A||-1F^0

=^>iv) using the assumed continuity of α(.)adQM in norm.

Corollary. For fceN, l ^ f e ^ o o the following statements are equivalent:

ii) &(.)A : R1-^$(H) is k-tίmes weakly differentiate,
iii) θί(.)A : Rl-+&(H) is k-times strongly differentiate,

and under the extra assumption that α(.)(adβ*)M is continuous in the
norm topology of &(H) for l^n^k,

iv) oc(.)A : Rl-+&(H) is k-tίmes differentiable in norm.
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Proof. By induction using Proposition 1.

Proposition 2. // Q is e.s.a. and Q e &(H) the following statements
are equivalent:

i) (adQ*)n~1AD(Q)cD(Q*) and there exist M>0, a>0 with
Ax\\£Mnl(f \\x\\, Vxe£(β), n e Λ Γ ,

ii) u(.)A : R1 -+3$(H) is weakly analytic,
iii) OL(.)A : R1 -+&(H) is strongly analytic,
iv) a(.)A: R1 -> &(H) is analytic in norm.

Proof, iv) => iii) => ii) are trivial.
iv)=>i): From <x(.)A being infinitely differentiable we get

, nelV.

Lemma 4 gives the existence of M > 0 and a > 0 with

| - || (ad β*)" A || ^Mn!α", V n e N .

i)=>ii): Firstly we notice u(.)A being infinitely often weakly dif-
ferentiable and \(x,a(n\τ)Ay)\ = \(x9<*(τ)(adQ*γAy)\ ^ \\x\\ \\y\\ Mnlanfor
all τ e j R 1 , neN. It follows that (x, a(τ)Ay) is analytic for all x,yeH
using again Lemma 4 for X = C.

iί)=>iii) (compare [7], p. 52, Lemma 3): f) (adρ*)n^};|τr/n! con-
n = 0

verges weakly for |τ|<l/α, so {||(ad<2*)Mj;|| |τ|"/w!}Π6jv is bounded
for all y e H. We choose ε > 0 with

π = 0
= Σ

iii)=>iv): For y e T / there exists M(y) with ||α(/ί)(0)yl3;|| ^n! cfM(y)
by Lemma 4. So we get

By the uniform-boundedness principle we obtain ||(1 — α|τ| α(τ)>4|| ^ C.
Now we can apply a known theorem [5], p. 365 giving the desired result.

Remark. As the reader may have already noticed there is no extra
condition for concluding iv) from i)-iii) in this case.
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2. Internal Symmetries

For the following we assume that we are given a local ring system
in the Haag-Araki sense [3], the &(&) are assumed to be v. Neumann
algebras of operators on some Hilbertspace H. We consider a local
current jμ affiliated to {&(&)}. From jμ we construct local "charge"
operators Qr^ [1] by βr.β=7°(/r<g>α) with freC$(R3), αeCJί*1)

The charges Qr (we keep α fixed and suppress the index α from now on)
are assumed essentially self-adjoint on some common domain DcH
giving rise to automorphisms ur(τ)A = eίτQ*Ae~iτQ* of &(H). From the
relative locality of/* with respect to 0ί(&) we deduce for bounded Θ
the existence of r0 such that

y ) f o r , ,

, x, y e Z) .

For the definition of an internal symmetry we follow Ref. [6]:

Definition. A symmetry is called "internal" if αr(τ) 01(0) C 01(0),
Vτ e R1 and r sufficiently big.

A symmetry which is not internal we call "external".
Our statement now is that for internal symmetries and bounded 0

the restrictions αr(.) | 01(0) of αr(.) to 0t(Φ) all coincide for sufficiently
big r, thus lim αr(.) $(Φ) exists trivially.

— *

Theorem 1. Let Qr be essentially self-adjoint on a common domain
DCH

for A e

and Eq. (2.l)for,r ^ r0? x,yeD,Ae 01(0), then ar(τ)A = a.r.(τ)A, VAe0l(0)9

τe Λ1,^ r'^r0 .
Proof. We consider &(&) equipped with the weak topology from

vectors of H as a quasicomplete locally convex topological vector space 5

then ar(.)A is a continuous map from R1 into 3%(Θ) for all Ae&(0).
All elements of &(Θ) are weakly exponential6 vectors for α,(.) since
|(x, a(τ)Ay)\ e \\A\\ \\x\\ \\y\\. So we can apply a generalization of a theorem
of Garding to quasicomplete locally convex topological vector spaces [7]

5 The topology of 3ϋ(Θ) is defined by the family of seminorms p(A)= Σ \(xk, A yk)\
fc=l

with xk,ykεH arbitrary.
6 A vector A is called weakly exponential for α(.) if for any continuous linear functional

<p on 0t(Φ) there exist constants a>0 and 6>0 with φ(oί(τ)A)^aeb^, See Ref. [7].
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which asserts the existence of a dense supply of analytic vectors for each
αr(.) which we denote by C®. We want to show that C? = C™ for r, r' ̂  r0

Assume therefore AeC? then (adQ?)nADcD(Q?) and there exist
Mr>0, α r>0 with ||(adβ*)M|| <>Mrn!an

r, V n e W according to Pro-
position 2. From Eq. (2.1) we get

^for Vx, j ;eD i.e. ΛDCJDίβ S). Again from (2.1) we deduce (adβ*Λ)~
= (adβ*,,4)~ for r, r'^r0. Repeating this argument we find (adQffiAD
C D(β*>) and ((ad Q*γ A)~ = ((ad Q*γ A}~ for Vn e N. Therefore || (ad Q?,)"A \\
<>Mrn\an

r i.e. AeCf. Thus we have C? C C?; starting with C? we arrive
at .C? C C?, so we have proved C? - C?, for r, r' ̂  r0. Furtheron we have
shown

(^\0)A = (iadQ*TA~ = (^\0)A for nεN, AeC?.

Thus

ar(τ)A= Σ-±--Aτn = ocr,(τ)A for

Since the CJ? lie dense in ^(d?) and the αr(τ) are continuous maps of
3%(Θ)-+3%((9) we may extend this equality to all of &(Θ\

Remark 1. We notice that all we need to prove Theorem 1 is a weakly
closed subspace of &(H) which fulfills condition (2.1) for sufficiently
big r and r'. So, if there exists a bounded Φv such that ( \J αr(τ) &(0)\"

VteR 1 /

C$(&ι) for big r and r', the assumptions of Theorem 1 hold.
Remark 2. It would be desirable to have some sufficient condition

on the Qr that reveals the fact that they give rise to an internal symmetry.
The condition adβ* A e $((9) for a dense set of A e&((9) is clearly not
sufficient.

3. External Symmetries

From Remark 1 to Theorem 1 we conclude that there is no problem
with space rotations but only with translations and pure Lorentz-
rotations. The construction of the global automorphism α(τ) = lim αr(τ)

r —* oo

from local "charges" relies on the equality of the corresponding in-
finitesimal generators adβ* for big r. At first sight one may have the
impression that it should work equally well for external symmetries
since only infinitesimal neighbourhoods of a given bounded region G
seem to be involved. Unfortunately we have used analytic vectors which
are generally constructed by smoothing αr(.) with analytic functions:
Af — $ f(τ)ar(τ)Adτ (f analytic). These Af do generally not belong to
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any &(&ι) with bounded G± if the symmetry changes the region 0. So
we do not have a dense supply of analytic vectors in the local algebras
St((S) to integrate up the equality of the generators of the αr. What we thus
need is another method of reconstructing the αr from their generators.
There can be found several such methods in the literature [4, 8] but they
all seem to require equicontinuity of {ar(τ)}τeRι in τ which we only know
in the norm topology of $(&). Therefore we now require that αr(.)^4:/?1

-+&(H) is continuous in the norm topology. It would be interesting to
know if there exists any method not requiring equicontinuity and which
reproduces αr from its infinitesimal generator.

We proceed now to prove the existence of lim αr for norm con-
r— » oo

tinuous αr(.)7. It is natural to work with local concrete C*-Algebras
51(0) in that case. Clearly the αr(τ) can be extended to the quasi-local
algebra 91- VW) 8.

&

Theorem 2. Let Qr be e.s.a. on DcH, ar(τ)A = eiτQ* Ae-ίτQ*ε<Ά,

assume the existence of numbers rτ such that for all AE (J αr(τ
we have 'τ'-Γ

(3.1)

and further the continuity of ur(.)A : R1-*^ (in norm) then lim αr(τ)
exists on 31, V τ e R1.

Remark. Condition (3.1) expresses the fact that the symmetry be-
longing to Qr maps a bounded region & into some bounded region (9T

if |τ|^T. Intuitively one would even expect that αr(τ) 21(0) C Sl(0τ)
(τ fixed, r sufficiently big) where Θτ is the transformed region.

Before proving Theorem 2 we give a simple lemma on the resolvent
of the generator of αr(.)

Lemma 5. Let a(.)bea continuous one-parameter group of contractions
on a Banach space X (i.e. ||α(τ)x|| rg ||x||, V x e J f , τeR 1 . // δ denotes

— : — the generator of α(.) and R(z) = (z — δ)~ΐ its resolvent then
dτ

ine gGfiKΓuiuf uj u*\.) unu rv^; = \Δ — u)
τ = 0

T

R(z) = $e~zτ α(τ) dτ + e~zT α(T) Λ(z), Rez > 0.
o

7 For a discussion of this norm-continuity see Ref. [9].
8 V W) denotes the algebra generated by \
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T
Proof. We define Rτ(z) = J e~zτ α(τ) dτ then for x e X

0

a(t)RT(z)x= I έΓ^-^αίτJdτx
t

d«(t)
di

Rτ(z)x = δRτ(z)x = zRτ(z)x + e zTα(T)x —x
t = o

=*• Rτ(z)x = R(z)x -e~zτ α(T) Λ(z) .

Proo/ o/ Theorem 2. Let <5, denote the generator of αr( ), R,(.) its
resolvent. We want to show the existence of lim Rr(z) on 21 for Rez > 0.

r-> oo

Assume A e 91 (0), then we may write

(Rr(z)-Rr,(z))A = δr.fίr,(z)Rr(z)A-Rr.(z)δrRr(z)A for Rez>0

since Rr(,y (z)A lies in the domain of δ^. >. For Rr(z) we use Lemma 5 to

get Rr(z)= ί e~" αr(τ) dτ + <ΓzΓ αr(T) Λr(z).
0 T

Choosing r and r'^rτ and setting Aτ(z) = $e zτar(τ)Adτ we
o

deduce from Eq. (3.1):

That means AΓ(z)DcI>(β;ί) and (again using (3.1) and Proposition 1)

δr, AT(z) = (ad β? Xτ(z))- = (ad β* Aτ(z)Γ = δrAτ(z) .

We arrive at

Using μr(,,-Rr(,,(z)|| ^ 1, ||Λ,(M(z)|| ̂  - — we get ||(K,(z)-.Rr,(z)M||
Kez

^e-rRez_JLJL for r, r'^rr. For T-κx) we get the existence of
Rez

lim Rr(z)A^=R(z)A for A e 9ί(ίP) from which the existence of the limit
r—> oo

for all A 6 91 follows by the equiboundedness of Rr(z).
Next we want to show that the range of JR(z) is dense in 91. For that

we assume A e 9l($) for bounded G then we get for n ̂  1

\\nR(n)A -A\\£\\ (nR(n) -nRr(n))A\\ + \\nRr(ή)A - A\\

for r sufficiently big, which can be made arbitrarily small since
lirh nRr(n)A = A (see Ref. [4], p. 241). So we conclude lim nR(ri)A = A

n-*oo n~* oo

for all A e 91(0). Since ||nR(n)|| ^ 1 we get lim nR(n)A = A for all A e 91.
—

5 Commun. math. Phys., Vol. 14
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jR(.) satisfying the resolvent equation R(z) — R(z') = (zf — z) R(z) R(z')
because the Rr(.) do, we can apply Lemma Γ of Ref. [4], p. 217 which
asserts that range R(z) = {A e 9ί : lim nR(n)A = A } = 21.

I M->00 J

Now we are prepared to apply the Trotter-Kato-Theorem Ref. [4],
p. 269 on the convergence of semigroups proving the convergence of
αr(τ) on 2t for τ Ξ> 0. The proof for τ < 0 runs along the same lines. The
limit α(τ) = lim αr(τ) is clearly a C*-automorphism of 21.

n—»• co

Finally we want to remark that the statements made above apply
equally well to Quantum Statistical Mechanics, except time translations
where condition (3.1) does not hold.
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