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Abstract. We present here an infinite-dimensional Lie algebra, semi-direct product
of the Poincare Lie algebra & by an infinite-dimensional abelian Lie algebra. It gives rise
to Schur-irreducible subgroups of the unitary group of the (separable) Hubert space, with
a discrete mass-spectrum (real positive isolated mass-eigenvalues). Some related mathe-
matical problems are also examined.

I. Introduction

In [1] an example was given of a Poincare partially-integrable local
representation of a fifteen-dimensional Lie algebra, giving rise to a discrete
mass-spectrum. Though this example is physical, we cannot get a unitary
representation of a Lie group (a thing which would have been of technical
commodity) out of it, due to the lack of common analytic vectors [2].
In particular, due to the generator q, we are forced in [1] to introduce
two domains S0 and Sπ, the former as a dense domain on which all
the commutation relations of the 15-dimensional Lie algebra are verified,
the latter being the mass-spectrum domain — on which a 14-dimensional
subalgebra is integrable, the trouble being caused by q which even does
not leave this domain Sπ invariant.

As was already hinted in [1], and because of the results of [3], this
example is an optimal one (and of physical interest) within the frame-
work of finite-dimensional Lie algebras containing the Poincare Lie
algebra. Of course the necessity of introducing S0 besides Sπ, as well
as the fact that we have only partial integrability of the representation
are caused by the fact that q is not a periodic function. The last suggests1

to replace multiplication by q by multiplication by sing and cosq
(supposing for simplicity a = 2π in the notations of [1]). Doing so we get
an infinite-dimensional Lie algebra with a common dense set of analytic
vectors, namely this Lie algebra is integrable to a group representation.
This last fact shows us that we have essentially only two types of possi-
bilities of overcoming the negative results of [3]: either we have mass-

1 This suggestion was made to us by E. P. Wigner in Trieste in June 1968, and was
at the origin of this work.
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spectrum in a finite-dimensional Lie algebra with only partial integrability
to (e.g.) Poincare, or else we have mass-spectrum in an integrable re-
presentation of a Lie algebra containing Poincare, in which case the Lie
algebra must be infinite-dimensional.

Indeed in what follows we shall study mathematically an "infinite-
dimensional version" of [1]. We shall see that in this case the translational
ideal of & is even not nilpotent in the entire infinite-dimensional Lie
algebra (its nilpotency was a basic point in the proofs of the negative
results of [3]). Before we pass to the example itself, we shall say a few
words about its possible physical interpretation. Our example will con-
tain a kind of tensor product of polynomials (or other nicely behaved
functions) in the energy-momentum generators, which will play the role
of external observables of the system of particles, by a representation of
the two-dimensional Euclidean group, generated by sing, cosg, and dq.

In this hypothetical model the two-dimensional Euclidean group
plays the role of an internal symmetry: we have rotations around a third
axis in isotopic-space, as well as real translations in the (1-2) plane,
sing, cosg and dq are internal observables of the theory.

Of course one understands immediately that such an example is
generalizable with any (more realistic) internal symmetry, and that the
utilization of (e.g.) 5 U (3) in such a context can give quite richier applica-
tions. But now let us pass to the example itself.

II. The Infinite-Dimensional Lie Algebra

As in [1], we shall start with the infinitesimal skew-adjoint generators
(MμV, Pμ) of (in order to fix ideas and keep in view physical applications)
an irreducible unitary representation D/(m0) of the Poincare group
on a separable Hubert space H1. On the (complete) Hubert tensor
product H = L2(0^2π)®H1 we ^hall then consider the skew-adjoint
operators Mμv = I®M'μv, Pμ = I®P'μ (where / stands for the identity
operator on L2(0,2π) and the bar for closure), and Pμ(idq) which together
with Mμv generate a Lie algebra D(^) representing the Poincare Lie
algebra on H - here also, idq. is taken self-adjoint on the domain of
absolutely continuous functions in q e (0,2π) with the periodic boundary
condition in q. All operators are essentially skew-adjoint on a common
domain Sπ consisting of C°° functions periodic in q (with rapid decrease
in the momentum-variables p if H1 is realized, as usual, as a Hubert
space of functions on a hyperboloϊd), and D(0*) gives rise to a unitary
representation D(P) of the (universal covering P of the) Poincare group,

oo oo

decomposable (cf. [1]) into £ D/(nm0)0D/0)0 £ D^(nm0).
n = l n = l
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Now (following Wigner's suggestion) we add to D(έP) the four-
dimensional abelian algebra D(A1) generated by the (skew-adjoint)
operators Pμ sing. The latter is invariant by commutation with the Mμv

and gives the ten-dimensional abelian algebra D(A2\ generated by the
PμPvίcosq, by commutation with the Pv(ίdq). On D(A2), the Mμv act
through the tensor product of two representations D(ί/291/2) of the
Lorentz Lie algebra J£?.

Continuing this process we shall get the I 1 abelian algebra

D(An) generated by the rc-products of the Pμs multiplied by sing or
i cosg, according to the parity (odd or even) of n, which are all essentially
skew-adjoint on the domain Sπ. The Mμv act on D(An) through the nth
tensorial power of D(l/2,1/2) and leave it invariant, while the Pμ(ίdq)
transform it into D(An+ί) - which shows they are not nilpotent (for the
adjoint representation).

The commutation relations thus defined give us the infinite-dimen-
sional Lie algebra G, semi-direct product & A0 of & by the infϊnite-

00

dimensional abelian Lie algebra AQ = £ An, the sum being considered
n = l

for the moment as an algebraic direct sum of Lie algebras. Moreover
all operators in D(G) are essentially skew-adjoint on a dense subspace
of H, contained in Sπ and invariant under D(G). Thus we can define not
only the unitary group D(P) representing P but also abelian unitary
groups D(Bn) corresponding to D(An) and representing the vector-

group of translations in ( J-dimensional space, and therefore also
3

an abelian group D(B0) corresponding to D(A0) ~ and even a group of
unitary operators in H, algebraically generated by D(P) and D(B0).

Now if/i Op) [resp. /2(p)] is any odd [resp. even] entire function of
exponential type in p we can define on a subspace of Sπ of functions
sufficiently rapidly decreasing (in p), the (essentially skew-adjoint)
operator f1(P)smq + if2(P)cosq. Such operators will still have in
common with the formerly defined operators in D(G) a dense set of
analytic vectors (for instance entire functions in p decreasing on the real
3-space like exp( —exp|p|2), times trigonometric polynomials in q).
This remark will be useful in the next paragraph.

Moreover, here also, the Lie algebra D(G) is a Schur-irreducible
set of operators in H [any bounded operator commuting to it - on a dense
subspace e.g. (cf. [1]) - is a multiple of identity], since the Lie algebra
generated by (dq9 sing, cosg) is Schur-irreducible in L2(0,2π). The
latter gives even rise to a (Schur, and topologically) irreducible (non-
unitary) representation of the Euclidean group of a two-dimensional
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space (e.g. by exponentiating the generators restricted to a dense domain
of common analytic vectors, and then by taking the closure of the ob-
tained bounded operators).

III. Completions of the Lie Algebra, and Semi-Direct Product Structure
of Corresponding Groups

1 . Let L be the free Lie algebra generated over two elements x and y [4] .
Its enveloping algebra is the tensor algebra T over the linear space
generated by x and y. Denote by T* the completion of T with respect
to its natural graduation, i.e. the associative algebra of formal (non-
commutative) power series in x and y, and by L* the closure of L in T*.

It is known that Log(Exp(x)Exp(y)Exp( — x))eL* and is equal
to Ad(Exp(x)) y, which in turn is equal to Exp(adx) );. This can be
easily seen: adx-y = [x9 y] = xy-yx = (Lx-Rx)y in T (and T*) and
Lx and Rx (left and right multiplication by x) commute; thus

o -

and evidently

Exp(Ad(Expx)y) = Exp(Exp(x)y Exp( — x)) = Exp(x) Exp(y) Exp( — x) .

2. We shall now apply these remarks to our case. We have

Ad(exp(ίμ Pμ(i dq))) sin q = exp(ad(ίμ Pμ(i dq))) sin q

= cosh(ίμPμ) sing + i sinh(fμPμ) cosq

and similarly

Ad(exp(ίμPμ(iδq))) icosq = sinh(ίμPμ) sing + i cosh(fμPμ) cosq .

Now let F! (resp. F2) be the linear space of odd (resp. even) entire
functions of exponential type in the four variables pμ which are linear
combinations of products of a polynomial in the pμ by finite products
of sinh(£μpμ) and cosh(ίμpμ), where t = (tμ\ t' = (tf

μ)eR4 and may be
different from one term to another. Then it is easy to check that
Ad(exp(ίμv Mμv)), with (ίμv) 6 R6 and summation for μ < v, and therefore
also Ad(D(P)), leave invariant the abelian Lie algebra D(A0) generated
by the operators fί(P)smq + if2(P)cosq when fίeFl9 /2eF2, and

From what we have seen, there is an abelian unitary group D(B0) cor-
responding to D(A0), and which can be defined by exponentiation from
it on a dense set of common (to D(P) also) analytic vectors. Denote by
D(G) the semi-direct product D(έP) D(A0), where D(0>) acts as usual on
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by aάPμ(ίdq) and adMμv. To this Lie algebra we are now in position
to associate the group ©D = D(P) - D(B0\ since D(B0) is invariant under
the automorphisms AdD(P) of the unitary group of the Banach algebra
&(H) of bounded operators on H [remember that any element of P
is a (finite) product of exponentials].

3. The group ©# has a semi-direct product structure [which was
not the case of the group algebraically generated by D(P) and the D(BJ].
Moreover, it is a topological semi-direct product, in the sense that the
representation P-» Ad(D(P)) of P into the group of automorphisms of
D(B0) is continuous with respect to the "strong-strong" topology defined
by the following semi-norms: a^> \\a(b) φ\\ (norm in H, with any beD(B0)
and φeH). Indeed one sees easily that, for any f±(P)sing + z'/2(P)cosg
in D(AQ) and φεH, the function

(g^expβ/^P) cosh(ίμPμ) + /2(P) sinh(ίμPμ)) sing

+ /CMP) smh(tμPμ) + /2(P)cosh(tμPμ)) cosg] φ

is a continuous function R4-+H; and similarly for the Lorentz part,
which is generated by the exp(ίμvMμv), since we have

Ad Qxp(tμv Mμv) exp(Λ(P) sing + ί/2(P) cosg)

= exp[/ι(ίμv; P) sing + if2(tμv', P) cosg]

where fa belongs to Fα (α = 1,2) with respect to P, is a polynomial whenever
/α is a polynomial (the degree of fa being not greater than that of /α)
and is an entire function of exponential type in (ίμv) e R6 (bounded with
respect to the parameters associated with a compact subgroup). The D(Bn)
are invariant under the Lorentz part (but not under the translations).

4. The group D(B0) is a normed group, but not a Banach Lie group
(respectively to this norm) since it is not complete in the norm topology
of J£(H). We shall thus consider also the unitary group D(B0) of the
commutative C*-algebra generated by the D(Bn). It contains obviously
D(J50), is a Banach Lie group, and we can define in a similar way the
topological semi-direct product (5D = D(P)- D(BQ\ which is a kind of
completion of ®D. The (unitary abelian) normal subgroups D(B0)
and D(B0) of (respectively) ©D and (5D can be interpreted as abelian
gauges, related to Poincare by a semi-direct structure.

IV. Concluding Remarks

1. An interesting question raised by our treatment is to get an
intrinsic definition of a Banach (or normed) Lie group corresponding to
some completion of the abelian Lie algebra A0. The definition we gave
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of D(BQ) and ©D depends a priori on the considered representation.
Abstract definitions of C*-algebras do exist, which suggests that at least
for some classes of representations of P (from which we start) abstract
definitions of D(B0) and of ©D will be possible. But in any case D(B0)
is very big, though it can be made even bigger by completion to the unitary
group D(Bξ) of the abelian von Neumann algebra it generates, and it
would be of interest to define abstractly "analytic" (in the sense of D(B0))
subgroups of it.

Concerning ©D and £>(#0)»
 an intrinsic definition of abstract groups

© = P - B0 and B0 (respectively), of which the former are representations,
can be easily given by means of the construction of formal Lie groups.
Indeed B0 is the abelian group defined as exponentials of elements of
the abelian Lie algebra A0, the elements of which are of the form
S/ι(Γ) + iC/2(T), with /αeFα (α- 1,2), Γ being a generic element of
the translational ideal &~a of an abstract Poincare algebra [so that /α(T)
belongs to the completion (̂̂ )* of the enveloping algebra of ^~fl],
and where S and C are two additional generators commuting between
themselves and with 3~a. We thus define, exactly as before, the abstract
Lie algebra G as the semi-direct product ^-AQ, and the abstract (uniquely
defined) corresponding group © as the semi-direct product P B0.

The insertion of D(B0) between D(B0) and D(B0)(cD(Bξ)) reminds
us of the insertion of the henselization [5] ̂  (algebraic functions) of the
local ring $ of (e.g.̂  an affine space between ^ (polynomials) and its
"analytic closure" $ (analytic functions), contained in its completion
^ (formal power series). D(B0) is a kind of "exponential closure" of
D(B0) in its topological completion D(B0). This suggests that algebraic
methods could be of use in the interesting problem of well defining
intermediate ("analytic") subalgebras jtf between a C*-algebra j/ and a
(sufficiently "small") subalgebra j/ generating j/, so that in our case
D(B0) would be the unitary group of such an intermediate subalgebra.

2. The method of construction of ©D gives us all representations
of the group © that can be obtained from representations of P by "tensor-
product" of the translation generators with the Lie algebra {dq; sing,
cosq}. It remains an open question whether other integrable skew-adjoint
representations of the Lie algebra G can be found. [Notice that in all
our representations we have the relation S2 + C2 = 1].

3. We know that 9 is "almost maximal" in the sit (2,2) Lie algebra.
More exactly, the inhomogeneous Lorentz Lie algebra, plus dilatations
of space-time (the latter being a one-dimensional algebra) is maximal
in the conformal Lie algebra. Moreover, the Euclidean Lie algebra
(of a 2-dimensional space) is a maximal parabolic subalgebra of s 1(2, C).
Both maximalities can be easily seen with graduations and fϊltrations:
if we add to the generators mμv and pμ of & the five generators cμ9 d



On an Infinite-Dimensional Group 11

with {mμv9cμ}&0>, [_d,cμ~] = -cμ9 [d,pj=pμ, [pμ,cv'] = 2(gμvd + mμv)9

we get the graduation su(2,2)^L~1 +L° + L1, where L~1 = {cμ},
L° = {mμv,d} and Ll = {pμ}. We can also write ^ = L_1 DL 0 DL 1 ?

where Lα is (e.g.) the abelian subalgebra with nilpotent elements
{w12 + m02, m13 + m03} and L0 is generated by Lx and the Cartan sub-
algebra {w23,w01}. The subalgebra generated by L^ and m23 of the
(maximal parabolic) subalgebra L0 is isomorphic to the real Lie algebra
{dqιsinq,cosq}.

Our Lie algebra G can be considered in many ways as a filtered
Lie algebra. It seems that the most reasonable one, in view of the preceding
decompositions, is the following:

The natural question is then how to "complete" our filtered Lie
algebra G so that to obtain one of the "simple" algebras classified by
Cartan (for a bibliography on primitive filtered Lie algebras and de-
finitions concerned with this subject, we refer to [6]) - here we must,
at least in the beginning, forget the operator origin of D(G) to concentrate
on its structure. G being some kind of "tensor product" of ̂  (more
precisely, of L1) by {Ll9 w23}, it is possible that the completion of these
to primitive algebras will give a hint at the structure of the wanted in-
finite-dimensional primitive-Lie algebra. Conversely, once the latter
is found, the representations of G we constructed here will give a hint
at the way how to get some of the linear representations of this primitive
algebra (a thing which has not been done yet in the mathematical literature,
and of great interest).

4. Most of what has been said here for P can be generalized to semi-
direct products of a semi-simple Lie group by an abelian normal sub-
group defined by an irreducible representation (what we call "special
affine groups"). The unitarity of the representations can also be dropped
without major difficulties, and other examples of filtered (or graded)
infinite-dimensional Lie algebras of operators can be constructed
along similar lines.
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