Cosets and Ferromagnetic Correlation Inequalities

S. SHERMAN*

Department of Mathematics, Indiana University, Bloomington

Received May 3, 1969

Abstract. Consideration of subgroups of the group of all subsets of $N = \{1, 2, ..., n\}$ with symmetric difference as the operation leads to new inequalities on correlations for a generalized Ising ferromagnet. An upper bound for the rate of change of $\langle \sigma^R \rangle$ with respect to J_S in terms of correlations and a new, brief proof for the monotonicity of $\langle \sigma^R \rangle$ as a function of J_S are given.

§ 1. Introduction

The success of Griffiths [1, 2] in establishing correlation inequalities (the non negativity of correlation and the monotonicity of correlation as a function of interaction) for Ising ferromagnets suggests the problem of getting other, if not all, correlation inequalities [3, Appendix, (1)] for generalized Ising ferromagnets.

In this paper other correlation inequalities are deduced as a consequence of considering a subgroup \mathcal{G}_0 of the group $\mathcal{G} = (2^N, \Delta)$ of subsets of $N = \{1, 2, ..., n\}$, the set of spin locations, under the operation Δ of symmetric difference. In particular it is shown (in the notation of [3] which is used in the sequel) that

$$\frac{\beta}{2} \left(1 + \langle \sigma^R \sigma^S \rangle^2 - \langle \sigma^R \rangle^2 - \langle \sigma^S \rangle^2 \right) \ge \frac{d \langle \sigma^R \rangle}{dJ_S} \,.$$

A brief proof of the monotonicity of correlation as a function of interaction yields new correlation inequalities as a result of the need for using a sufficiently strong inductive hypothesis.

§ 2. Cosets

Let $\mathscr{G} =_{\mathrm{df}}$ the group $(2^N, \Delta)$. Consider $J : \mathscr{G} \to R$ and $\mathscr{G}_0 \prec \mathscr{G} (\mathscr{G}_0$ a subgroup of \mathscr{G}). For all $A \in \mathscr{G}$, let

$$\tilde{J}_{A\mathscr{G}_0} = \inf_{\mathbf{B} \in A\mathscr{G}_0} J_{\mathbf{B}}$$

^{*} Supported by NSF GP 7946.

¹ Commun. math. Phys., Vol. 14

thus getting $\tilde{J}: \mathcal{G}/\mathcal{G}_0 \to R$. The mapping $J \to \tilde{J}$ is a homomorphism of $L^1(\mathcal{G})$ into $L^1(\mathcal{G}/\mathcal{G}_0)$. If $\pi = \exp J$, in the real group algebra $\mathcal{A}(\mathcal{G})$, then

$$\exp \tilde{J} = \tilde{\pi} = \sum_{D \in \mathcal{Q}/\mathcal{Q}_D} \tilde{\pi}_D D$$

in $\mathscr{A}(\mathscr{G}/\mathscr{G}_0)$.

Special case: $\mathcal{G}_0 = \{\phi, R\}$

$$\tilde{\pi}_{\mathscr{G}_0} = \pi_{\phi} + \pi_R ,$$

$$\tilde{\pi}_{S\mathscr{G}_0} = \pi_S + \pi_{RS} .$$

J ferromagnetic, i.e., $(\forall A \neq \phi)$ $J_A \geq 0 : \Rightarrow : \tilde{J}$ ferromagnetic. J ferromagnetic $\Rightarrow \pi_{\phi} + \pi_R \geq \pi_S + \pi_{RS}$, since $\tilde{\pi}_{\mathscr{G}_0} \geq \tilde{\pi}_{S\mathscr{G}_0}$.

Theorem 1.
$$\frac{\beta}{2} (1 + \langle \sigma^R \sigma^S \rangle^2 - \langle \sigma^R \rangle^2 - \langle \sigma^S \rangle^2) \ge \frac{d \langle \sigma^R \rangle}{dJ_S}$$
.

Proof. From $\pi_{\phi} + \pi_{R} \ge \pi_{S} + \pi_{RS}$ it follows $\pi_{\phi} - \pi_{RS} \ge \pi_{S} - \pi_{R}$. From $\pi_{\phi} + \pi_{S} \ge \pi_{R} + \pi_{RS}$ it follows $\pi_{\phi} - \pi_{RS} \ge \pi_{R} - \pi_{S}$. Thus

$$(\pi_{\phi} - \pi_{RS})^2 \ge (\pi_S - \pi_R)^2$$
 and $\pi_{\phi}^2 + \pi_{RS}^2 - \pi_R^2 - \pi_S^2 \ge 2\pi_{\phi} \pi_{RS} - 2\pi_R \pi_S$.

§ 3. Monotonicity of Correlation

For $\pi = \exp J$,

$$\frac{d\pi}{dJ_{D}} = \pi D$$

and

$$\frac{d\pi_A}{dJ_D} = \pi_{AD} \,.$$

Let $\delta(\mathscr{G}_0; R, S) = \inf_{B \in \mathscr{G}_0} (\pi_B \pi_{BR} - \pi_{BS} \pi_{BRS}).$

Theorem 2. J ferromagnetic \Rightarrow a) $\delta \ge 0$, and b) $\frac{d\delta}{dJ_D} \ge 0$.

Proof. Fix N and let $P = {}_{df} \{D : J_D > 0\}$. Proceed by induction on # P. If # P = 0, then

$$B \neq \phi \Rightarrow \pi_B = 0$$

and

$$B = \phi \Rightarrow \pi_B > 0.$$

Since \mathscr{G}_0 is a group, $\phi \in \mathscr{G}_0$. For $R = \phi$.

$$\sum_{B\in\mathscr{G}_0}\pi_B\pi_{BR}=\pi_\phi^2$$

and

$$0 \leq \sum_{B \in \mathscr{G}_0} \pi_{BS} \pi_{BRS} \leq \pi_{\phi}^2 ,$$

so $\delta(\mathcal{G}_0; R, S) \ge 0$. For $R \ne \phi$, $\delta(\mathcal{G}_0; R, S) = 0$. Thus (a) holds if # P = 0. Suppose (a) holds $(\forall \mathcal{G}_0 \prec \mathcal{G}) \ (\forall R, S \in \mathcal{G})$ if $\# P \le k$. Consider # P = k + 1. Note that

$$\begin{split} \frac{d\delta(\mathcal{G}_0;R,S)}{dJ_D} &= \sum_{B \in \mathcal{G}_0} \pi_{BD} \pi_{BR} + \pi_B \pi_{BRD} - \pi_{BSD} \pi_{BRS} - \pi_{BS} \pi_{BRSD} \\ &= \begin{cases} \delta([\mathcal{G}_0 \cup \{D\}];RD,S), & D \notin \mathcal{G}_0, \\ 2\delta(\mathcal{G}_0;RD,S), & D \in \mathcal{G}_0 \end{cases} \end{split}$$

where $[\mathscr{D}]$ is group generated by the elements of \mathscr{D} . Suppose $D \in P$. First consider $D \in \mathscr{G}_0$, the possible behavior of δ , where the last argument is J_D , is given by the following table:

	Table	
	$\delta(\mathcal{G}_0; R, S; 0)$	$\delta(\mathscr{G}_0; RD, S; 0)$
(1)	0	0
(2)	+	0
(3)	0	+
(4)	+	+

In case (1), $(\forall J_D \ge 0) \, \delta(\mathcal{G}_0; R, S; J_D) \equiv \delta(\mathcal{G}_0; RD, S; J_D) \equiv 0$. In cases (2–4), $(\forall J_D > 0) \, \delta(\mathcal{G}_0; R, S; J_D) > 0$ and $\delta(\mathcal{G}_0; RD, S; J_D) > 0$.

Next consider $D \notin \mathcal{G}_0$. From $D \in [\mathcal{G}_0 \cup \{D\}]$ and the inductive hypothesis, $(\forall J_D \ge 0) \delta(\mathcal{G}_0; \omega, S; J_D) \ge 0$. Thus (a) holds $(\forall P)$ and from the expression for the derivative of δ with respect to J_D , (b) holds $(\forall P)$. The proof is complete.

Corollary. J ferromagnetic,

$$\mathcal{G}_0 \! \prec \! \mathcal{G} \! \Rightarrow \! \sum_{B \in \mathcal{G}_0} \left(\left\langle \sigma^B \right\rangle \left\langle \sigma^{BR} \right\rangle - \left\langle \sigma^{BS} \right\rangle \left\langle \sigma^{BRS} \right\rangle \right) \! \ge \! 0.$$

Special case: $\mathscr{G}_0 = {\phi}$. Here the inequality becomes

$$\langle \sigma^R \rangle - \langle \sigma^S \rangle \langle \sigma^{RS} \rangle \ge 0$$

which implies that the correlations are monotone functions of interactions in a generalized ferromagnetic Ising model.

Added in proof. Professor J. Ginibre has an elegant proof of Griffith's second theorem as well as an elegant generalization of Theorem 2 of this paper. These will appear in the lecture notes of the 1969 Cargese NATO Summer School in Theoretical Physics.

References

- 1. Griffiths, R. B.: J. Math. Phys. 8, 478 (1967).
- 2. J. Math. Phys. 8, 484 (1967).
- 3. Kelly, D. G., and S. Sherman: J. Math. Phys. 9, 466 (1968).

S. Sherman Indiana University Department of Mathematics Swain Hall-East Bloomington, Indiana 47401, USA