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Cosets and Ferromagnetic Correlation Inequalities
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Abstract. Consideration of subgroups of the group of all subsets of N={1,2,...,n}
with symmetric difference as the operation leads to new inequalities on correlations for a
generalized Ising ferromagnet. An upper bound for the rate of change of {¢®) with respect
to Jsin terms of correlations and a new, brief proof for the monotonicity of (¢®) as a function
of Jg are given.

§ 1. Introduction

The success of Griffiths [1, 2] in establishing correlation inequalities
(the non negativity of correlation and the monotonicity of correlation
as a function of interaction) for Ising ferromagnets suggests the problem
of getting other, if not all, correlation inequalities [3, Appendix, (1)]
for generalized Ising ferromagnets.

In this paper other correlation inequalities are deduced as a con-
sequence of considering a subgroup %, of the group ¢ = (2V, 4) of subsets
of N={1,2,...,n}, the set of spin locations, under the operation 4 of
symmetric difference. In particular it is shown (in the notation of [3]
which is used in the sequel) that
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A brief proof of the monotonicity of correlation as a function of inter-
action yields new correlation inequalities as a result of the need for using
a sufficiently strong inductive hypothesis.

§ 2. Cosets

Let 4 = 4 the group (2", 4). Consider J : 9 — R and 4,< ¥ (%, a sub-
group of ¢). For all A€ ¥, let
jA@o =df Z Jp
BeA%o
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thus getting J : 4/%,— R. The mapping J—J is a homomorphism of
LY(%) into L'(%9/%,). If n=expJ, in the real group algebra .o/(%), then
expJ=7= Y #pD
. De¥%/%o
n A (9/9,).
Special case: ¥, = {¢, R}
ﬁ'go = 7'[4, + TR

ﬁsgo = ns + nRS .
J ferromagnetic, ie., (YA#+¢) J,=0:=:J ferromagnetic. J ferro-
magnetic =, + g = g + Tgy, SiNCE Ty = gy,
d{a®

dJg

Proof. From my+ g 2 g + ngs it follows n, — ngs = ng — ng. From
Ty + Mg = Mg + Mgy it follows my — g = g — mg. Thus

Theorem 1. %(1 +{oR6®)? — (®D? - (%)) =

2 2 2 2 2 2
(my—mgs)* 2 (ng—mg)* and 7wy + Ags— Mg — M5 2 2MyMps — 2MR Mg -

§ 3. Monotonicity of Correlation

For n=expJ,
dn
L% =D
i, "
and
dn
2, =T
Let 6(%;R,S) =y ), (TpTigr — MpsTprs)-
Be%
Theorem 2. J ferromagnetic = a) 6 =0, and b) N =0.
D

Proof. Fix N and let P = 4{D : J,, > 0}. Proceed by induction on # P.
If +#P =0, then
B+ ¢p=n3=0
and
B=¢=n;>0.

Since ¥, is a group, p € %,. For R = ¢.

2
Y, mpmpr=m}
Be%o
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and
0 ) mnpshprs=<73,
Be%p
80 6(%,; R, S)=0. For R=* ¢, §(%,; R, S)=0. Thus (a) holds if # P=0.
Suppose (a) holds (V¥%,< %) (YR,Se %) if # P<k. Consider # P=k+1.
Note that

dé(%,; R, S)
_—;.J_..__ = Z TCBDTCBR+anBRD—nBSDnBRS_nBSTcBRSD
D Be%o
25(%,; RD, 5), De%,

where [2] is group generated by the elements of &. Suppose D e P.
First consider D € %,, the possible behavior of J, where the last
argument is Jp, is given by the following table:
Table
3(%; R, S;0) 0(%; RD, S; 0)

)]
@
3
4

+ o+ 0
++ o0

In case (1), VJp=0)6(%,; R, S;Jp)=6(%,; RD,S; Jp)=0. In cases
(2-4), VJp>0)6(%; R, S;Jp) >0 and 6(%,; RD, S; Jp) > 0.

Next consider D ¢ 4,. From D € [%9,U{D}] and the inductive hypo-
thesis, (VJp=0)6(%; w,S;Jp)=0. Thus (a) holds (VP) and from the
expression for the derivative of 6 with respect to Jp, (b) holds (Y P).
The proof is complete.

Corollary. J ferromagnetic,
Go<F= Y. (Ka®) <a®*)> =) (")) 20.

Be%g
Special case: 9, = {¢}. Here the inequality becomes
(a®>—<(a%) (a*%) 20
which implies that the correlations are monotone functions of inter-

actions in a generalized ferromagnetic Ising model.

Added in proof. Professor J. Ginibre has an elegant proof of Griffith’s second theorem
as well as an elegant generalization of Theorem 2 of this paper. These will appear in the
lecture notes of the 1969 Cargese NATO Summer School in Theoretical Physics.
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