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Abstract. We prove rigorous critical temperature upper bounds of quantum
lattices in the infinite volume limit and with many-body potentials which conserve
the number of particles. The results are obtained from the analyticity properties
of the reduced correlation functional. As an example the isotropic Heisenberg
model is considered. The method also extends previous results on the analyticity
and the critical temperature of a classical lattice.

I. Introduction

In recent papers [1, 3], it has been proved that the reduced correla-
tion functionals of a quantum lattice gas in the infinite volume limit
are analytic in fugacity z in a region of the β — z plane corresponding
to high temperatures. The method depends upon estimates on the
kernels of a set of integral equations for the finite volume correlation
functionals. Here we consider potentials which conserve particle number,
and we extend the region of analyticity sufficiently to obtain an upper
bound on the critical temperature of the lattice. In addition, for partic-
ular potentials we provide a means of selecting contributions to the
kernels which are significant, and of estimating the remainder. In the
last sections, the results are applied to the isotropic Heisenberg model
and to classical lattices. Enlarged regions of analyticity and improved
critical temperature bounds are obtained for both the classical [2, 4] and
the quantum [1, 5] potentials.

II. Notation

The states of a r-dimensional lattice Z" are given by subsets X C Zv.
If we associate with each lattice point x a two-dimensional vector
space 3?x generated by the creation and annihilation operators a£, axί

and with each finite subset the tensor product ^=0^^,, then the
ίcζA

vector \Xy = α+(J£)|0) in ̂ , XζΛ, corresponds to a state of the lattice
with sites y ζX occupied and y ζΛ — X unoccupied. Let 21 (Λ) denote
the bounded operators on 2%'Λ.
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Interactions of the lattice are given by a sequence {99^} of potentials,
where φn(x1). . ., xn) is an w-body potential which is aHermitian, trans-
lation-covariant, bounded operator on ^Xl\j ...\j Xn- We shall assume
that {φn} commutes with the number of particles operator:

[ψn (xι 9 - > xn)> N] = 0 for all n, where N = Σ aχ aχ In addition, we
xζZ*

00

impose the norm requirement : \\φ\\ =Σ II φ\\k<°° Here || φ\\k=Σ II ψk

and 1 99 fc ( F)|| is the operator norm of φk ( Y). With this norm the potentials
form a Banach space B. Translation covariance and commutation with N
implies βφl(x) = — lnza£ ax (plus a multiple of the identity, which
corresponds to an irrelevant rescaling of the energy), and this serves to
define the fugacity z. The energy operator is ϋφ(Λ) = Σ

The correlation functional for a lattice of finite volume Λ is defined
byρJ(Z, Y) = ZΛlTr{e-Pu*Wa+(X)a(Y)}. Then ρΛ ζ Jδf00, the Banach
space of bounded sequences, and satisfies a generalized Kirkwood-Salz-
burg integral equation [3] :

Theorem 2.1. ρ^ = (/ - KΛ)-lκ, where ocζg>°° and KΛ ζ Hom(J^°°),
the algebra of bounded operators on j£?°°. The matrix elements of KΛ are
given by

l)NW(P - V\

|*u(JR

if Γ Φ f t t Z

- X' - V\.
|Λ-7>

and zero otherwise, for y^ ζ 7, Y' = 7 — ̂ , a^ ξ JΓ, Z' = Z

|θ otherwiese .

III. General Quantum Potentials

A subset Bc, c ζ R, of the Banach space B is given by those potentials
oo oo oo Q(n)

in B which satisfy: 7» = (2/π)V« £ _ JΓ; ^ Id*, - - - IMk Σ

~ J7β(«)<β
., + _«

for β(«) = Σ .
otherwise .
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Theorem 3.1. // βφ ξ Bc, c < z-1, then in the limit A -> oo, KΛ -> K
in the sense that the adjoints converge weakly in Jδf1. Thus

ρ/1(JΓ, Y)-+ρ(X, Y) pointwise, and the functions ρ(X, F), the infinite
volume correlation functionals, are analytic in fugacity z.

The proof of 3.1, as well as much of what is to follow, depends upon
an estimate of the kernels K which is proved in [3]. Expand KΛ in

00 1
mulbicommutators to obtain Kn

Λ , KA = Σ — %Λ •
n = 0 n'

Theorem 3.2.

Σ ||*»(:x:,r;p, r 'wE) | |^ Σ ••• Σ Σ ••• Σ
P,RCΛ yz£Sι ynζSn-ι YiCA YncΛ

P>RCSn VCRΓ\P

• |(7 n 8n) v(R - F)>| where S9 = Tf u 73)_1 w - - w 7X w y.

Proo/ o/ 5.7. In [3], the Schwarz inequality is employed to sum over P.
However, as φ conserves particle number, (P — F| [φ, av]W\(X r\ Sn)

w (R - F)> - 0 unless tf(P - F) = ̂ ((Z n Sn) \J (E - F)) - 1 , since
[99, α^] <w) ̂  j/ϊ annihilates one particle. Therefore, there are not 2N(S*> ~N(V)

terms in the sum over P, but at most sup I ' n' ~ I USΘ tne

0^7^^(^n)-^(F) \ 1 '

inequality sup (N^ 7 N(V)) ^ (2/π)V2 __ !̂̂ !L__ , where

' '!!

the δ indicates that the denominator is to be taken equal to

Σ \<T\H\(XrΛ>
Rcsn VCR τcsn-v

' 1/2

< Σ Σ \\H\\4-ι I I "II \\ „ I . o
» FCΛ ]r π ( N ( S n ) - N ( V ) + —

[ \ π

(̂ ») /JVίΛU f /r

^ Z1 Z1 C

From 3.2 and the inequalities \\[φ, ay]W\\ ^ 2n\\φ\\n, Nβy) ^ Q(p),
Q(n) r /O(v)\\

obtain ||ie»| < (2/π)V«2«/S» ̂  . . . Σ Ivl*. iMk Γ Γ Γ
Λ1 = 2 A?H = 2 r = 0 ? = 0 v 7

/ r \

\j)

To prove sup ( ) ^ J/2/π 2^ (jV + — δ } , assume N odd and

use the Stirling expansion: nl ==y2πjnnne~ner(n\ where τ (w) is an
23 Commun. math. Phys. , Vol . 13
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error term which satisfies 1/12 n - 1/360 n* < r(n) < l/l2n [6]. Then

sup P\ = Nll

N + !)-!-*/* exp(I/I2N - lβ(N + 1) + 1/46 (tf + I)3

+ 1/45 (ΛΓ - I)3. However, - +
1)3

< 0 for N > 2, and N*+*(N - 1)"** (N +

« 1 \ / 1 \ 2 / J V Λ — 1
I -¥l)( I + y) ) < l « ° r Λ Γ > 2 , ώ ι c e :

>ίι -LWι+1-— * M_._L+11.J_ + 1L._L , ...\\
- \ N*) \L + "N* N \2l N2 ^4! N* ^ 6! ^Vβ + //

_
6

___ ^A> i
- A "•" N2 N* N* = A '

If #(Z, 7; P, B) is chosen to be the limit lim KA(Σ9 7; P, J?), then

lim 27 \KA(*> Y\P,Rv Ύ') - K(%, 7 1 P, R*\j7')\\ = 0 uniformly in
P,R

fugacity. From this and the bound \\KA\\ < constant < 1, it follows that
for any χζ& and ξ £<?<», χ(KΛξ)-+ χ(Kξ). Then, for χ(X, 7)

= δ(Xί 7) and ξ = α, the convergence of χ 1 , _ ~ ξ\ -> χ d __ g l)

uniformly in z completes the proof of the theorem.
It is possible to extend the region of analyticity in the β — z plane

by employing hole-particle symmetry. Toward this end, define the hole-
particle inversion 3? : (&-lBc) -» Bc by

(X) = (

which may be interpreted as giving physical significance to unoccupied
lattice sites (holes) rather than particles, and define the symmetry
operator s : 31 (A) -> 31 (A) by

TCΛ
Note j£?2 = /, s2 = I. These generalize to quantum lattices the hole-
particle symmetry of a classical lattice dissussed in [2].

Lemma 3.3. A ζ<Ά(Λ) =Φ Tr^.4 = Tr^^θ^).
Proof. Ti8(A)= Σ Σ (-1)ΛΓ<F> Σ {(Tr\V)\jW\A\(Tr\VYuWy

TCΛVCΛ WCΛ-V
= Σ Σ Σ Σ Σ (- ιγ*™-*<™ <F2 w wl w τr
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where we have written F2 = F n T, V± = V - F2, W 2 = W n T, and
W1 = W - W2. But Σ (~ l)^(Fl) = 0 unless A - (T \j WJ = 0.

V.CΛ-T

Therefore T = Λ-W1)V1 = 0) and

Trs(A)

- Σ Σ Σ
W2CΛ V2CΛ

where D (R) is the number of ways of dis jointly choosing F2 , W1 , TΓ2 , so that

F2 w TΓi w Tf2 - R, weighted by (- l)^(^). Thus, D(E) =

H
- 1 and

• " •
Lemma 3.4. A,
Proof. The case N(Λ) = 1 is trivial. Assume A, B ζ$ί(A) and

observe s is linear on 21 (x). Then a (A B) = Σ (~I)N(T)^^A-T
TCΛ

= ® (27 (-
/ ̂

= 5

Lemma 3.5. s(Uφ(Λ)} = J7^(^l) +
~ Σ Tr^^ 9? ( JL )/JV ( JΓ ) αra£ ̂ 0) ̂  α boundary term with the property.

-Lim\\S(Λ)\\/N(Λ) = 0.
oo

Proof. From the definition of s and £? :

-Γc/i TCX X~T TCΛ\ XCΛ x τ ί

TCΛ

TCΛ XDT

is a boundary term. Then compute:

(&φ) (9) = Σ *&**?(?)= Σ Σ Σ Tr* φ(y
Y » v y

- Σ N (A)
n = l

23*
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Corollary 3. 6. The pressure PΛ(φ) = (l/N(A)) log Tr^e
satisfies PΛ(φ) = PΛ(&φ) - βE0 -f 80(A) with Lim S0(A) = 0.

Λ— >oo

Proof. Use the bounds due to van Kampen [7] :

PA(Ψ) - βolN(A) < (l/N(Λ) )logTIjeAe-WvW + s^PΛ(<p) - βτlN(Λ),

where σ and r are the maximum and minimum eigenvalues, respectively,
of 8.

Theorem 3.7. // β£?φ and βφ both satisfy the hypothesis of Theorem

3.1, then ρ*(X, Y) = (-

•(X-XnY+T, 7-XnY+T).

Proof. For a lattice of finite volume :

ρA(Σ, Y) = ZvA-iTT{s(a(Y)e-Pu<Pa+(X))} = Zyrl(

a(Y)}

<S-X\ e-

since all partial traces of a(X) on 3tf τ vanish for T C X except Tr^0 a (X)
= (__ i)JV(Z) a(X). Let X = X + X n Γ, T = Ϋ + X r\ Y, and com-
pute from Lemma 3.5 :

TCΛ

with Lim S(Λ) = 0. Then from the identity
A— >oo

{A\ e-W* \B) = Z% Σ
VCΛ

letting
T \j V - W , W - (X Λ 7) r\ W = V,

ρ%(X, Y) = (- l)N(X)+N(Y) Σ
WCΛ

• (- 1)^(Π Q**(& w W , Ϋ \J W) + 8 (A) .

However, the sum Σ (~ I)N(V'^ vanishes unless

W - (X r\ Y) r\ W = 0, thus We X r\ Γ, and the theorem follows
from the finiteness of the sum over T C -X" n 7 for finite X, Y as Λ -> oo.

Define the transformed fugacity £?z by (^φ)1(x) = μl — /3"1

CoroUary 3.8. // β&φ £BC)c< (J^z)"1, ^ βφ^BCί then 3.6
provides an analytic continuation of the components ρψ (X, Y) of ρ? .
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Theorem. 3.9. Suppose φ ζ Bc, c < oo, and define Γ(φ) as before
Theorem 3.1. Then the critical temperature TQ of an infinite volume lattice
with potential φ is bounded by T0 ^ (άft)"1 for β1 the solution of the
simultaneous equations: zΓ(βφ) = 1, <&zΓ(β £?φ) = 1.

Theorem 3.9 follows directly from the observation that Γ(βφ) is a
monotonically decreasing function of β.

A case of special interest is the general two-body potential, φί = 0,

Corollary 3.10. // φ ζ Bc, c < oo, and φi = 0, i > 2, then the critical
temperature TQ of the infinite volume lattice satisfies T0 ^ 31 ||$9||/&.

Proof. Compute &φ.(&φY = 0, ί > 2, and (£'φ)2 = φ2. (^φ)1 (0)

( 1
— β Σ 1X^99(0 \j x)\, and since Σ Tr^^O \j x) ^ %\\φ\\9

z-ιe-±β\\<p\\ ^ £>z ^ jg-ie^lbll. As ρ<^ is analytic for &z < l/Γ(βφ),

ρψ is analytic for z~le^\ψ\\ < IfΓ(βφ), and the critical temperature is
determined by the solution βloίz= l/Γ(βφ), z~l = e-*β^/Γ(βφ).

For a two-body potential, &?: = 2, Q($) = β + 1, and Γ(βφ) = (2/π)1/4

• Σ (2 j81 φ\\ )n Z ί (Λ t J) Q "Γ—^—T^ τhe critical tern-

7-0 ^ ^ π I ^
per ature bound is the solution of Σ cnx

n = exp(— xj2 ]/2) with x== 2|/2 ̂ H 991|

^-1/4
. Calculating

/ 4 \ l / 4 w ' "
the first several cn and estimating the remainder by cn ̂  I — 1 ^

? = 0.09.

IV. The Heisenberg Model

The estimates of ||̂ 5|| in Theorem 3.2, along with the proof of 3.1,
provide a method of obtaining an improved upper bound on the critical
temperature for some potentials. Namely, the multiple-commutators and
their matrix elements occurring in 3.2 can be explicitly evaluated for
the first few partial kernels K%, thereby obtaining better bounds on
II-^3II j n=I92, ,N, and then the remaining partial kernels can be
estimated as in 3.1.

As an example, consider the isotropic Heisenberg model: φ* (x, y]

= V(x, y) a+axa+ay - y V (x - y] (α+ - a+) (ax - ay). The first three

multicommutators have been calculated explicitly, and then from 3.2
the contributions to ||-SΓ3||, n=l,2, 3, counted, enumerating the non-
zero matrix elements and taking a supremum over Xc& The result is

7 1 9^ T
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CO j

The remainder Σ ~Ύ 11-^Sll can ̂ e estimated as in 3.10, using || [φ (xn) yn),

[. . .[<p(x1}y),ay] . . . ]]|| ^ 2»-* *3| φ(xn,yn) || - ||9Φι>2/)ll * or n ^ 3
Q

since |[0>(a?3,y8), [. . . . [y^, y)]]]|| ^ I^IM^ 2/a)ll W*ι>2/)l

soFinally, compute: (<&φ) (x) = I β~l log z + — 27 ^(2/ — x) } aχ aχ and
\ 2 yφ* /

Theorem 4.1. Zeί /(ί) = 4.95* + 17.7 ί2 + 165J3 + 1325^(1 -
The correlation functionals of the ieotropic Heίsenberg model are analytic

in the regions zf(β\\φ\\) < 1 and z-1e^βMlf(β\\φ\\) < 1. The critical
temperature T0 satisfies T0 ^ 10 \\φ\\lk.

V. The Classical Lattice

A similar calculation can be carried out for the classical lattice:
φ«(X) = V(X) a+(X) a(X). Here ρ(X, 7) - 0 unless X = 7, and the
commutators can all be explicitly evaluated. [φ(Xn), . . . , [φ(X-^, y\ . . .]
- a+(Xn w . . . w X1 - y) a(Xn w . . . w Xl - y) ayiί y ζXn n . . . n JΓ^
zero otherwise. There obviously is precisely one non-zero contribution to

n
\E%\ in the sum over P, R, and F (Theorem 3.2), and so \\K%\\ ^ fj

Σ \V(7i w ι/)|. Finally,

Theorem 5.1. The correlation functionals of the classical lattice are
analytic in fugacity z in the regions z (eβ\\φ\\ - 1) < 1 and z-*eβ\\φ\\ (eβ\\^\ - 1)
< 1. A bound on the critical temperature is given by T0^ 1.8 \\φ\\lk, or for
nearest neighbor interaction in v-dimensions, T0 ^ 3.6vE/k.

VI. Summary

The region of analyticity of the correlation functionals for a two-body
quantum potential is graphed in Fig. 1, along with the larger region of
analyticity for the isotropic Heisenberg model. By a different method [1],
Gallavotti, Miracle-Sole, and Robinson have predicted TQ < 10,000 \\φ\\ /k
for the Heisenberg model, while our result is T0 < 10||9?||/&. This com-
pares to the non-rigorous critical temperature estimate oϊ T0& Q.7\\φ\\lk
calculated by Dombs, see [8].

For the classical lattice, the region of analyticity is also an enlarge-
ment of the region found by the same authors [1,2] (Fig. 2). Their
result was 2zeβ\\φtt{exp(eβ\\φ\\ — 1} < 1 (plus the extended region hole-
particle symmetry), obtained in a manifestly classical manner by
estimating the kernels of the classical Kirwood-Salzburg equation.
Actually, the estimates in [1, 2] can be improved by noticing that (for,e.g.,
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2 Z

Fig. 1. The region of analyticity for the correlation f unctionals with: (a) a two-
body quantum potential; (b) the Heisenberg model

Fig. 2. The region of analyticity for the correlation f unctionals of a classical lattice:
(a) as obtained by GALLAVOTTI, MIRACLE-SOLE, and BOBINSOSΓ [3] (b) according

to Theorem 5.1
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a two body potential) the bound on the kernels is

Σ Σ (e-'f(r'y) - i) ̂  Σ Π Σ \φ(r, y)\nim = Σ Σ Σ

which is the sum of all monomials of all degrees in all φ (r, y) (weighted
by nr\). Summing up by order, this is just

\<P(r,y)\^...\ψ(rN,y}\n'ίln1\...ns\=Σ Π
N = 1 r '!,...,

(Σ \ψ(r,y)\\lN\
V φ y / /

Our method predicts a critical temperature bound for classical
lattices of T0 < 1.8 ||y>||/&. The critical temperature of the Ising lattice
(nearest neighbor interaction) has been calculated rigorously in two
dimensions: T0 = Q.14z\\φ\\/k. Mean field theory predicts for the Ising
lattice in arbitrary dimension [9]. T0 < 0.25 |
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