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Abstract. We prove rigorous critical temperature upper bounds of quantum
lattices in the infinite volume limit and with many-body potentials which conserve
the number of particles. The results are obtained from the analyticity properties
of the reduced correlation functionals. As an example the isotropic Heisenberg
model is considered. The method also extends previous results on the analyticity
and the critical temperature of a classical lattice.

I. Introduction

In recent papers [1, 3], it has been proved that the reduced correla-
tion functionals of a quantum lattice gas in the infinite volume limit
are analytic in fugacity z in a region of the § — z plane corresponding
to high temperatures. The method depends upon estimates on the
kernels of a set of integral equations for the finite volume correlation
functionals. Here we consider potentials which conserve particle number,
and we extend the region of analyticity sufficiently to obtain an upper
bound on the critical temperature of the lattice. In addition, for partic-
ular potentials we provide a means of selecting contributions to the
kernels which are significant, and of estimating the remainder. In the
last sections, the results are applied to the isotropic Heisenberg model
and to classical lattices. Enlarged regions of analyticity and improved
critical temperature bounds are obtained for both the classical [2, 4] and
the quantum [1, 5] potentials.

IIL. Notation

The states of a »-dimensional lattice Z* are given by subsets X C Z*.
If we associate with each lattice point = a two-dimensional vector
space ¥, generated by the creation and annihilation operators a;, a,,

and with each finite subset the tensor product # =), then the
z€d

vector |X) = at(X)|@) in 5, X C A, corresponds to a state of the lattice
with sites y € X occupied and y ¢ 4 — X unoccupied. Let 2(A) denote
the bounded operators on 5.



336 W. GREENBERG:

Interactions of the lattice are given by a sequence {¢"} of potentials,
where @"(xy,. . ., 2,) is an n-body potential which is a Hermitian, trans-
lation-covariant, bounded operator on #, \, ..\ 4. We shall assume
that {@"} commutes with the number of particles operator:
[¢™(2y, . .., %), N]= 0 for all n, where N = }' aj a,.In addition, we

ez

impose the norm requirement: @[ =3 | | , <oc. Here| ¢| =23 | ¢* (0L X)|
k=1 N(() § ;Y=C Z_"

and | @*(Y)] is the operator norm of ¢*(Y). With this norm the potentials

form a Banach space B. Translation covariance and commutation with NV

implies B¢*(x) = — Inza;) a, (plus a multiple of the identity, which

corresponds to an irrelevant rescaling of the energy), and this serves to
define the fugacity z. The energy operator is U, (A1) = Z (p(X ).

The correlation functional for a lattice of finite volume A is defined
by 0% (X, Y)=Z; 1 Tr{e—#V¢WDqa+(X) a(Y)}. Then g, ¢ £*, the Banach
space of bounded sequences, and satisfies a generalized Kirkwood-Salz-
burg integral equation [3]:

Theorem 2.1. g4 = (I — K )~ a, where a € £ and K, €¢ Hom (£*),
the algebra of bounded operators on F°. The matrixz elements of K, are
given by

Z’ (—-— l)N(V)<P— V[ eﬂU(A)ay‘g‘“ﬂU(A)
rAwIHcr X VE=T)
if Y+0,Xuy)nRCP
(=DYDP — X' — V] ePUMqgt
VCRr\(P—X) . eBU ) lR _ V)

s N\PCV
if Y=0,2,nPCR,X'CP

K X,Y;P, Y UR)=

and zero otherwise, for y, €Y, Y' =Y —y,, 2, € X, X' = X — x;, and

2(X, ¥) = 1if XuY=9
’ " 10 otherwiese .

III. General Quantum Potentials
A subset B, ¢ ¢ R, of the Banach space Bis gwen by those potentials

Q(n)
in B which satisfy: I'(¢) = (2/z)V/* - 2 2 Zlhpllkl Nl Z;

n=1k=2 r=
r 7+ 3 (Q(n) —7) n—1
Ly (@) (T 2 _1_
E ) ()Tt T <
i+ 0@ =7)

1, A=1B
0, otherwise .

forQ(s) = gz (; — 1)+ 1land (4 = B) = {
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Theorem 3.1. If S € B,, ¢ <z, then in the limit A — oo, Ky — K
¢ Hom () in the sense that the adjoints converge weakly in FL*. Thus
04(X, Y) > (X, Y) pointwise, and the functions o(X, Y), the infinite
volume correlation functionals, are analytic in fugacity z.

The proof of 3.1, as well as much of what is to follow, depends upon
an estimate of the kernels K which is proved in [3]. Expand K, in

oo

multicommutators to obtain K%, K, = Z,; —1%? K.
o n!

Theorem 3.2.
2 KX, Y;P,YUR)|= Y - Y ...y

P,RC4 Y2€8; Yn€8n-1 Y, C4 Ya.C4
RNY'=0 YiNny=90 YaN\¥=9

S X PKP-TV oW Y,), ..., (Y1 Uy)al...]
P,RCS, VCRNP

WY NSp) (R — V)| where Sy =Y, U Y, u---U Y Uy.
Proof of 3.1. In [3], the Schwarz inequality is employed to sum over P.
However, as ¢ conserves particle number, (P — V| [¢, a,]®|(X N §,)
U(R—V))y=0unless N(P—V)=N{(X NS, v (R—TV))—1,since
[, @,]™= H annihilates one particle. Therefore, there are not 2% (S =¥ (¥)
terms in the sum over P, but at most sup (N(S") N N ) ) . Use the
0=FSN(S)—NT) & N7V
(N(Sn) ;‘N(V)) < @/n)!/2 2V (Su)—N( )2 . , where

() = 3y +2o)

the 4 indicates that the denominator is to be taken equal to
V2/mif N (S,)— N(V)=0.Then 3’ 3 X KT|H|(XNS,)U(B-TV))|

RCSp, VCR TCSp—V

= ¥ 3| [V ( e

inequality sup
i

Rcsn VCR N(S,) — N(V) +£6)
N (Sn) N Sn r 2’2‘(N(Sn)_7)
=27 (") 2 () @ 15|,
=0 i=o (s —7‘+;6)
From 3.2 and the inequalities |[¢, a,]®™| < 2"”(])“" 8,) = Q(p),
n r
obtain [5] < @pi2epr 5 S lol ol 5 2 ()
kn=2 r=0 j=0
r 2’2‘ Qm)—17) n—1
) () 7 Q(s).

(e —j+24)" o=

To prove sup ( ) V2/7z 2y (N —1-—6) 1/2, assume N odd and

use the Stu'hng expansion: 7! —Vzn/n nre~mer®™, where r(n) is an
23 Commun,math, Phys.,Vol.13
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error term which satisfies 1/12n — 1/360n2 < r(n) < 1/12n [6]. Then
snflp (va) =NI(N+D2)!I((N-1)2)! = l/% 2N N-12 NN+1(N — 1)-N/2

(N + 1)~1-¥2 exp(1/I2N — 1/6(N + 1) + 1/45(N + 1)3 — 1/6(NV — 1)
1 1 1
+ 1/45(N — 1)3. However, BN TS ED) + BEFI)F =D

BaE—tF <0 for N >2 and NYIL(N — RN A N
N\ —
=((1—-1_) (1-{-%)2/ ) 1<1f0rN>2, since:

(1) (" =) (o e () ()
+3!le %)‘(7\72‘*1)(%—2)%— )
(1) (1 o e B e o)
“tege e e () e )

1 1 2 1.

If K(X,Y; P, R)is chosen to be the limit Alim K4(X,Y; P, R), then
lim Z[]KA (X,Y;P,RUY)-K(X,Y; P,RvyU Y')| = 0 uniformly in

fugacﬂ:y From this and the bound | K 4| < constant < 1, it follows that
for any y €' and &€Z%, y(K, 8) > x(K&). Then, for y(X,7Y)
1 1

= §(X, Y) and & = «, the convergence of y (I—Z—K—A— §) - (1—_1? 5)
uniformly in 2z completes the proof of the theorem.

It is possible to extend the region of analyticity in the g — z plane
by employing hole-particle symmetry. Toward this end, define the hole-
particle inversion #: (¥-1B,) - B, by

(Z9) (X)= (- N‘x’ZTrx’yﬂP(Y)

which may be interpreted as giving physmal significance to unoccupied
lattice sites (holes) rather than particles, and define the symmetry
operator s: A(A) ->A(A) b

‘ s(d)= 2 (-1 Try, 4.

TCA

Note #2=1,s*=I. These generalize to quantum lattices the hole-
particle symmetry of a classical lattice dissussed in [2].

Lemma 3.3. 4 cA(A) = Tryp 4 = Tryp,s(4).

Proof. Trs(d)= 23 J (—1)¥" Z ((Tr\ VYUW|A[(TNV)UW)

TcAVCA

=2 ) X X X (- 1)N<"=>'N<V'> (Vou Wi Wyl A1V,
TCA W,CA WyCT VoCT V,iCA-T
WiNnNT=90 VN\We=08 V.N\W,=9

W, v Wy,



Critical Temperature Bounds 339

where we have written Vo=V N\T, V=V — Vy,, Wo=W N T, and
Wy=W-—W,.But 2} (—1)¥")=0 unless A — (Tu W,)=0.

ViCA—T
ViNWy=90
Therefore T =4 - W,,V,=9¢, and
Trs(A)
= 2 2 ( DY¥TIVyu WU WA [V, oW U W)

w,ca  W,c4
WiN\W, =0 Vz/'\(WIU W) =

= 2 (R| A|R) D(R),
RC4
where D (R) is the number of ways of disjointly choosing V,,W;,W,, so that

N(R)

Vou Wy U Wy=R, weighted by (- 1)¥¥a. Thus, D(R)= }/
n=20

N(R)\ YEB=" /N(R) —n n B N(R) n n
( L ) 20 ( # )(_1) =n§0 ( . )(—1) 1+ V@

—(1+41-1)® =1 and Trs(4) = Y (R|A|R) = TrA.
RCA4

c
Lemma 3.4. 4, B ¢ A(A) = s(4A B) = s(B) s(4) .
Proof. The case N(A)=1 is trivial. Assume 4, B¢A(4) and

observe sislinear on 2 (x). Thens(4 B) = 3 (= 1) Y@ Tr,p, (® A, Bx)
z€A

= % ( —1)¥w Tr” A B) %As(AmBac) = ® s (By) s(4y)
x yCa zxeA z€A
=s(x§13) (@A)—SB)S(A)

Lemma 3.5. s(U,(A)) = Ug,(A) + N(A) By + 8(A), where
= 2 Try, @ (X)/N(X)and S(A) is a boundary term with the property:
0cx

Lim | S(A)]/¥ (4) = 0.
Proof. From the definition of s and Z:

s(Uy(4))
=Y Y1) OTr, ¢X)=Y {(— 1@ 3 Trxx_Tqa(X)}
XcAaA Tcx TCA :XY'DCTA
= 3 (Z9) (D) + (L) 0+ 8,(4)
Tc4a
T+0
where S = T (DO 3 Tee p(X)

TCA
XnA4=X

is a boundary term. Then compute:

oo

(Zo) @ ZTrx»,w(Y) 2 Y X T,V Y)n

n=1yezZv y¢YC2Z¥
N(¥)=n—1

= .331\’(/1) Y Try @0 U Y)in+ S8y(A).

n=1 Y50
23* N¥)=n—1
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Corollary 3.6. The pressure P,(p)= (1/N(A))log Try,e=FUr)
satisfies Py(@) = Py(L @) — BEy+ Sy(A) with kglo So(A) = 0.

Proof. Use the bounds due to van Kampen [7]:
P4(¢) — BoIN (A) < (N (A))log Tryp e~ PTr D+ 9 < P (¢) — BN (A),
where ¢ and 7 are the maximum and minimum eigenvalues, respectively,

of S.
Theorem 3.7. If . ¢ and B¢ both satisfy the hypothesis of Theorem

3.1, then o?(X, Y) = (— V@O +N@) 37 (— 1N @) g%
TCXNY

X -XNY+T,Y-XNnY+T).
Proof. For a lattice of finite volume:
04(X, Y) =291 Tr{s(a(Y) e FUr a+ (X))} = 241 (— 1)V D) +N (@)
« Tr{a*(X) e P5U9 q(Y)}
= (= )Y@ +¥D) Zg—1 37 (S — X| e—ﬁS(Uqa)IS -Y)
SOXUY

since all partial traces of @ (X) on 5# vanish for 7' C X except Tr 4 a(X)
=(-1PF®DqgX). Let X=X+XNnY,Y=Y+XNnY, and com-
pute from Lemma 3.5:

0%(X,Y)= (- 1Y@ +N® zLe=1 31 (T UY|e L7 |TUX)+8(A)
Tn(§6§)=0
with }im 8(A) = 0. Then from the identity

(Aje=PU2|By =25 Y (-1)Dgg(BUV,4U7T),
148} (56%) =9
letting
TUV=W,W-XnY)nW=7V,
(X, ¥) = (- DY@ +¥m X (= pFanyam
v'c w_fgz%fym w
TAEUP) =0
(=¥ Lo XU W, T U W)+ 8(A4).
However, the sum ) (— 1)¥()  vanishes unless
V'CW—(@ENY)YN\W
W—-XnY)nW=90, thus WCX N Y, and the theorem follows
from the finiteness of the sum over 7C X N Y for finite X, Y as /1 — co.
Define the transformed fugacity £z by (Le)l(z)=pul — !
-log(&2) af ay, p, L2 € R
Corollary 3.8. If BL @€ B, c< (L2, but Lo ¢ B, then3.6
provides an analytic continuation of the components o?(X, Y) of o%.
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Theorem. 3.9. Suppose ¢ € B,,c < oo, and define I'(¢) as before
Theorem 3.1. Then the critical temperature T, of an infinite volume lattice
with potential ¢ is bounded by Ty < (kpy)~* for B, the solution of the
stmultaneous equations: zI'(f @) =1, L2 (f L ¢) = 1.

Theorem 3.9 follows directly from the observation that I'(f¢) is a
monotonically decreasing function of f.

A case of special interest is the general two-body potential, ¢?= 0
> 2.

Corollary 3.10. If ¢ € B,, ¢ < oo, and ¢*= 0,1 > 2, then the critical
temperature T of the infinite volume lattice satisfies Ty < 31 ||| /k.

Proof. Compute £ . (£ ¢)t=0,t> 2, and (L ¢)? = ¢*. (L) (0)

2 Tre,p wuxW<%ﬂ

2l 4Pl < Qz < z1etllvll Ag @3"7’ is analytic for £z <1/I'(B¢),
o? is analytic for z—1e*fllell < 1/I"(B¢), and the critical temperature is
determined by the solution B, of z = 1/I"(B¢), 21 = e~*fllell| (B ¢).
For a two-body potential, k; =2, @(s) =s + 1, and I'(f @) = (2/m)Y/*
o ntbl v, 1 2%(n+1-j)
. n iti
§ @ Blel 2 —Z'( ) () (n Tl g+t —6)1/4 . The critical tem-

perature bound isthe solution of Z c @ =exp(—z/2)2) witha=2)2 8, | ¢
n=1

=z"lexp —/3 ZTr# (0 v ), andsince}

and ¢, —4l/—8— 72'1 27’ n+1)()2 2](n+1—y+—6) .Calculating

r=0 7 = . 4 1 /4 n+1 r
the first several ¢, and estimating the remainder by ¢, < —7;) b

) e -

IV. The Heisenberg Model

The estimates of | K7%| in Theorem 3.2, along with the proof of 3.1,
provide a method of obtaining an improved upper bound on the critical
temperature for some potentials. Namely, the multiple-commutators and
their matrix elements cceurring in 3.2 can be explicitly evaluated for
the first few partial kernels K%, thereby obtaining better bounds on
| K%, n=1,2,...., N, and then the remaining partial kernels can be
estimated as in 3.1.

As an example, consider the isotropic Heisenberg model: ¢?(z, y)

= V(x, y) ay aza;) a, — % V(z - y) (@ — a,) (@, — a,). The first three

multicommutators have been calculated explicitly, and then from 3.2
the contributions to |K%||, » =1, 2, 3, counted, enumerating the non-
zero matrix elements and takmg a supremum over X C 8. The result is

H| = 3 Blols g K3 = 5 Ploles g 1KY = 5 5 Ploles

r=0 j=0

2 y
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The remainder Z o []K | can be estimated as in 3.10, using || [¢ (%, ¥y),
n=4
[ lo@,y)sa]. .. 0] = 2745 3] g (z, ?/n ) I I, )| for n =3

since | [g (23, Ys)s [ - - - [, )| = o= 2V‘ lo @ yal- - [ @ (20, 9)-
Finally, compute: (£ ¢) ( (,6"1 log z +5 Z V(y— x)) aF a, and so

z_le_ 2ﬂ”¢“ < zz < e§ﬁ|[¢|‘ .
Theorem 4.1. Let f(t) = 4.95¢ + 17.7¢2 + 165¢% + 1325¢4(1 — 7.66¢)~ 2.
The correlation funciionals of the isotropic Heisenberg model are analytic

in the regions zf(B|el) <1 and z—le%ﬁ”q’”f(ﬁH(p][) < 1. The critical
temperature T, satisfies Ty < 10 | @] /.

V. The Classical Lattice

A similar calculation can be carried out for the classical lattice:
" (X) = V(X) at(X) a(X). Here o(X, Y) =0 unless X = Y, and the
commutators can all be explicitly evaluated. [¢(X,), ..., [¢(Xy), ¥]. . .]
=atX,v...vXj—yaeX,v... VX, —ya,ifycX,n...nX,,

zero otherwise. There obviously is precisely one non-zero contribution to
n

|K%| in the sum over P, R, and V (Theorem 3.2), and so |K%| < JT
i=1
Y |V(Y; U y)|. Finally, £z < z-1efllell,

Theorem 5.1. The correlation functionals of the classical lattice are
analytic in fugacity z in the regions z (ePl1?ll — 1) < 1 and z—1ePll?ll (¢Plivll — 1)
< 1. 4 bound on the critical temperature is given by Ty < 1.8 ||| /k, or for
nearest neighbor interaction in y-dimensions, Ty < 3.6vE/k.

VI. Summary

The region of analyticity of the correlation functionals for a two-body
quantum potential is graphed in Fig. 1, along with the larger region of
analyticity for the isotropic Heisenberg model. By a different method [1],
Gallavotti, Miracle-Sole, and Robinson have predicted 7'y < 10,000] ¢||/k
for the Heisenberg model, while our result is 7'y < 10|/¢|/k. This com-
pares to the non-rigorous critical temperature estimate of Ty ~ 0.7| ¢| [k
calculated by Dombs, see [8].

For the classical lattice, the region of analyticity is also an enlarge-
ment of the region found by the same authors [1, 2] (Fig. 2). Their
result was 2z¢fll?ll{exp (e?ll?ll — 1} < 1 (plus the extended region hole-
particle symmetry), obtained in a manifestly classical manner by
estimating the kernels of the classical Kirwood-Salzburg equation.
Actually, the estimates in [1, 2] can be improved by noticing that (for,e.g.,



Critical Temperature Bounds 343
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0.05

Fig. 1. The region of analyticity for the correlation functionals with: (a) a two-
body quantum potential; (b) the Heisenberg model

15
3
_
.
(b)
05 S
/// \\\//
~
/s (a) T~
7/ T~
//// - I
///
0 | 2 Z

Fig. 2. The region of analyticity for the correlation functionals of a classical lattice:
(@) as obtained by GALLAVOTTI, MIRACLE-SOLE, and RoBINsON [3]; (b) according
to Theorem 5.1
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a two body potential) the bound on the kernels is

Y Y (e -)= Y T b lp(r, y)|"n! = Z y X

R+0 reR R+0 rER n=1 N =1 1., 7¥ELY 1y, 0y =1
7 <io<7TN

letn g™ lery, 9! . ny!
which is the sum of all monomials of all degrees in all ¢(r, y) (weighted
by n,!). Summing up by order, this is just

oo <) N
2 X Y ety ety )" ngl .. ny! =N4=Y1 i)

N=11..,"/N<=2v ny,...,ny =0
P <o <N Nyt..+ny=N

. (2 lo(r, y)])/N! — el _ 1.

r+y

=y

Our method predicts a critical temperature bound for classical
lattices of Ty < 1.8 ¢|/k. The critical temperature of the Ising lattice
(nearest neighbor interaction) has been calculated rigorously in two
dimensions: T = 0.14 | ¢||/k. Mean field theory predicts for the Ising
lattice in arbitrary dimension [9]. T, < 0.25 | ¢|/k
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