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Abstract. The limits of a one-parameter family of spacetimes are defined, and
the properties of such limits discussed. The definition is applied to an investigation
of the Schwarzschild solution as a limit of the Reissner-Nordstrόm solution as the
charge parameter goes to zero. Two new techniques — rigidity of a geometrical
structure and Killing transport — are introduced. Several applications of these two
subjects, both to limits and to certain other questions in differential geometry, are
discussed.

1. Introduction

One frequently hears statements concerning the limit of a family of
solutions of EINSTEIN'S equations as some free parameter approaches a
certain value. There is, however, a serious ambiguity in such statements,
for they normally refer to a particular system of coordinates: by changing
coordinates, one can usually obtain some quite different spacetime in the
limit. The concept of a limit applied to spacetimes is, nontheless, a
useful one, and so we are led to formulate some unambiguous definition
of this notion. In this paper we shall define the limits of a family of
spacetimes and display a simple characterization of these limits.

In Section 2 we give the definition of a limit. The main theorem of
that section asserts that a knowledge of the limit c locally" determines,
completely and uniquely, a corresponding global limit. As an example,
our definition is applied to clarify the way in which the Reissner-Nord-
strom solution reduces to the Schwarzschild solution as the charge para-
meter approaches zero.

In Section 3 we discuss those properties of spacetimes which are
heriditary, i.e., which pass from a given family of spacetimes to their
limits,

The two topics treated in the appendices are useful in many contexts
in differential geometry other than merely questions involving limits.
The appendices can be read independently of the rest of the paper. In
Appendix A we define rigidity of a geometrical structure and prove that
nonsingular metrics are rigid. That metrics are rigid while, for example,
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symplectic structures are not is reflected in the fact that groups of iso-
metries are "small" (i.e., Lie groups) while groups of canonical trans-
formations are "large". The notion of a limit, as defined here, is applicable
quite generally to any rigid geometrical structure. Closely related to
rigidity is Balling transport, which is discussed in Appendix B. Killing
transport is used in Section 3 to establish the heriditary properties of
isometry groups. A number of further applications of this type of trans-
port are given in the appendix.

2. Limits

By a spacetίme we understand a (connected, Hausdorff) 4-dimensional
manifold with a (C°°) metric gab of signature (-J-, — , — , -)1. Consider
a one-parameter family of such spacetimes. (Our results are easily genera-
lized to many parameter families of spacetimes and, possibly, to families
which depend on arbitrary functions.) That is to say, for each value of
a parameter λ(> 0) we have a 4-manif old M \ and a metric gab(λ) on Mλ.
We are interested in finding the limits of this family as λ -> 0. It might
be asked at this point why we do not simply take the gab(λ) as a 1-
parameter family of metrics on a given fixed manifold M. Such a formu-
lation would certainly simplify the problem : it amounts to a specification
of when two points pλ ζ Mλ> and pλ, ζ Mλ (λ φ λ') are to be considered
as representing "the same point" of M. It is not appropriate, however,
to provide this additional information, for it always involves singling
out a particular limit, while we are interested in the general problem of
finding all limits and studying their properties.

We illustrate this point with the example of the Schwarzschild solu-
tion. Consider the family of metrics

l - - r dt*- l - r dr* - r*(dθ* + sίtfθdφ*) (I)

which depend on the single parameter λ(= m"1/3). In the form (1) the
metric clearly does not approach a limit as λ -> 0. Suppose, however,
we apply the coordinate transformation

r = λr, ϊ=λ-lt, Q = λ-*θ.
Then (1) becomes

= (A2- y) dt* - (λ*- 4 dr* - r

1 It will be more convenient in the present discussion to introduce the contra-
variant rather than the covariant metric as the basic object. All our considerations
are easily generalized to include any further tensor fields on the mainfold, e.g.,
an electromagnetic field, the velocity, pressure, and density fields of a perfect
fluid, etc. However, it is essential that among the basic fields on the manifold there
is at least one — such as a metric — which is rigid in the sense of Appendix A.
13*
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The limit as λ -» 0 now exists and gives the metric

ds* = - y dt* + ̂ dr2- r2(dρ2

This is a nonflat solution of EINSTEIN'S equations discovered originally
by KASNEB [1] and obtained by ROBINSON as a limit of the Schwarz-
schild solution. On the other hand, the coordinate transformation
x = r + A~4, ρ = λ~*θ applied to (1) yields flat space in the limit λ -> 0.
Thus, one cannot speak simply of "the limit of the Schwarzschild solution
as λ -> 0", for the spacetime one obtains in the limit depends on the
choice of coordinates. The essential difference between the various limits
above consists in different identifications of the Mλ.

How then can we express the idea that the (Mλ, gab(λ)) depend
smoothly on λ (which we shall certainly need in order to define limits)
without at the same time prejudicing the particular limit we are to ob-
tain ? Let us assume that the manifolds M\ may be put together to make
a smooth (Hausdorff) 5-dimensional manifold *Jέ. Each Mλ is to be a
4-dimensional submanifold of <Jί. The parameter λ now represents a
scalar field on Jί, while the metric tensors gab(λ) on the Mλ define a
single tensor field g*P on ̂ , which we assume to be smooth2. The signa-
ture of gκβ is (0, +, —, —, —): in fact, the singular direction is precisely
the gradient of λ, i.e., we have gκ^Vβλ = 0. (Consequently, the tensor
field g"P on already completely defines the surfaces Mλ.) The 5-manifold
*J( contains all the information of our original collection (~ ,̂ gab(λ)),
but does not define a preferred correspondence between different Mλ*.

The problem of finding limits of the family (Mλ, gab(λ)) amounts to
that of placing a suitable boundary on Jί. We define a limit space of Jt
as a 5-manifold Λί' with boundary 9 '̂, equipped with a tensor field
g'"P, a scalar field λ', and a smooth, one-to-one mapping Ψ of ̂  onto
the interior of Jί' such that the following three conditions are satisfied :

1. Ψ is an isometry, i.e., Ψ takes g*$ into g' *& and λ into λ'.

2. d*J(' is the region given by λ' = 0. We require, furthermore, that
d^f be connected, Hausdorff, and nonempty.

3. gtΰίβ has signature (0, +, -, —, —) on dJZ'.

The first condition ensures that *Jt' really represents ̂  with a
boundary attached; the second condition ensures that the boundary
represents a limit as λ -+ 0 and the third condition ensures that the

2 Latin and Greek indices represent tensor fields on 4-dimensional and 5-dimen-
sional manifolds, respectively.

* Such a correspondence could be defined by giving a vector field on ,̂
nowhere vanishing and nowhere tangent to the Mχ pχ 6 M% and^?λ/ £ Mλ, are in
correspondence if a trajectory of this vector field joins pχ and pjt. However, no such
vector field is in the structure of Jίί.
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metric on the boundary is nonsingular3. We shall often simply iden-
tify Jt with the interior of Jt'.

The above definition certainly corresponds to our intuitive idea of
a limit of a collection of spacetimes. It is not, however, very useful for
actually writing down limits. We next show how the limit spaces may
be characterized in terms of certain structures on <Jt.

By a family of frames in ̂  we mean an orthonormal tetrad w(λ)
of vectors tangent to Mλ and attached to a single point pλ ζ Mλ) for each
λ > 0, such that the w(λ) vary smoothly along the smooth curve in ̂
defined by the points pλ. If ^' is any limit space of ̂ , we may ask
whether or not a given family of frames assumes a limit, i.e., approaches
a frame w(0) at some point p0 ζd*^' as Λ->0. In general, of course,
the answer will be no. However, it is clearly always possible, given a
limit space ^', to find some family of frames which does have a limit
inuί".

Let Jί' be a limit space of ̂ , and let w (λ) be a family of frames which
assumes a limit as λ -> 0. Let us represent points in Mλ in a neighborhood
of pλ in terms of the system of normal coordinates based on w (λ). In terms
of these coordinates, the components of the metric tensor in the Mλ

approach a limit as λ -> 0, and the limiting components are precisely the
components of <7α&(0) in d^' in a neighborhood of pQ. Thus, the family
of frames w(λ) uniquely defines the limit space J%', at least in a suffi-
ciently small neighborhood of p0. We now have a computational tech-
nique to find all limit spaces: each ̂ ' is characterized by some family
of frames for which the components of the metric in the corresponding
normal neighborhoods approach a limit as λ -> 0.

All we have done so far is to cast the usual definition of a limit (in
terms of coordinates) into a slightly different language. To obtain useful
information about spacetimes, however, it is necessary to consider also
the global properties of limits, and it is here that our formalism will
simplify matters considerably.

Let U0j_ and ̂ 2 ̂ e ^wo limit spaces of *Jί. We say that *Jt^ is an
extension of *Jέ% ^ there exists a smooth mapping of ̂ x into ̂ 2 which
preserves the metric g*P and leaves invariant each point of ̂ . The above
discussion implies that, when *Jt ± is an extension of e^2, there exists a
family of frames in ̂  which has a limit in both dt^ and ̂ 2. It now
follows from theorem A 1 (Appendix A) that, if <Jέ^ is an extension of
*jf 2 and eχ 2̂ an extension of *Jt^, then *Jt^ = <Jt%.

3 There is a complication here with regard to Hausdorffness. The spacetimes
Mχ are Hausdorff, and so is Jt. However, we cannot take the limit spaces Jί' to
be Hausdorjff if we are to be able to deal with pathological cases. In fact, Theorem 1
is false unless we admit non-Hausdorff limit spaces.
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Now let Jt' be any limit space of Jt, and let Jf denote the disjoint
union of all extensions of ^' where, in this union, we identify corres-
ponding points of Jt. We now define an equivalence relation in ./f. If
p1 ζd*^!, p2 (;9^2, where Jΐ± and ̂ 2 are extensions of ̂ ', write
pl PS? p2 if there exists a family of frames in ̂  which, in ̂ ^, has a limit
at Pi and, in ̂ 2, has a limit at p2. From the above discussion of normal
neighborhoods, we see that, whenever p1 ^ p2, there exist neighborhoods
of Pi and ̂ 2 which are also identified. Thus, the set of equivalence classes
form, in a natural way, a limit space Λf. By construction, Λ? is an
extension of every extension of ̂ . But two limit spaces, each of which
is an extension of the other, are equal, and so Jί is unique and has no
proper extension. We have outlined the proof of:

Theorem 1. Every limit space Jt' has a unique extension Jl such that
(1) ̂  lias no proper extension, and (2) J% is an extension of every exten-
sion of ^'. In particular, every family of frames either defines no limit
space, or else defines a limit space which is "maximal" in the sense of
Theorem 1.

A simple example will serve to show the way in which useful infor-
mation can be extracted from our characterization of limits. Consider
the Riessner-Nordstrόm solutions for a fixed value mQ of the "mass",
but with a variable value of the "charge" λ (Fig. 1). When λ -> 0, in the
usual coordinates, we obtain the Schwarzschild solution with mass
value mQ (Fig. 2). It is obvious from Figs. 1 and 2 that something drastic
is happening in the limit: the region inside the "throat" of the Reissner-
Nordstrόm solution appears to become swallowed up in the singularity
in the limit, so that it does not appear in the Schwarzschild picture.
Let us try to formulate (and answer) the question: Do the points between
r = r_ and r = 0 (shaded in Fig. 1) disappear or not in the limit λ -> 0 ?

We are here dealing with a particular limit, and so we must first
choose an appropriate family of frames. In each Reissner-Nordstrόm
solution, let us choose a frame which is centered at the point p of Fig. 1,
and such that two of the spacelike vectors of the tetrad point along the
2-spheres of spherical symmetry. (The frame is not, of course, uniquely
determined by these conditions, but any two such frames are related by
a symmetry of the spacetime.) Now consider a collection of points qλ ζ Mλ

such that, for each λ, qλ lies in the shaded region in Fig. 1. It is a well-
defined question to ask whether or not the curve in <Jt defined by the qλ

approaches a limit in the maximal limit space defined by our frame at p.
To calculate the answer, we refer each qλ to our frame by means of a
broken geodesic (c.f., Appendix A), take the limit of the numbers which
define this geodesic, and ask whether the limiting numbers exist and
define a broken geodesic in the Schwarzschild solution. The answer is no:
the corresponding geodesic in the Schwarzschild solution always runs
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into the '"singularity" at r = 0. Thus, in a well-defined sense, the throat
of the Reissner-Nordstrόm solution "squeezes up" as λ -> 0 and even-
tually swallows all points to the future of the horizon r = r_.

Fig. 1. The Reissner-Nordstrom solution. Each point in the figure represents a
2-sphere of spherical symmetry in the 4-dimensional spacetime. The radii of these
2-spheres define a scalar field r on the diagram. The horizons occur at the r-values

Fig. 2. The Schwarzschild solution. Each point in the figure represents a 2-sphere
of spherical symmetry in the 4-dimensional spacetime
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What is the fate of points below r = r_ ? Now, however, the answer
depends on the detailed behavior of the point qλ as λ -> 0. If the point
wanders too near r = r_, it will not appear in the Schwarzschild solution,
while if it remains well below r — r_ it will appear in the limit. The
precise statement of how a point must behave in the family of Reissner-
Nordstrδm solutions in order to remain in the limit is somewhat compli-
cated, but completely well-defined.

Note that, among all possible frames in the Reissner-Nordstrόm
solution, the one we have used above is preferred in that it admits a
simple description in terms of the Killing vectors. Thus, the Schwarz-
schild solution is, in a certain sense, the "canonical" limit of the Reissner-
Nordstrόm solution as the charge parameter goes to zero.

Finally, we ask whether it is possible to choose a family of frames
which remain in the shaded region in Fig. 1 and which define a limit as
λ -> 0. Such a limit would not, by what we have already shown, include
the asymptotically flat regions of the spacetime. However, it is easily
verified that, no matter what family of frames is erected in this region,
no corresponding limit space exists.

3. Hereditary Properties

A property of spacetimes will be called heriditary if, whenever a
family (Mλ, <7αδ(Λ)) of spacetimes have that property, all the limits of
this family also have the property. In this section we shall classify a
number of properties of spacetimes according to whether or not they are
heriditary. While the answer is obvious is many cases, there are, however,
a few surprises.

Suppose that there exists some tensor field, constructed from the
Riemann tensor and its derivatives, which vanishes in each of the
(Mλi gab(λ)). Then, since gκβ is to be smooth on each limit space, our
tensor field must also vanish on the boundary of each limit space.
Einstein's source-free equations (Rab = 0) and the condition of conformal
flatness (Cal)Cd = 0) are of this type, and so are heriditary properties
of spacetimes.

Consider next the type of the Weyl tensor. It is known [2, 3] that
associated with each of the six types there is an algebraic expression in
the Weyl tensor which vanishes whenever the Weyl tensor is of the
corresponding type. Conversely, if one of these expressions vanishes,
then the Weyl tensor is necessarily of that type or of one of its speciali-
zations. Thus, although the type of the Weyl tensor is not heriditary,
properties such as "at least as specialized as type ..." are.

Practically no topological properties of the underlying manifold are
heriditary. (In fact, quite generally, no property of spacetimes is heri-
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ditary if it can be violated by merely removing some region from the
manifold.) For example, neither the homology nor homotopy groups are
heriditary: such groups can be either enlarged or diminished in the limit.
However, the existence of spinor structure is heriditary. This fact follows
immediately from the characterization of spinor structure in terms of
neighborhoods of certain 2-spheres immersed in the spacetime [4].
Although the existence of spinor structure is heriditary, its absence is
not, for this property can be destroyed by removing a suitable region
(for example, all of the manifold except a small Euclidean neighborhood)
from the spacetime.

Absence of closed timelike curves is heriditary. (If d^' has a closed
timelike curve, then we may find a closed timelike curve in each Mλ for
small λ.) The presence of closed timelike curves is not. Neither the presence
of closed timelike curves is not. Neither the presence nor the absence of
a Cauchy surface [5, 6], of asymptotic simplicity [7], or of a singularity
(i.e., geodesic incompleteness [8]) is heriditary.

The situation with regard to Killing vectors is somewhat more compli-
cated. Suppose we have a family (Mλ, g

ab (λ)) of spacetimes each of which
has two Killing vectors. It might be thought that limits of this family
need not have two Killing vectors, for, as A-> 0, the Killing vectors in
the (Mλ, gab(λ)) could conceivably approach each other and thus define
only a single Killing vector in the limit. However, this circumstance
cannot arise.

Consider a family of frames in Jt. For each point pλ ζ Mλ of this
curve, let Vχ denote the 10-dimensional vector space consisting of all
pairs (|α, Fab) of tensors at pλ and in Mλ9 where Fab is skew. Given a
Killing vector field on Mλ, its value and derivative at pλ defines a point
of Vχ, and so the set of Killing fields defines a vector subspace Kλ of Vχ.
The dimension of Kλ is n, where n is the number of independent Killing
fields in the (Mλ, g

ab (A)). But the collection of all 7i-dimensional subspaces
of a 10-dimensional vector space4 is compact. Hence, if V0 denotes the
corresponding vector space at p0, there must be some ^-dimensional
subspace KQ of F0 which is an accumulation space5 of the Kλ. We will
show that each element (|α, Fab)0 of KQ defines a Killing field on d^'.
Choose any closed curve γ in d^C, beginning and ending at pQ. We have
only to prove that, under Killing transport (see Appendix B) around
γQ, (ξa,Fal))Q remains unchanged. Let γλ be a curve in Mλ, beginning
and ending at pλ, and such that γλ approaches γQ in the limit, and let
(ξ«,F*b)λ£Kλ accumulate at (ξa,F°*)Q. But now γλ-*γ0, (ξa,F«*)λ

4 This space is called a Grassmann manifold, G(n, 10).
5 Even though the metric approaches its limit smoothly, the Kχ will not in

general approach K0 as a limit. Note, therefore, that we only require the existence
of an accumulation point.
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-> (ξa, Fab)0, and the change, A (ξa

} F
ab)λ, in (fβ, J^αδ)Λ on Killing trans-

port about γλ is 0. Therefore, Δ (ξa, Fab)Q = 0, and so (|α, Fa\ defines
a Killing vector in 9 '̂. We conclude that if the (M^9 gab(λ)) have an
^-parameter group of motions, then each limit has at least an ̂ -parameter
group of motions.

By similar arguments we see that, for example, if each (Mλ, </αδ(Λ))
has a hypersurface orthogonal Killing vector, so does each limit; if one
Killing vector in each (Mλ, gab(λ)) commutes with all the others in an
^-parameter family, then there exists a Killing vector in each limit which
commutes with an ^-parameter family of Killing vectors.

Similar remarks apply to conformal Killing vectors, where we must
now use conformal Killing transport (Appendix B).

As an example of the above properties, let us consider limits of the
Weyl solutions [9]. Each limit must be a sourcefree solution of EINSTEIN'S
equations with spinor structure, no closed timelike curves, and at least
two Killing vectors, one of which is hypersurface orthogonal and commu-
tes with the other. Note that a spacetime with these properties need not,
a priori, be a Weyl solution. Thus, the possibility exists that one can
find wide classes of new solutions of EINSTEIN'S equations as limits of
known solutions. In particular, we may call a family of solutions of
EINSTEIN'S equations closed if it contains all its limits. For example,
the plane wave solutions are closed, while the Weyl solutions are,
presumably, not closed.

Appendix A. Rigidity

Let M and M' be two spacetimes, and suppose that M is isometric
to a subset of M'. There may, of course, exist many different isometries.
The assertion that Lorentz metrics are rigid (of order one) states that,
once we specify how the tangent space of a particular point p of M is to
be mapped into the tangent space of a particular point p' of M', the
isometry ψ, if there exists one at all, is uniquely determined. Thus,
given the action of Ψ "to first order" at p, the requirement that Ψ be
an isometry determines its behavior everywhere.

Theorem A 1. Let M and M' be connected spacetimes, and let w be an
orthonormal tetrad at a point p ζM and w' at p' ξM'. Then there is at
most one isometry of M into M''which takes w into w'.

Proof. Let (??f, Ύ\\, . . ., η%) be any collection of n nonzero vectors
at p. We construct a broken geodesic as follows. Let γ1 be the geodesic
which passes through p and whose tangent vector at p is ηl. Choose an
affine parameter r on γ1 such that τ = 0, η± Vaτ = 1 at p, and let pl

denote the point on γ-L unit affine distance from p. Parallel transport
the n — 1 vectors (η%, η ,f . . ., η*) along γ1 to p1. Now repeat this con-
struction with these n — 1 vectors at p1, and thus define a point p2
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with n — 2 vectors at p2, and thus define a point pB etc. After the nth

step, we obtain a point pn. (We restrict ourselves to ^-tuples of vectors
at p for which, at each step in the construction, the appropriate geodesic
can be extended unit affine length.) Since any point q ζ M may be joined
to p by a broken geodesic, we may always choose n and (η*, ηξ, . . ., η%)
so that pn = q.

Let Ψ and !? be two isometries from M into M' each of which takes
w into w'. Then Ψ and ί7 have the same action on any (ηl, ^f, . . ., η%),
and so !F(g) and Ψ(q) are defined by broken geodesies in M' with the
same set of n initial vectors. Therefore, Ψ(q) = Φ(q) for each point q ζ M.

Theorem A 1, by referring points of any connected spacetime to the
tangent space of a point, allows us to compare spacetimes by working
to first order at a single point. It is this comparison property which was
necessary to obtain Theorem 1. In contrast to Theorem A 1, manifolds
without any further structure are completely non-rigid. In fact, it is
well-known that, given any (connected, Hausdorff) manifold M and 2m
points PI , p2, . . ., pm, 2Ί, q%, . . ., qm of M, all distinct, then there exists
a diffeomorphism of M onto itself which takes p1 to ql9 p2 to q2) etc.

We now briefly summarize the general situation. By a geometrical
structure we mean a general statement of the types of fields under con-
sideration, that is, the number of connections, the numbers and valences
of tensor fields (and, more generally, the types of geometrical objects [10]).
For example, "a Lorentz metric", "a Lorentz metric and skew covariant
tensor", and "three linearly independent vectors and a connection" are
geometrical structures. By a realization of a geometrical structure we
mean a (connected, Hausdorff) manifold equipped with fields of the
type described by the geometrical structure. This distinction between a
geometrical structure and its realizations is important: the notion of
rigidity will apply only to the former. (That is, we say "Lorentz metrics
are rigid", not "This Lorentz metric is rigid and that one is not".) Let
M and M' be manifolds with realizations Φ and Φ', respectively, of a
given geometrical structure. By an isometry of (M, Φ) into (M'9 Φ') we
mean a diffeomorphism of M onto a subset of M' which takes Φ into Φ'.

We are now in a position to define rigidity. A geometrical structure
is said to be rigid of order n (n = 0, 1, 2, . . .) if, given any two isometries
Ψ and Ψ of a realization (M9 Φ) into a realization (M'9 Φ') of this geo-
metrical structure such that the value and first n derivatives of Ψ
coincide with those of Ψ at some point of M9 then Ψ = Ψ*. We illustrate
this definition with the following list of rigidities.

* It follows immediately that the group of isometries of any realization of a
rigid geometrical structure into itself form a Lie group. Is the converse true ?
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Order zero : m linearly independent vector fields on an m-manifold.
Order one : a nonsingular metric a symmetric connection.
Order two : a conformal structure.
Not rigid to any order: m vector fields; symplectic structure.
On 5-manifolds, in particular, although "a metric gκP of signature

(0, + » — , — , — )" is not rigid, "a metric of this signature along with a
family of frames" is rigid. It was for this reason that we introduced
families of frames, and were thereby able to obtain unique limits of
spacetimes.

Appendix B. Killing Transport

Let M be a connected spacetime with metric gab. Let |α be a Killing
vector field on M , and set

-^αδ = Va£b = F[aύ]

We then have

V{GFa}^Ecaldξ^. (B.I)

Rearranging the indices in (B.I), and using the fact that Fab is skew,
we obtain

Let ηa be the tangent vector to some curve γ beginning at the point p.
The above equations, contracted with ηa, yield

η-Vaξ^Fab^, (B.2)

Eqs. (B.2) give the values of (£α, Fab) along γ in terms of their values
at p.

More generally, given any pair (ξa, Fab) (not necessarily corresponding
to some Killing vector) at p, we may always define such a pair at each
point of γ via (B.2). We call this operation Killing transport. In general,
if we apply Killing transport to some pair (ξa, Fab) along a closed curve
beginning and ending at p, then, on returning to p, the new pair (ξf α, F'ab)
will not coincide with our original pair. Suppose, however, that there
exists a Killing vector on M whose value and derivative at p is (ξa, Fal>).
Then, evidently, for every closed curve, we shall have (|'α, F^) = (|α,
Fat). Conversely, if (|α, Fal) is given at p and if, for every closed curve
we have (ξra,F'ab) = (ξa

ίFab)ί then there exists a Killing vector on M
whose value and derivative at p is precisely (ξa, Fad).

Let F denote the 10-dimensional vector space of all pairs (ξa,Fab)
at p. Each closed curve, beginning and ending at p, defines a linear
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transformation on F. That is, we have a "Killing holonomy group" at p.
The fixed points under this group correspond precisely to the Killing
fields on M. In particular, this group permits us to make the useful
distinction between global Killing vectors, which are well-defined over
the entire manifold, and local Killing vectors, which are defined in a
neighborhood and which, when extended over the entire manifold,
become many- valued. Local Killing vectors may be defined as the fixed
points of the subgroup of the "Killing holonomy group" obtained by
permitting only closed curves through p which may be contracted to a
point.

We mention the following corollaries of the above discussion.
Corollary B 1. // a Killing vector and its derivative both vanish at a

single point, then the Killing vector vanishes everywhere. (This corollary
may be regarded as the infinitesimal statement of Theorem A 1.)

Corollary B 2. Let M be a spacetime, and suppose that there is a Killing
vector ξa defined on some open subset U of M. Then ξa and all its deriva-
tives approach finite values on d U*.

Corollary B 2 provides a useful test for the extendability of a space-
time. One way to establish the nonexistence of an extension of a given
spacetime is to find some scalar invariant which becomes infinite in the
region across which we plan to carry out the extension. Corollary B 2
asserts that, in the construction of such invariants, it is also permissible
to use scalar s constructed from Killing vectors and their derivatives.

Since Killing transport is essentially tied up with the rigidity of the
metric, and since conformal metrics are also rigid, we might expect to
be able to define conformal Killing transport. Let ξa be a conformal
Killing vector, and set

l

where Fab is skew. Commuting derivatives as before, we find that, for
any curve γ with tangent vector ηa ,

(B.3)

φLab

* Of course, ξa will not in general be extendable to a Killing vector over all of M ,
e.g., the timelike Killing vector in the exterior region of the oscillating fluid ball
solutions [11].
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where Lab = Ea1) — τrgabE. These equations define conformed Killing

transport of the 4-tuple (|α, Fab, φ, ka). The same remarks concerning a
holonomy group (now acting on a 15-dimensional vector space) and its
fixed points apply here, too. The fact that we need specify two derivatives
of ξa at a point in the conf ormal case is a reflection of the fact that con-
formal metrics are rigid of order two.

We mention two applications of conf ormal Killing transport. From
Eqs. (B.3) it is immediately clear how to write down the general conformal
Killing vector in flat space. Introducing Minkowskian coordinates xa,
then, when Rabcd = 0, we may successively integrate equations (B.3)
beginning with the last :

φ = kax
a + φ ,

f α = T Eα («*«&) ~ Y (*'*«) *« + **«** + T ΨX* + & >

where ξaίFab) φ, and &α are constant tensors (fifteen numbers to define
a conformal Killing vector).

Conformal transport also provides an elementary proof of the well-
known [12] fact that a spacetime whose Weyl tensor vanishes is, locally,
conformally equivalent to flat space. When Cal)Cd = 0, Eqs. (B.3) imply
that the spacetime has, locally, fifteen conformal Killing vectors. Select
one of these Killing vectors corresponding to a 4-tuple (|α, 0, 0, 0) at p,
and then choose the conformal factor so that the norm of the corres-
ponding conformal Killing vector is constant.

Finally, we remark that there exists an analogous projective Killing
transport. The basic equations are identical with (B.2), except that Fab

need no longer be skew.
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