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xYbstraet. A generalization of the group algebra of a locally compact group is
studied, by expressing the group algebra of a central group extension as the direct
sum of closed *-ideals each one of which is isomorphic to such a "twisted" group
algebra. In particular, the representation theory of such algebras is associated with
the theory of projective representations by studying the representations of the group
algebra of the group extension and the associated unitary representations of the
group extension.

§ 1. Introduction

Projective representations of locally compact groups arise naturally
in quantum mechanics in several ways. Groups of automorphisms of the
algebra of bounded operators on a Hubert space £j give rise to projective
representations on §, and so the study of symmetry groups acting on the
observables leads to a study of their projective representations. WEYL'S

form of the canonical commutatin relations [15] define a projective
representation of the vector group lR2n. Again in the application of
MACKEY'S theory of induced representations to the determination of the
representations of semi-direct products of locally compact groups one
is led to consider them from the outset as MACKEY has done in [11].

Each projective representation of a group G defines a true represen-
tation of a group extension, and as MACKEY does in [8] one can use the
group algebra of the group extension in investigating the projective
representation. Alternatively a twisted group algebra of the group G
can be used. In this paper we give the basic definitions and results for
twisted group algebras of locally compact groups and examine their
relation to group algebras of group extensions. The key tool is a struc-
ture theorem which we prove in § 3. Many of the results, which are
generalisations of well-known results for ordinary group algebras, follow
as corollaries of the structure theorem. A fuller study of twisted group
algebras together with detailed proofs of the results stated here can
be found in EDWARDS [2].

The theory of twisted group algebras for finite groups is classical and
references to the literature are to be found in WEYL'S book [15]. KASTLER
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[4] has studied twisted group algebras over vector spaces. His results
are not special cases of ours since the vector spaces which he considers
are not necessarily locally compact, but some of the results of LOTJPIAS
and MIRACLE-SOLE [7] on twisted group algebras for lR2w are. MOΊSΓTVAY
[12] has defined twisted convolution for an arbitrary locally compact
group G with respect to a multiplier which is continuous on G X G\
in this paper we make no such restriction on the multiplier. MONTVAY
pointed out that in the case which he considered many of the results on
group algebras together with their proofs generalise straightforwardly to
twisted group algebras.

§ 2. The Twisted Group Algebra

Let G b e a separable locally compact group with unit element e and
let m be a left-invariant Haar measure on G let δ be the modular function
on G and let Lx (G), L2 (G) be the spaces of equivalence classes of complex-
valued m-measurable functions on G which are respectively absolutely
integrable, absolutely square-integrable. LX{G) is a Banach space with
respect to the norm || '\τ defined for each element ψ by

\\ψ\\x= f\ψ(g)\dm(g),
G

and L2(G) is a Hubert space with respect to the inner product (. , .)
defined for each pair ψ1, ψ2 of elements by

(ψi> Ψ2) = / Ψi(9) ψ*(g) dm(g) .
G

The corresponding norm is denoted by || | |2. (For the properties of LX{G)
and L2(G) see Chapter IV of [3].)

Let T denote the group of complex numbers of unit modulus. A Borel
function ω from G X G to T such that for all g, g', g" in G,

(i) ω{g,e) = ω(e,g) = 1,
(ii) ω(g'9 g") ω{g, g'g") = ω{g, g') ω{gg', g")

is said to be a multiplier on G. A multiplier ω is said to be trivial if there
exists a Borel function ρ from G to T such that ρ(e) = 1 and for each
pair g, g' of elements of G

(for details see [9, 10]). For each multiplier ω and each pair ψ1} ψ2 of
elements of LX(G) define the function ψ1ωψ2, called the twisted convolu-
tion of ψ1 and ψ2, by

(ψicoψz) (g) = f ψAh) ψ2(hr1g) ω{h, h^g) dm{h) .
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Since ω is a bounded Borel function on G X G it follows that g \-> ω
(h, h~1g) and h ι-> ω{h, h~1g) are bounded Borel functions on G and so
the integral is well-defined and defines an m-measurable function on G.
A straightforward computation shows that the function ψ1 ω ψ2 defines
an element of Lx (G) such that

llviωψ2lli ^ llψilli W l i

For each multiplier ω on G and each element ψ of Lλ (G) let ψω be defined

Then it is clear that since ω is Borel and δ is continuous the function ψω

is m-measurable. A further computation shows that the map ψ i-> ψω is
an involution:

Furthermore, the identities

follow from routine computations. Let (L^G), ω) denote the Banach
space LX(G) equipped with the multiplication fψ1,1/V"* ψiWψz and with
the involution ψ ι—> ψω. Summarising, we have

Theorem 1. (L^β), ω) is a Banach *-algebra.
We call (L^G), ω) the twisted group algebra over G corresponding

to the multiplier ω. In the special case in which ω is identically one,
twisted convolution becomes ordinary convolution and then we write
tpx * ψz for ^ ω ^ . Similarly the involution ψ ι—* y)φ coincides with the
usual involution and we write yi* for ψω; then (L^G), *) is the group
algebra of G.

§ 3. The Structure Theorem

Let A be a separable compact abelian group written additively with
unit element 0 and let n be normalised Haar measure on A. A Borel
function / from G X G to A such that for all g, g', g" in G

π) f(gf, g") + Ha> g'g") = t(g, g') + tW> g"),
is said to be a 2-cocycle of G over ^4. The set of 2-cocycles of G over A
forms an abelian group Z2(G, A). An element / of Z2(G, A) is said to
be a 2-coboundary of G over A if there exists a Borel function h from G
to A such that & (e) = 0, and for each pair g, gf of elements of G,

The set of 2-coboundaries of G over A forms a subgroup B2(G, A) of
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For each element / of Z2(G, A) we may define a multiplication on
A x Gby

(a, g) {a', g') = (a + a1 -f f(g, g'), gg')

Endowed with this multiplication the set A x G becomes a group which
we denote by Gf, called the central extension of A by 0 defined by /.
Giving Gf the Borel structure of A x G, the product measure n X m
is a left-invariant measure on Gf and there is a unique locally compact
topology on Gf under which it is a separable locally compact group whose
associated Borel structure is that just described [10]. The modular
function A on Gf is given for each element (a, g) of Gf by Δ (α, g) = δ (g)
[2]. Note that the set of multipliers on G is Z2(G, T) and the set of trivial
multipliers is B2(G, T).

Let A ^ denote the dual of A since A is a compact abelian group A ^
is a discrete abelian group, and since A is separable A^ is countable
(see Chapter 1 of [14]). For each element α of i ^ and each element /
of Z*(G, A) the composed function α o / defined by

is a multiplier on G. In particular, since T^ can be identified with Z,
the additive group of integers, for each multiplier ω and each integer r
the function g, g' ι-* (ω(g, g'))r is a multiplier on G.

The main theorem concerns the relation between the group algebra
(Lx(Gf), *) and the twisted group algebra {Lλ{G), a of). Let α be an
element of A^ for each element Ψ of L^G*) define the function oc(ψ)
on G by

a(Ψ)(g)= fΨ(a,g)X(a)dn(a).
A

FUBINI'S theorem shows that cc(Ψ) is m-measurable and a routine cal-
culation shows that it defines an element of LX(G) such that

Further, if ψ is an element of Lλ(G), the function ά <g> ψ defined by

(α<8> ψ) (a,g) = oc(a)ψ(g)

defines an element of Lτ(Gf) such that α(α (S) ψ) = ψ. It follows that the
map Ψ\—> oc(Ψ) of L^G*) into L^G) is surjective. We have

Lemma 3.1. The map ψ\~>oc(Ψ) is a norm non-increasing *-honιo-
morphism from (Lx(Gf), *) onto (Lλ(G), α o/).

Proof. We have seen that it is a norm non-increasing map from
Lx{Gf) onto LX(G) and a routine computation shows it to be a *-homo-
morphism.

Lemma 3.2. The map ψ i-> ά <g> ψ is an isometric *-isomorphism, from

(LX(G)} (X of) onto a closed hvo-sided ideal in (Lx(Gf), *) .
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Proof. A simple computation shows that it is a map of Lt(G) into
Lλ(Gf) which is an isometric *-homomorphism. It remains to prove that
the image is a closed two-sided ideal. First we show that it is closed.
Let {ψr} be a sequence of elements of Lλ (G) such that {α ® ψr} converges
to an element Ψ of Lx{Gf). Then since the map ψ\-> oc(Ψ) is norm non-
increasing it follows that {ψr} converges to oc(Ψ). Therefore,

^ \\Ψ- α <g> V r | | i + [|ά Θ ψr - α <8>

Taking limits we see that ψ' — oc ® α(ϊ / ) so that the image of the map
ψ i—> 5c ® ψ> is closed. Routine calculations show that for each element
Ψ of Lx (Gf) and each element ψ of 7^ (6r) we have, writing co = α o /,

(ά ® y) * ! ? = δc ® (ψωoc(Ψ))

which shows that the image set is a two-sided ideal.
For each element Ψ of Lλ{Gf) and each element α of A^ let P α iF

= α ® oc(Ψ). In terms of P α the conclusions of Lemmas 3.1 and 3.2 may
be rephrased: P α is a norm non-increasing *-homomorphism from
(L^G*), *) onto a closed two-sided ideal which is isometrically *-iso-
morphic to (Z/1(6ί), α o /). Furthermore, the orthogonality of distinct
characters of A implies that

and since the characters of A generate Lλ{A) topologically we have

We have proved
Theorem 2. (L^G*), *) is £Λe ίZirecί s^m over A^ of closed two-sided

ideals {/α}, w&ere /α is isometrically *-isomorphic to the twisted group
algebra (L^G), oί of).

In § 4 we prove a result about the regular representation of Gf

for this we shall require an easily proved analogue of Theorem 2 which
we state as

Theorem 2'. The Hilbert space L2(Gf) is the direct sum of closed sub-
spaces each one of which can be identified with L2(G) being the image of
an orthogonal projection Ψ\-> α <g> <x,(Ψ).

§ 4. Projective Representations

In the theory of unitary representations it is sometimes convenient
to make use of the one-to-one correspondence which exists between
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essential *-representations of (L^G), *) and continuous unitary represen-
tations of G (see [IS] for example). In this section we prove the corres-
ponding theorem for essential *-representations of twisted group algebras
and projective representations of groups.

Let § be a separable Hubert space; let U{$)) denote the group of
unitary operators oft § . A projective representation of a locally compact
group 0 on S) is a rαap π:G\-+ U(S)) such that

i) π(e) = 1,
ϋ) the map g κ-> (π{g) x, y) is Borel for each pair x, y of vectors

in §,
iii) for each pair g, g' of elements of G,

π(g) π(g') πigg')-1 = ω{g, g') 1

where ω {g, gr) is a complex number of modulus unity.

It follows from, the associativity of group multiplication that ω

satisfies
ω{g', g") ω(g, g'g") = ω{g, g') ω(gg', g")

and it is easy to check that ω is a multiplier in the sense of § 2. Conver-
sely, every multiplier in the sense of § 2 is a multiplier for some projective
representation as we see below. We shall refer to a projective represen-
tation π having multiplier ω.

A projective representation π of G on ίj is said to be irreducible if
the only closed subspaces of § invariant under the set π(G) of unitary
operators are {0} and ξ). Two projective representations π and π' on ξ)
and § r respectively are said to be unitarily equivalent if there exists an
isomorphism T:$) -> $)' satisfying

for all g in G. Clearly two unitarily equivalent projective representations
have the same multiplier.

Let / be an element of Z2{G, A) and let Gf be the central extension
of A by G defined by /. Let α be an element of A " and let πa be a pro-
jective representation of G on £)α with multiplier oc o /. Then the map
{a, g) i-> oc(a) πΛ{g) from Gf to U(ξ)u) is a weakly Borel unitary represen-
tation of Gf on § α and so, by 22.20 of [3], is a continuous unitary repre-
sentation. We shall denote it by α ® π α :

( α ® πα) (a,g) = oc(a) πΛ(g) .

Conversely, let u be a continuous unitary representation of Gf on § .
The restriction of u to A is a continuous unitary representation of a
compact abelian group and so

u(a,e)= 0 α(α)^ α
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where α ι-> Ea is a projection-valued measure on A ^ and Eu is defined
for each pair x, y of vectors in by

(Exx, y> = / α(α) (u{a, e) x, y) dn(a) . (4.1)
A

Since A lies in the centre of Gf, for each element (a, g) of Gf and each
element a' of A,

u(a', e) u(a, g) = u(a, g) u(a', e)

so that EΛ commutes with u (α, g) for each element (α, (7) of 6rΛ It follows
that ^α, defined for each element {a, g) of Gf by

is a continuous unitary representation of Gf on § α = Ex$), and that

^ = 0 u« (4.2)
a£A~

Let τrα denote the restriction of ua to (r. Then, πx is a projective represen-
tation of (T on § α with multiplier α o / and

wα = α ® πα .

Furthermore, SCHUR'S lemma shows that u is irreducible if and only if
there is only one non-vanishing term in (4.2). Summarising, we have

Lemma 4.1. (i) Let πa be a projective representation of G on § α with
multiplier α o /. Then α ® τrα is a continuous unitary representation of
^ onξ>a.

(ii) Let u be a continuous unitary representation of Gf on §. Then, there
exists a projective representation πα of G with multiplier α o /, defined on
ξ>a = Eaξ> such that

u= © αΘτrα . (4.3)
κζA~

(ϋi) A continuous unitary representation u of Gf on § is irreducible

if and only if u = α <g> π α /or some element oc of A and some irreducible

projective representation πx of G with multiplier α o /.

Further, let πα, π'a be unitarily equivalent projective representations
of G with multiplier α o / o n ^ α , ^ respectively. Then, clearly α <g> πα,
α ® TΓ̂  are unitarily equivalent continuous unitary representations of Gf.
Conversely, let u, u' be unitarily equivalent continuous unitary represen-
tations of Gf on $), $)' respectively. Let α ι-> Ea, αi-> E'a be the corres-
ponding projection-valued measures on A^ and let

There exists an isomorphism T : § - > § ' such that for each element
(a, g) of Gf, Tu {a, g) = %' (α, ̂ ) T. Then, it is clear that for each element
α of A ", Tα = ? ^ α = ^ Γ̂ is an isomorphism of E^ and E'Λ$)' such that
for each element g of (r, Tα πa (g) = πf

x {g) Tx. Summarising, we have
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Lemma 4.2. (i) Let π α , π^ be projective representations of G on S)Λ, §^
respectively, both having the same multiplier α o /. Then πa, π^ are unitarily
equivalent if and only if the continuous unitary representations α Θ πa,
α Θ riy, of Gf are unitarily equivalent.

(ϋ) Let u, u' be continuous unitary representations of Gf on ξ), $)'
respectively; let

u= 0 α Θ πα, u' =-- 0 α ® π̂

&e their corresponding decompositions according to Lemma 4.1 (ii). Then
u, u' are unitarily equivalent if and only if for each element α of A^, the
projective representations πa, π'x of G are unitarily equivalent.

There is a related decomposition for essential #-representations of
(L1(Gf), *). Let Πa be an essential *-representation of (2^(6?), α o/)
on the separable Hubert space § α . Let 77α o α be the mapping defined
for each element Ψ of Lx (Gf) by

Then, Πa o α is an essential *-representation of (L1(Gf), *) since α is a
*-homomorphism of (JC1((T/), *) onto (L1(G), α of). Conversely, let U be
an essential *-representation of (L1(Gf), *) on the separable Hubert
space ξ>. Let {^ :i ζΛ} be an approximate identity for (L1(G/), *). Then,

by Theorem 2. Hence the set {U(Pa(Ξi)):i ζΛ} has a limit jFα in the
strong operator topology such that for each element Ψ of L1 (Gf)

FΛU(Ψ)=U(P,Ψ). (4.4)

A similar argument shows that

U(Ψ)Fa= U(PΛΨ). (4.5)

From Theorem 2 it is clear that α ι—> Fa is a projection-valued measure
on A". Let UΛ be the restriction of ϋ to § α = J^α§. Then (4.4) and (4.5)
show that Ux is an essential *-representation of (L1(Gf), *) on £jα such
that

^ = 0 Ua (4.6)

and that

UΛ = i7α o α

where 77α is the essential *-representation of (L1(G), oc of) defined by

Πx(f) = UX(Z ® y>).
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Furthermore, SCHTJR'S Lemma shows that U is irreducible if and only
if there is only one non-vanishing term in (4.6). Summarising, we have

Lemma 4.3. (i) Let ΓIX be an essential *-representation of (L1(G), α o /)
on § α . Then Πa o oc is an essential *-representation of (L1(Gf), *) on § α .

(ii) Let U be an essential *-representation of (^L1(Gf), *) on $). Then,
there exists a projection-valued measure α ι-> Faon A^ and for each element
oc of A^ an essential *-representation Πκ of (L1(G), oc of) on § α = Fa2)
such that

u= e πxo*.
(ϋi) An essential ^-representation U of (Lx(Gf), *) on $) is irreducible

if and only if U = Πa o α for some element oc of A^ and some irreducible
essential *-representation Πa of (LX(G), α o /).

Further, let Πσ, Π'x be unitarily equivalent essential *-representations
of (L^G), α o / ) o n § α , §^ respectively. Then, clearly 77α o α, Π'a o α are
unitarily equivalent essential *-representations of (L1(Gf), *). Conversely,
let U, V be essential *-representations of (Lx(Gf), *) on $),$)' respecti-
vely. Let oi\->Fcιi αι->.F^ be the corresponding projection-valued mea-
sures on A ^ and let

U= 0 Πa o «, E7' = © 77; o « .

Then, there exists an isomorphism T:ί) -> $)' such that for each element
Ψ of (^(GO, *), TU(Ψ)= U'(Ψ) T. Then, it is clear that for each
element α of A ", Tα = T ^ = F'a T is an isomorphism of jPα§ and ^ § r

such that for each element ψ of L1(G), TaIJa(ψ) = Π^(ψ) Tu. Summari-
sing, we have

Lemma 4.4. (i) LetΠa, Π'a be essential ̂ -representations of (Lx (G), oc o /)
on ξtx, $)'a respectively. Then, Πa, Π'Λ are unitarily equivalent if and only
if the essential ^-representations /7α o oc, Π'x o a of (L1(Gf), *) are unitarily
equivalent.

(ii) Ze£ ?7, C7' be essential *-representations of (L1(Gf),*) on $),$)'
respectively. let

U= 0 Πx o «, ϋ' = 0 77ίo a

&β ίλ-eiV corresponding decompositions according to Lemma 4.3 (ii). Then,
U, ϋf are unitarily equivalent if and only if for each element oc of A ,
the essential *-representations i7a,77ά of (L1(G)i a o/) are unitarily equi-
valent.

There is a one-to-one correspondence between continuous unitary
representations of an arbitrary locally compact group and essential
*-representations of its group algebra. This correspondence preserves
irreducibility and unitary equivalence (see for example NAIMAUK [13],
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p. 376). Applying this result to a continuous unitary representation u
of Gf on ξ), the corresponding essential *-representation U of (Lx(Gf), *)
is defined for each element Ψ of Lx (Gf) and each pair x, y of elements
of $ b y

(U{Ψ) x,y) = f Ψ(a, g) (u(a, g) x, y) dn(a) dm{g).
Gf

Moreover, for each element (a, g) of Gf,

u{a,g) = limU({a)g)Ξi)

where {ΞfΛ ζΛ} is an approximate identity for (1^(6^),*), and for
each element Ψ of Lx(Gf), (a,g)Ψ denotes the left translate of Ψ by
(a>g)'-{a,g)xI/(af>g') = Ψ^g)"1^'^')) Applying these results to the
representations u, U of Gf and (i^1(6ί/), *) defined in Lemmas 4.1 and 4.3
respectively, a straightforward calculation shows that the projection-
valued measures α ι-> EΛ, oc ι-> Fa are identical. It is then clear from the
results of this section that the following generalization of the above
results holds:

Theorem 3. There exists a one-to-one correspondence between essential
*-representations Π of (L1(G)} oc of) and protective representations π of G
with multiplier α o / given for each element ψ of Lx (G) and each pair x, y
of vectors in $), the separable Hilbert space on which Π and n are defined,
by

(Π(ψ) x, y)= f ψ(g) (π{g) x, y) dm(g) .
Q

This correspondence preserves irreducibility and unitary equivalence.
As an application, consider the left-regular representation I of Gf

onL2(θ'):

By Lemma 4.1 (ii),

where λx is the projective representation of G with multiplier ω = oc o /
on L2 (G) given by

λa is called the twisted left-regular representation of G with multiplier ω.
Similarly let L be the left-regular representation of (Lx(Gf), *) on L2(Gf):

By Lemma 4.3 (ii),

£ = © Λa°oc

where Λx is the essential *-representation of (L1(G)i ω) on L2{G) given by

Λ W Φ = ψωφ .
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§ 5. Properties of Twisted Group Algebras

In this section the results of § 3,4 are applied to an arbitrary twisted
group algebra (L^G), ώ) by replacing A by T. The following results are
immediate consequences of Theorem 2.

Theorem 4. (L^G), ώ) possesses an approximate identity.

Theorem 5. (L^G), ω) has an identity if and only if G is discrete.

For each element g of G and each element ψ of Lλ (G) let ψ be the
y

function defined for each element g' of G by

f) = ω(g, g^g') ψig^g')

The map ψ ι—> ψ is a linear isometry on L^G). ψ is said to be the
y y

twisted left-translate of ψ by g with multiplier ω. An application of
Theorem 2 shows

Theorem 6. A closed subset S of Lλ{G) is a left-ideal in (L1(G)} ω) if
and only if it is closed under all twisted left-translations.

The proof of the following result is best obtained by direct methods.
It follows closely the proof given in Chapter IV of LOOMIS [6] for
(L^G), #) and depends on a result of CALABI [1], first used in this form
by KLEPPNER [5], which states that ω is trivial if Gω is abelian.

Theorem 7. (L^G), ω) is commutative if and only if G is abelian
and ω is trivial.

The remarks following Theorem 3 show that (Lx(6r), ω) possesses a
faithful essential *-representation. This fact gives rise to

Theorem 8. (L^G), ω) is an A*-algebra.
Let π be a mapping from G to the group U ($)) of unitary operators

on the separable Hubert space ί) such that
(i) π(e) = 1

(ϋ) the mapping g -> (π (g) x, y) is m-measurable for each pair x, y
of elements of § ,

(iii) π(g) π(g') n{ggt)~1 = ω(g, g') 1 for each pair g, g' of elements
of G. Then π is a weakly m-measurable protective representation of G
on ξ) with multiplier ω. It follows that the mapping (t, (?) •-> tπ{g) on
Gω is an n X m-measurable unitary representation of Gω on £). I t follows
from 22.20 of [3] that the mapping is weakly continuous. Hence the
mapping π is weakly Borel. We have therefore proved

Theorem 9. Every weakly m-measurable protective representation of G
on separable Hilbert space is a protective representation.

A further immediate consequence of Theorem 3 is the following

Theorem 10. The set of irreducible protective representations of G with
multiplier ω forms a complete family.
9 Commun. math. Phys., Vol. 13
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