
Commun. math. Phys. 13, 73—80 (1969)

Representations of an Algebra of the
Gell-Mann-Dashen Type

M. HAVLICEK
Faculty of Technical and Nuclear Physics, Czech Technical University, Prague

Pveceived December 2, 1968

Abstract. Let G°° denote the infinitedimensional Lie algebra given by commu-
tation relations [α« , α£] = c*β a?m+n (m, n = 0, 1, . . .), where c^β are structure
constants of the arbitrary centerless Lie algebra. The paper is devoted to the con-
struction of a certain class of skewsymmetric irreducible representations (so called
F-representations) of the algebra G°°.

I. Introduction

Let G be an arbitrary r- dimensional real, centerless Lie algebra with
commutation relations

[a*, aP] = c«PaV (I)

(α, β, γ = 1, . . ., r). We now take the vector space $°° with basis afn

(m = 0,1, . . ., αg ΞΞ αα) formed by all finite linear combinations of afn

and define the following commutation relations among afn

These relations respect JACOBI identities so that G°° forms an infinite-
dimensional Lie algebra-infinitedimensional extension of G.

Algebras extended in this way or in a similar way have a physical
application [1,2] and the question of their representations arises.

In the paper [3] finitedimensional representations of the more
general Gell-Mann-Dashen "current algebra" are constructed. It may
be useful to know more general representations of such algebras.

The presented paper is devoted to the study of the class of irreducible
representations by skewsymmetric operators of the algebra 6r°° which
are, in some way, the direct generalization of the finitedimensional
skewsymmetric representations of G°° (these representations are con-
tained in this class, of course).

The paper is part of a larger work in which representations of a
certain infinitedimensional Lie algebra A (P, SU2) having application in
elementary particle physics [4, 5] are constructed.
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II. Kepresentations of the Algebra Gt30

Consider at first any finitedimensional nontrivial representation of
G°° of the dimension N. Then a*n are N X ^"-matrices and it is clear that
there exists such s < oo, s -= 0 , 1 , . . . that

τ*αf = 0*; α = 1,2, . . ., r < = > τ * = 0, ί = 0,l, . . . , 5 (3)
and

α?+ι = $ + !»? (4)
(τ* and ρ^ + i 'real coefficients).

Indeed, in the opposite case the equivalence (3) holds for every s.
Because equation ^af = 0 represents the system at most 2N2. r scalar
equations of s + 1 variables τl there exists for s + 1 > 2 2V2r the nontrivial
solution and it is a contradiction.

Assume that afa -= ρ^αf for some m (ρ^-real coefficients). Then from
commutation relations (2) we have

Because algebra G has the trivial center this system of equations
has only a trivial solution. It shows, together with Eq. (4) that

< = eU? (5)
for every m, where ρ^-real coefficients and ρ^ = ό^ for m ̂  s.

In this paper we shall study irreducible skewsymmetric represen-
tations of 6r°° which fulfil conditions (5) without limitation of the
dimension1. These representations we shall call J'-representations of G°°.

Substituting (5) into Eq. (2), using triviality of the center of G and
Eq. (3) we obtain

Eq. (2) shows further that the operators af form the representation of
the basis of the algebra

[α?,^] = cfρ| + ,α/. (7)

This algebra we denote Gs+l (ρ^) and its dimension equals to r(s + 1).

* We use EINSTEIN'S summation convention and in this chapter indices i9 j,
k, I, run over 0 to s.

1 Note in this connection some fundamental definitions. Following e.g. [6] a
representation / of an abstract Lie algebra L by the linear operators in the Hubert
space H is any homomorphism T of L into the set of linear operators in H L -> T (L)
= I having a common dense domain Dl , invariant with respect to all operators of I,
on which

T([LΛ9 Lβ\) - φ = (T(LΛ) T(Lβ) — T(Lβ) T(LΛ)) - φ

for every φ ζ Dt and Lκ , Lβ ζ L. A representation is called skewsymmetric if the
homomorphism T maps L into the set of skewsymmetric operators. A representa-
tion I on DI is called irreducible if there exists no proper closed subspace H'ζ H
with a dense set D'C H' such that Wζ H'.
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The following theorem summarizes and slightly enlarges the obtained
results.

Theorem 1. Every F -representation of the algebra G°° is determined
through Eq. (5) by a certain skeiυsymmetric irreducible representation of
the algebra Gs+l (ρjj where $n fulfils the condition (6).

Proof of this theorem either follows from the above considerations
or is quite clear.

III. The Structure of the Algebra Gs+1(ρL)

At first we shall consider conditions (6). We introduce s -f- 1 dimen-
sional matrices

Ω1^Γ,Ω0^Es+1 (8)

(E8+1 the (s + 1) -dimensional unit matrix). Using Eq. (6) for n = 1
(m -> m -f- k) we prove

Ωm = (ΓΓ (9)

(Here m is exponent. Heretofore (x)m signifies the m-th power of x as
opposed to xm where m is a superscript.) From this we get the dependence
of the constants ρ^ m > s -f- 1 on the constants ρ*+1 and Eq. (6) is
fulfilled identically. In fact from (8—9) we have

Ωa + ι,= (Γ)°(iy>°*ά + b+i=$ + iά + t (10)

(α, δ = 0,1, . . . ,). If a = i and b + j = n in (10) and if we substitute (10)
into Eq. (6) we obtain the relation

βmβn + i = A + n

This relation is fulfilled because it is (10) for b + j — m, a = n and the
discussion of the conditions (6) is finished.

From (10) by substitution b -f j = m, a = i we obtain also the
relation

Tins relation f or m = s + 1 is the well-known Hamilton-Caley relation.
We can easily prove [using Eq. (11)] that r (s + 1) -dimensional

matrices
adαf = C« X (ΓY (12)

(where X -Kronecker product, (7α-matrices of the adjoint representation
of the algebra G) form the adjoint representation of the basis of the

algebra β +^ρϋ
This representation is faithful because the matrices (Γ)Ό . . . , (Γ)s

are linearly independent and the adjoint representation of G is faithful
because of the triviality of the center of G.
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Let Pbe any (s -f 1) (s -f 1)-matrix, so that the powers (Γ)° . . ., (Γ)s

are linearly independent (Γ is a cyclic matrix). Denote by GS+1(Γ)
(s -f- 1) r-dimensional Lie algebra with adjoint representation (12),
so that #s+1(em) = GS+1(Γ). It is clear that, if Γ and Γ' are equivalent
matrices, then GS+1(Γ) and Gs+I(Γf) are isomorphic algebras and we
can put Gs+l(Γ)^Gs+l(Γ).

Let λlt . . ., λp (p ̂  0) denote all mutually different real roots of
characteristic equation of Γ with corresponding multiplicities sl5 . . ., s^
and let λp+1, . . > , λ p + q, λv+l, . . .,λp + Q (q ̂  0) denote all mutually
different complex roots of this equation with multiplicities sp+1, . . ., Sp + q
so that

γι i 9 Y1 o _L Ί
Z-i a ~τ~ ^j α ~T~

α = 1 α = 2? + 1

Let further

denotes the qua sidiagonal (5 -f- 1) (5 + 1)-matrix, where f or α = 1, . . ., p

λβ 1 0 ... 0
0 λβ 1 ... 0

o

(14)

and Γa is 5α £α-matrix, for a =

rt _
•* a

<*α

-Λ

0

0
0

βa
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0

0
0

1 0

0 1

*aβa

0
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0

0

0
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0

0
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~βa

0

0

0

βa

Ka

(15)

(αα = Reλα, βa = ImΛJ and Γa is (2sa) (2 $0)-matrix.
It is easy to verify that matrices Γ and Γ' are equivalent (in the real

way!) because they have the same elementary divisiors. Eqs. (12)
(Γ-> Γ) and (13) give for the basis of Gs+l(Γ) = Gs+l(Γ) the relation

adα? = C« x (ΓJ = C« X (Γaγ . (16)

The powers (Γα)°, . . . (Γaγ ~lfor α = 1, . . .9p or (Γα)°, . . ., (ΓJ2^1

for α = ^ > - f l , . . . , ^ - f g respectively are linearly independent and, due
to Hamilton-Caley equation for matrices Γa, further powers of Γa arc
akeady expressed by means of these initial powers2.

2 Assume, on the contrary, that for some a the number of linearly independent
powers of the matrix Γa is less than sa(2 sa). Then the initial s -j- 1 linearly indepen-
dent powers (Γ')0, . . ., (Γ')s of the matrix Γ' would be expressed as a linear com-
bination of the linearly independent matrices, the number of which is lower than
<5 -f- l But it is not possible.
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The consequence of this fact and of Eq. (16) is that the algebra Gs+l (Γ)
is equal the direct sum of its ideals i.e.

βa+1(Γ) = ( Θ G*(Γtt)) θ ( ~_0 G^(Γa

We see that in the direct sum we have two fundamental types of
ideals according to the two different types of matrices Γa. In the following
Γa denotes a matrix of the type (14) and Γa denotes a matrix of the type
(15).

a) Structure of the Algebra Gs« (Γa)

In this case we can write

Γa = λaESa + NSa (17)
where for sa > 1

NSa == || (5^ ̂ J

is sa sα-nilpotent matrix so that (NSa)
Sa = 0 (for sa — 1 NSa = 0).

Consider matrices
ad<t = C* x (NJ> (18)

(lc = 0, . . ., sa — I). These matrices form the basis of the adjoint represen-
tation of G8* (Γa) because of its linear independence and connection with
the initial basis in the following way3

adα« = C X (λaESa + NSaY = £ (*) (A.)'-* C« X (NJ*

from which we have
ί

ζ\r\/~tX \ τ £(l ζ\f\ΓI^ ^ 1 Q \aααα,i — 2j Sik Άaaak V 1 J /

where

ta _ ll\ ( Q \i-k
ζik — 1 £/ V &'

Eq. (18) gives further the commutation relations among α*^:

We see that GSa (Γa) equals the semidirect sum of the algebra G and
nilpotent subalgebra G*r with basis a*'ti i = 1, 2, . . ., sa — 1 .

For sa = 1, (?^ is trivial; for sa = 2, (P equals commutative r-dimen-
sional algebra etc. Because the structure of the algebra GSa(Γa)
depends only on sa and does not depend on λa we write GSa (Γa) Ξ GSa.

3 We put (λa)° ΞΞ 1 also for λa = 0 and (2^ )° = J0 also for *β = 1.
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b) Structure of the Algebra G2Sa(Γa)

Now we can write [see Eq. (15)]

TΊ 771 v 771 I- R W v 771 ι 7V7" \x

where
1 0
0 1

and (.F2)
2 = — jE^. Matrices

ί&α'β = Cκ X (NSa)
k X

0 1
-1 0

X

(22)

(23)

(24)

(fc = 0,1, . . . , sα — 1) form the basis of the adjoint representation of the
G2Sa(Γa). The connection with the initial basis is the following [see
Eqs. (12), (22-24)]:

S° , < = 0, . . . , 2sa ~ 1 (25)

where

(26)

The commutation relations among α*'fc and &*'Λ we obtain from Eq. (24)

,, k+l<sa

o,

Z < 5α (27)

^γ

These commutation relations describe the real form of the corα-
plexification of the algebra G8a. For example if G^==/SU(2) and sa = 1
then relations (27) are commutative relations of SL(2, C) etc.

As in the preceding case we write G28a(Γa) = &2S(t.

IV. The Γ-Representations of the Algebra G°°-Continuation

Now we are in a position to formulate the final theorem:

Theorem 2. a) Every irreducible skewsymmetric representation of the
algebra

' 0" Q^\ (28)
= p + l I
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(sa - 1, p, q = 0,1, . . .) and every set of numbers Λ15 . . . , λ^ + q (λa φ λb

for a Φ b, λa = λa for a 5g p, λa 4= λa for a > p) determine through equation

Ί> Sa—l p + q sa—l

= Σ Σ Άj<} + Σ Σ (Άj<j + ηamit>°a',i) (29)
α = 1 7 = 0 α

(a%j9 a^ p resp. α*'? , δ*'? α > p-generators of GSa or G2Sa respectively;
coefficients are defined by Eqs. (20) and (26)) a F -representation of G°°.

b) In this way we obtain the set of all F -representations of G°°.
Proof, a) This part of the theorem, except for the irreducibility of

the representation of (?°°, we easily prove by direct calculation, using
Eqs. (20-1), (26-8) and the general formula

(m + n

\ *
We prove irreducibility of the representation (29) of the algebra G°°.

The transformation (29) connecting the first r(s-\- 1) operators of the
algebra 6r°° with operators of the algebra (28) is regular. To prove it,
consider the adjoint representation of Gs+l(Γ') with Γ' given by
Eqs. (13-5). Substituting from Eqs. (17) and (22) into Eq. (16), using
Eqs. (18), (24) and further Eqs. (20), (26) we obtain

P sa—l / p + q sa~l \

Θ Σ %.) adα V 0 0 Σ (&ι &A<i + tfi adδS,', ) (30)
α = l ; = 0 \α = ̂  + l / = 0 /

Because the matrices of the right side of Eq. (30) form a linearly
independent set with the r(s + 1) elements and the same also holds for
the matrices adαf, the transformation connecting them is regular. It is
exactly the transformation (29) for m ̂  s. Therefore we can calculate
ααj 6 @Sa an(i aa'j> ba',j ζG2s« by means of af i ^ s and reducibility with
respect to these operators af implies reducibility with respect to algebra
(28) which contradicts our assumption.

b) For every .F-representation of G°°, following Theorem 1, there
exists a skewsymmetric irreducible representation of GS+1(Γ) with
certain s and Γ, such that the operators afn ζ G°° are expressed with help
of aξ ζGs+1(Γ) through Eq. (5). The connection of aξ ζGs+I(Γ) with
generators αj'? ζ GSa and 0%'^, b%'j ζ G2Sa is given by Eq. (30) (adαJJ^ -> a%'}i

etc). Further, for every eigenvalue λa of the matrix Γ, the relation

holds

(j = 0, . . . , sa — 1). Actually, the matrix .Γis equivalent (in the complex
way) to the canonical Jordan form i.e. equals the direct sum of the
matrices of the type (14) with possible complex λa. Substituting this
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form of Pin Eq. (11) we easily obtain the desired result. The direct con-

sequence of the relation (31) are the relations

Sa S({ S({

to, V Jl ta f a V Λ J a ™α V1

 ni ^a ή Π <? — 1
£mj — 2j Qm^ip ^mj ~ Z; Qm ±ip ^mj ~ Zj Qm ^ip 1 ~ U> ' ' > Sa L '

i^O i = Q i=0

Substituting (30) in Eq. (5) and using these relations, we immediately

obtain Eq. (29) and the proof of the theorem is finished.

V. Concluding Remarks

a) Let G be a compact algebra and ^ = . . . = s^ ~ 1, q — 0 in the

relation (28). Then the algebra (28) equals

G® . . .θ G

because G1 ΞΞ G [see Eq. (21)] and relation (29) leads to

v
ny. V1 (1 \ιnn<x (n<x. — na.\aιn — 2ij (Λa) aa (aa,0 = aa)

a = I

In this case the algebra (28) is compact and has nontrivial finite-

dimensional skewsymmetric representations, so that the .^-representation

of 6r°° is also finitedimensional.

b) Beyond these finitedimensional jF-representations of G00, there

exists for compact G the set of ^-representations of infinite dimension.

For example, if G Ξ= SUZ algebra (28) can be the algebra of the Euclidian

group of motions in three dimensions (p = 1, sl = 2, q = 0) or algebra

SL(2, C) (p = 0, q - 1, s1 = 1) etc.
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