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Abstract. In most quantum field theories, one defines the Hamiltonian (energy)
operator H as a limit of ' 'cutoff" operators Hs: H — lim Hs. (The operator Hs would

S—> co

be the correct Hamiltonian for a world in which all momenta are smaller than s.)
Since the cutoff operators seldom converge in any of the standard operator topo-
logies, it is often necessary to invent more subtle notions of "convergence". For
some of the these, it is not obvious that the "limit" operator H is unique. In this
note we point out that for one such method of obtaining convergence, the "limit"
operator is not unique. In fact, (under mild assumptions about the operators H8),
if Hs converges to H, then Hs also converges to H + •#» where R is an arbitrary
bounded positive operator.

0. Notation

Let Jf be a separable Hubert space with inner product ( , •). An
operator H on Jf is a densely-defined linear transformation from Jf into
Jf with domain &(H). We write Hf cH to mean ®(H')C$(H} and
H'f = Hf for all / in &(H'). A symmetric operator satisfies: (Hf,g)
= (/, Hg) for all /, g in &(H). A symmetric operator is essentially self-
adjoint if it has a unique self-ad joint extension. We assume that the
reader is familiar with the basic facts concerning unbounded self-ad joint
operators [cf. 4, Chap. 8].

1. Statement of the Problem

Suppose we are given a family of self-adjoint operators HS) (0 < s < oo).
Here are two related methods for obtaining a symmetric operator H as
a "limit" of the family of operators Hs\

Method A. Find a dense linear manifold Q) and bounded invertible
operators Ts, T such that:

(i) For all s, TS®C@(HS).
(ii) For each / in Jf, lim T8f = Tf.

(iii) For all / in ̂ , lim HsTsf exists.
S—>oo

Define the limit operator H with 2(H) = T 3> by:

HTf= lim H8T8f,f in @.
S—>co

The operator H is symmetric, but need not be self-ad joint.
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Notice that, in principle, this method may yield a limit operator H
Λvith Q) (H) r\ @ (Hs) =• {0} (in which case one could not hope to obtain
Hf - lim Hsf).

8—> oo

Method B. Replace condition (iii) in Method A by :
(iii') For all /, g in 2, lim (HsTsf, Tsg) exists.

S-»CO

If the bilinear form defined on TO) x T 2 by Tf, Tg -> lim
S— > oo

(HsTsf, Tsg) is continuous in either variable, then there is a unique
operator #with 2(H) = T Q> such that (HTf, Tg) = lim (H8Tsf, Tsg).

S-+00

A weaker version of Method B was used in [3], and a combination of
both methods was used in [1, 2]. (See comment 4, Section 2.)

Notice that given Qί and TSJ the symmetric operator H defined by
Method A or B is unique. However, it is conceivable that one could
choose a different family Ts satisfying (i) and (ϋ) and obtain a different
limit operator H. We shall see that this is, in fact, the case with Method B.

Let the family of self -adjoint operators Hs be given. If there exists
a dense linear manifold Q) and operators Ts, T satisfying (i), (ii), and
(iii) (or (iii7)), we shall say that the operator H defined by Method A
(or B) is obtainable from Hs by Method A (or B).

The limit operator H is symmetric, but not necessarily self -adjoint,
so one must pass to a self -adjoint extension of H (if there is one) to
obtain a self-adjoint operator as a "limit" of the operators Hs. Of course,
// may have more than one self -ad joint extension, so nonuniqueness can
arise at this stage. However, suppose that the operator H obtained from
Hs by Method A (or B) has a unique self -ad joint extension //. Let H'
be another operator obtainable from Hs by Method A (or B). λVe can

pose the main question : Is Hf C H ?

2. Uniqueness of the Limit

It is not difficult to see that an operator obtainable by Method A
is unique in the sense described above. An elementary computation
(see [5]) shows that if H is obtainable from Hs by Method A, then

lira (H8 - i)~lf = (H - i)~lf for all / in (H - i) @(H) . (1)
S— >oo

If H has a unique self -ad joint extension H, then the Cayley transform
(H — i) (H + ί)-1 is a unitary operator and hence (H — i) @(H) is dense
in JΓ. Since the family (H8 - i)-1 is uniformly bounded

lim (H8- i)~lf= [cl(#- i ) ~ l ] f = (H - i)-lf for all / in Jf .
S— >oo

If H' is also obtainable from Hs by Method A, equation (1) holds
with H replaced by H' . Thus (Hr - t)-1/ - (3 - i)"1/ for all / in
(H' - i) &(H'), and this shows that H'
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This result says that Method A yields a unique limit modulo the
usual difficulties with uniqueness of extensions of symmetric operators.
Thus the uniqueness of Method A is as good as one could hope. The
result belows says that the uniqueness of Method B is as bad as one
might fear.

Theorem. Let the family Hs, (0 < s < oo) of self -adjoint operators be
given, and assume that the spectrum of each Hs contains the interval (0, oo).
Suppose H is obtainable from Hs by Method B, and let E be any bounded
positive operator. Then there is an operator H' with H' C H such that
H' -\- E is also obtainable from Hs by Method B.

Proof. Since H is obtainable from Hs by Method B, we are given a
dense linear manifold 2 and bounded invertible operators Ts, T, such
that the conditions (i), (ii) and (iii') of Method B are satisfied. We shall
show that there exists a dense linear manifold 2' C 2 and bounded
invertible operators Ts such that :

(i) For alls, T's^
fC^(Hs).

(ii) lim T'sf = Tf for all / in JΓ.

(in') 'Ufa (H8T',f, T'sg) = ((H + E) Tf, Tg} for all f , g in &.
S— > oo

The operator H' will, of course, be the restriction of H to T 2' .
We shall set T's = Ts -f- s~l/z USQ, where the operators Us are iso-

metries to be defined below, and Q = (T * R T)1/2.
Let Ps( ) be the spectral measure associated with Hs. Then for each

/ in Jf ,

limPβ((α,α + e))/ = 0. (2)

Further, the condition that the spectrum of Hs contains (0, oo) implies :

If 0 < a < b, then the range of Ps((a, &)) is infinite dimensional. (3)

Let /! , /2 , . . . be a countable set of elements in 2 whose linear span
is dense in K. Let 2' be the set of all finite linear combinations of the
vectors fk . By (2), given any fixed 5, there is a number ε = ε (s), 0 < ε (s)<l
such that

lP.((*,β + β(β)))2y*|<y for l^k<β. (4)

Let Es — Ps((s, s -f £(#)))• By (3), the range of Es is infinite dimensional,
and hence there exists an isometry Us which maps the entire Hubert
space Jf onto the range of Es. Now

(H, T'sti , T'.f*) = (H, T,f} , 2y») + β-V» (H, T.I, , U s Q f k )

By hypothesis, the limit of the first term as s -> oo is (HTfj, Tfk).
We shall show that the limits of the second and third terms are 0, and
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the limit of the last term is (E T f j } Tfk). From this, the theorem follows
immediately by linearity.

Note that Es Us = Us and that Es commutes with H. Thus

j9 U 8 Q f k ) = 8-V*(H8T8fg, EsUsQfk)

The norm of the restriction of Hs to the range of Es is at most s + ε(s)

< s -f- 1, and Eq. (4) says that for large s, \\E8TsfΛ < — . Hence the
s

modulus of (6) is less than s~1^(s + 1) I—j ||Q/7tJ, which goes to 0 as

s ->• oo. Similarly, the limit of the third term of (5) is 0.
As for the last term, we have

s-l(HsUsQf.j, U8Qfj.) = a-*((H8 - s) U8QL9 UsQfk)
(7)

Since \\(HS — s) Us\\ < ε(s) < 1, the first term of (7) tends to 0 as s -> oo.
And, ( U 8 Q f ί 9 U s Q f k ) = (Qfj; Qfk) = ( E T f j } Tfk) because ϋs is an iso-
metry.

Comments

1. The hypothesis that the spectrum of Hs contains (0, oo) simplifies
the proof, but is stronger than is necessary. It is sufficient to assume that
there exist numbers m (s) with lim m (s) = oo such that P8((m (s), w(«s)-f 1))

S—> co \N /

has infinite-dimensional range. Stated loosely, the only case in which
the Hs are unbounded and the conclusion of the theorem may be false
is when some of the Hs have spectrum whose unbounded part consists
of a discrete sequence of eigenvalues of finite multiplicity. In this case,
one can show that the limit is never unique, but it is probably not true
that the conclusion of the theorem holds.

2. There are examples in which the conclusion of the theorem holds
with 2' — 2. This is true even if 2 has uncountable Hamel dimension.

3. It is worth noting that in case the operators Hs are uniformly
bounded, the convergence defined by Method A (respectively, B) is
actually convergence in the strong (resp. weak) operator topology.

4. In [1], the author defines the renormalized Hamiltonian HIGn as
a limit (in the sense of Method B) of the renormalized cutoff operators
ΠTGn(s). The nonuniqueness of Method B noted above indicates that this
procedure is undesirable, and we shall briefly describe here how one can
obtain the renormalized Hamiltonian of [1] without recourse to Method
B. All page numbers refer to [1].

The operators HTQn(s) can be written as a sum HTQn(s) = Hls + F2g

(pages 344, 369, 383). The author proves:
(a) Hls converges in the sense of Method A to an operator H^ (p. 381).
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(b) There is an operator F2 such that &(Hλ}C@(V^ (p. 382, 383,

358) and for gl9 g2 in ^(H^ Km ( g ί 9 V2sg2) = (&, V2g2) (p. 383). Thus
S~ > oo

H1 and V2 are both defined on ^(H j ) , and each is a (unique) limit of the

corresponding cutoff operators H1S) V2s.

It is natural to define the renormalized Hamiltonian Hτeiί by:

I wish to thank Professor JAMES GLIMM for many helpful and stimulating con-
versations.
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