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Abstract. The Slater KDP model defined on d-dimensional tetrahedral lattices
is proved to have a phase transition for which the entropy and energy are discon-
tinuous functions at a transition temperature kTc = ε/ln2, independent of dimen-
sionality.

I. Introduction

It has been realized for some time that the Slater KDP model has a
first order phase transition at kTc = ε/ln 2, where ε is the anisotropy
parameter [1—3]. The exact solutions to the two-dimensional case [4]
and a particular one-dimensional case [5] support this, but a rigorous
proof has not been given for the general case.

The argument of TAKAHASI [2] and others can be used to establish
rigorously the "frozen" nature of the model for T < Tc. In particular,
the following theorem is proved in Section II:

Theorem 1. The limiting energy and entropy per site are zero for T < Tc,
i.e.

lim E/N = 0 and lim SjN = 0 for all T <TC.
N —> co JN7 —> co

TAKAHASI'S argument also leaves little doubt that the model''thaws"
at Tc but it appears very difficult to prove this rigorously. Instead, in
Section III use is made of the exact high temperature series expansion
to prove

Theorem 2.

Lim lim E/N ^ ε!2 and lim lim SIN ̂  ( k ! 2 ) l n 2 .
T -> Tc + N -* co T -> Tc + N -> co

From Theorems 1 and 2 it follows that the energy per site EjN and
the entropy per site S/N are discontinuous at Tc — ε/Jc In 2, which is
the definition of a first order phase transition.
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II. Low Temperature Thermodynamie Behaviour

Let us first specify certain necessary properties of the crystal lattice
and introduce some terminology. Of course, the crystal lattice must be
four-coordinated so that the ice rule may be used1. Further, there must
be an anisotropic c-axis so that two of the six possible H2P04 configu-
rations (vertex configurations) at a given lattice site have zero energy,
namely those vertex configurations with dipoles directed parallel or
antiparallel to the c-axis, whereas the other four vertex configurations
at a lattice site have energy ε. We also require that the lattice be such
that the ground state has total energy E = 0. We choose "cylindrical"
boundary conditions with the c-axis parallel to the cylinder axis that is,
periodic boundary conditions are imposed in (d — 1) coordinate directions
it is not important whether periodic boundary conditions are also imposed
in the c-axis direction as well. A typical example which satisfies these
conditions is shown in Fig. for the two-dimensional case. The usual
three-dimensional case involves the diamond, i.e. tetrahedral lattice.
Also, let N be the total number of sites on the lattice and n be the number
of sites in a (d — 1) dimensional layer perpendicular to the c-axis and
m be the number of sites in a column along the c-axis, so N = nm.

C Axis

Fig. 1. A two-dimensional example of the kind of lattice considered in this paper.
Because of the periodic boundary conditions the half-bonds on the right of the
figure are joined to the half-bonds on the left. The particular arrow, i.e. H-bonded,
configuration shown corresponds to four (+) chains and two (—) chains

The low temperature partition function is given by

Z(T)= Σ e~~N°K (!)
states

where K — ε/k T and the sum is over all states of the system consistent
with the ice rules. The state function NQ is the number of vertex con-
figurations which have energy ε. Also, the state functions N+ and N_

1 References 1—5 give a basic description of the Slater KDP model which will
not be repeated here.
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are the number of vertex configurations which point parallel and anti-
parallel, respectively, to the c-axis; thus, N = N0 -f- N+ -f N_.

We now follow TAKAHASI [2] who described the states of the lattice
in terms of sets of 2n chains of length m. Each chain consists of a con-
nected sequence of hydrogen bonds, one from each (d — 1) dimensional
layer in the lattice. Each chain is either a (+) chain or a (— ) chain. All
the directed hydrogen bonds in (+) chains have projections onto the
c-axis which are parallel to the c-axis. All the directed hydrogen bonds
in (— ) chains have projections onto the c-axis which are antiparallel to
the c-axis. To put the argument another way, a vertex configuration
with dipole pointing parallel to the c-axis must arise from the intersection
of two (-f) chains whereas a vertex configuration with dipole antiparallel
to the c-axis must arise from the intersection of two (— ) chains. Other
vertex configurations with dipole perpendicular to the c-axis must be
the intersection of one (-f ) chain and one (— ) chain.

Clearly each configuration of (-{-) and ( — ) chains specifies a state of
the system and because of the ice rule each state of the system is specified
by some chain configuration. However, many chain configurations may
specify the same state. In particular, two (+) chains (or two (— ) chains)
can intersect at a site in two ways, each way specifying the same hydro-
gen bond directions. On the other hand given specified hydrogen bond
directions a (-f ) chain and a (— ) chain may intersect in at most one way
at a site. Therefore, the partition function can be written as a sum over
chain configurations, with a factor to correct for overcounting, as follows :

(2)
chains chains

where the last equality follows trivially from N = N+ -j- N_ -f NQ .

Let us evaluate Z ( T ) when T = Tc, i.e. when K = In 2. From Eq.
(2) Z ( T C ) is the number of chain configurations divided by 2^. First
consider the number of chain configurations if the (+) and (— ) chains are
indistinguishable. Since there are precisely 2 ways to thread two chains
through each of the N sites of the lattice, this number is just 2N. Taking
into account the distinguishability of (-j-) and ( — ) chains then gives

Since the lowest energy of a state is zero, Z/(T) in Eq. (1) is a mono-
tonically increasing function of T. Also, it is usual to take the limit of
large lattices in such a way that lim njN = 0 as N -> oo. Thus lim

(-F/NkT)= lim (l/ΛΓ)lnZ(Γ) = 0 for all T < Tc. Hence, EjN

= - d(FINkT)dβ = 0 and S/N = - BF/dT^ 0 and Theorem 1 is
proved.
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Eq. (2) also provides insight into the behavior of the model for T > Tc.
It seems plausible that a finite fraction of chain configurations should
have a finite fraction b = NQ/N of NQ sites and this is sufficient for the

lim ( l / N ) l n Z ( T ) to go like b (log 2 - K) for T>TC. However,
N —. > oo

attempts to prove this statement involve one in a morass of knotty
geometrical problems.

III. High Temperature Thermodynamic Behaviour

Let us recall the exact high temperature series expansion which is
an identity derived in Ref. [3]. (A shorter way to obtain this identity
is outlined in the appendix.)

( 1

τ (3)

where the sum is performed over all subgraphs of the lattice (not neces-
sarily connected) with the restriction that any subgraph with any
vertices of degrees one or three is neglected. (The contribution of the null
subgraph is explicitly written outside the sum.) The weight of a graph
in Eq. (3) requires the number of vertices, j, of degree two in the graph
and the number of vertices, g, of degree two wich additionally are local
maxima or minima of the graph with respect to the c-axis, i.e. the two
bonds incident to the vertex which are contained in the graph are in the
same horizontal layer of the crystal lattice. For the remaining j — g
vertices of degree two contained in the graph the two incident bonds
come from adjacent layers.

First we prove that g is even for any connected piece of a graph
and therefore for any graph. A connected graph which has only vertices
of even degree (two and four in our case) is an Eulerian cycle which may
be traced using each edge once and only once such that one finishes at
the place where one started and one does not lift one's pen from the
paper, i.e. an Eulerian cycle is a closed, continuous walk on the lattice.
Now, project onto the c-axis any one such walk, where for convenience
we require that the starting point is at the middle of some bond. Then,
clearly the projection is a one -dimensional walk and the number of
immediate reversals in direction of such a walk must be even with the
starting condition which we have required. Now, the number of such
reversals modulo 2 must be the same as g modulo 2. The reason that the
modulo 2 is required is that each vertex of degree four in the original
lattice can give rise to either zero or two reversals in the projected walk.
Even so, this suffices to prove that g is even.
5 Commun. math. Phys.,Vol. 13
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It now follows from Eq. (3) and g even that Z(T) ^ ίy -f e~κ\N

or that nm (_F^ TN) ^ ln / L + e_ jΛ ^ (4)

N—> oo \ 2 /

In addition it is necessary that the free energy FjN be continuous at Tc

in order to satisfy the convexity requirement of the partition function.
Thus,

lim lim (-FINkT) = 0 (5)
'

N

From (4) and (5) it follows that in the limit T -> Tc -f- the energy and
entropy per site can be bounded below by taking appropriate derivatives
of the right hand side of (4), thus yielding the results stated in Theorem II.

Appendix: Derivation of Eq. (3)

This derivation of the high temperature series expansion follows the
derivation of the ice series expansion in Ref. [6] rather than the more
cumbersome derivation in Ref. [3]. One writes the identity

Z(T) = Σ Π (1/2) [1 + eti(ξt) eit(ξt)] Π B ( ξ t ) , (6)
states edges vertices

ij i

where ξi describes the vertex configurations at vertex i. B(ξi) = e~k

or 1 depending on whether the vertex configuration ξi has energy e or 0.
A convenient way to specify c i ό ( ξ ? ) is that it is -f 1 (— 1) if the vertex
configuration ξt directs the ij bond so that its projection onto the c-axis
is parallel (antiparallel) to the c-axis. Thus, the product cίί(ξi] c^(f2-)
is -f- 1 (— 1) if the vertex configurations ξϊ and ξj of neighboring vertices
i and?' are compatible (incompatible) along the bond ij. (Thus, the weights
of states with two or no hydrogens on any bond are zero in (4) as they
should be.) Expansion of the product in Eq. (6) yields

£j \J-) === (I/") \A i 4β J /j _H I /
graphs vertices [̂  £$

i

where sέ is the degree of the ith vertex in the graph. The single vertex
configuration summation in square brackets yields 0 if si = 1 or 3 or 1
if Si = 4. If Si = 2 and the vertex is a local maximum or minimum the
sum yields (1 — 2e~7b)/(l -f 2e~Λ); otherwise it yields 1/(1 + 2e~ft).
Thus, Eq. (3) follows from Eq. (7).
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