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Newman-Penrose Approach
to Twisting Degenerate Metrics*

C. J. TauBor
Department of Mathematics, University of Bradford

Abstraet. The well known method of NEwMAN and PENROSE is used to find
solutions of the Einstein empty space field equations, which are algebraically
special and where the degenerate principal null vectors are not hypersurface
orthogonal. As is to be expected the method systematically yields the results
obtained by KErRr. An explanation is given of the complex coordinate transforma-
tion technique of generating new metrics from Schwarzschild’s; also a generalisation
of Kerr and Schild type metrics is investigated.

1. Introduction

This paper shows how to find solutions of Einstein’s field equations
in empty space which contain shear-free, diverging, and twisting geodesic
rays.

Such solutions were first dealt with in a general manner by Kerr [1],
although he only summarised his results. As is well known, he found an
explicit solution which is a rotating generalisation of the Schwarzschild
solution. Another explicit solution was found by NEwMAN, UNTI, and
TAMBURINO [2], also a generalisation of the Schwarzschild case, though
apparantly of less physical interest. KErr and Scuirp [3, 4] found
a whole class of solutions, including the above Kerr rotating metric, all
having a metric tensor of the form:

Guv = N + 2 HLL,,

where 7, is the metric tensor of flat space and I, is a null vector.
Recently Rosrnson, RoBinson, and ZuND [5] have given more details
of KERR’S approach, and, as well as making several important simplifica-
tions, have found a large class of explicit solutions.

In the following we will repeat the above work using the Newman
and Penrose approach [6]. Just as NewmaN and TAMBURINO [7]
showed how the Robinson-Trautman solutions [8] (the twist-free case)
could be found in a straightforward way by this method, we can do the
same for the above class —again with not too much difficulty.

* This work was completed as part of a proposed Ph.D. Thesis, while the
author was receiving a Research Studentship Grant from the University of Bradford.
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In addition there are two sections which are believed to contain
essentially new results: (a) we explain why the complex coordinate
“trick” of NEWMAN et al. [9, 10] works and (b) we generalise KERR and
ScHILD’s work, investigating metric tensors of the form:

h,uv = g,uv + 2 Hlylw

both 7,,, and g,, being solutions of the Einstein vacuum field equations.
The latter stems from a paper of EpEren’s [11].

2. Notation

Following NEwMAN and PENroOSE [6], we introduce a null tetrad
2l = (I#, n#, m*, m*), where Latin (letters from the middle of the al-
phabet) and Greek indices run from 1 to 4, giving tetrad and tensor
components, respectively. The metric tensor is related to its tetrad com-
ponents as follows:
ghr = 21 ) — 2 m ¢m»

v
n

— ,',/mn Z“ 2
. 4 ,,u
nmn - g,uv Z’

and 7, 9"? = 0L .

Tetrad indices are raised and lowered by #™" and 7),,,. Ricci rotation
coefficients are defined by Yunp = 2p ;0 24 2, and the twelve complex
Newman-Penrose spin coefficients are expressed in terms of these as
follows:

=Y1s1 T T YV = %(7121 = Vsa1)

0= "Yi3a A= —Yausa = % (Y124 =~ V314) (2.1)
0= Y133 MU= = Yoy g = % (Y123 =~ Vs43)

T= %132 V= = Vo2 V= % (V122 = Vs42) -

Tetrad components of the Riemann tensor are expressed in terms of the
five complex scalars:

Vo= — R, ,.lm"leme

¥, = — R, ol leme

Vo= — LR, 06 (IPnlen® — I'n’me mo) 2.2)
¥y = — R, .10 men®

Vy= — R, pentm' neme .

The usual operators are employed to denote intrinsic derivatives:

D‘ﬁ:?{’;#l# A¢:¢;u"ﬂ
0p = ¢, m" 8¢ = ¢, m".
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3. Procedure

We may choose the real null vector I* so that it is tangent to the
congruence of geodesic rays. This is equivalent to saying that x = 0 and
¥, = 0; by the latter relation we mean that I# is a principal null vector
of the Riemann tensor. The fact that the rays are shearfree, diverging
and twisting means respectively ¢ = 0, p # 0, o # g (although the twist-
free, or hypersurface orthogonal case [7, 8] where g = @ is automatically
included as a sub-case). By the Goldberg-Sachs theorem [6] we must also
have ¥, = 0 and hence in the sense of the Petrov-Penrose classification
our solutions are algebraically special (type II if ¥, # 0, unless 2 P2
=3 V,¥, ie. type D; type III if ¥,=0, ¥,+#0; or type N if
Y,="¥,=0,¥,+#0).

A coordinate system (x#) is introduced, adapted to the congruence,
with 22 = r taken as an affine parameter (r,,/# = 1) whereas % (@ = 1,3,4)
are constant along the rays (2%,/# = 0). (Latin letters from the beginning
of the alphabet will always range over 1, 3 and 4.) The tetrad vectors
then have the following form:

It = o4
nt = Uy + X904
mt = wdl + §404 .
And thus the operators (2.3) become:
D = 9jor
A = Udjor + X0/0x*
0 = wofor + £0[oxe .

If the I* direction is fixed as above, the freedom allowed in the choice
of null tetrad is given by the following transformations:

" = Alr mt* = mh } 3.1)
nt* = A-lpn A is real

[ nt* = pi N
mt* = etOmu C is real } (32)

g

n** = n# + Bm! + Bm* + BBI* (3.3)

m* = m* 4+ Bl* .

(We use an asterisk or dash to denote the results of tetrad or coordinate
transformations respectively, unless tetrad and coordinate transforma-
tions are combined when a dash suffices.) (3.1) and (3.2) may be used to
put & = 0 and (3.3) to put 7 -+ & = 0. Further transformations are limited
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to A= A4°, C=C° B= B°p. (As always a degree sign means ‘inde-
pendent of »’. It is omitted on quantities which appear frequently, e.g.
P, Q, etc.) The restriction on B is deduced by using Newman-Penrose
cquation (4.1).

Permissible coordinate changes are as follows:

=7 x% = g% (%) (3.4)
=1+ Ry(x?) ¥ =a° (3.5)
7 = R(x%)r 2% = 2%, (3.6a)

(3.6a) must be combined with the remaining tetrad transformation (3.1)
to keep D = 9or:

¥ = R-» mt = m# }

i — s (3.61b)

The Newman-Penrose equations [6, 12 Chap. 4] for empty space,
which are equivalent to the Einstein vacuum field equations, are given
in three groups of first order partial differential equations. The first two
groups are derived from the empty space Ricci and Bianchi identities
respectively, and relate the spin coefficients (2.1), the Riemann tensor
components (2.2) and their derivatives with respect to the operators
(2.3). The third group are obtained from the commutator relations for
the operators. Applying the latter to each of the coordinates r, ¢ in turn
gives a set of equations relating the tetrad components U, w, X¢, & to
the spin coefficients. All the equations take a simpler form because

x=0=¢=1+a=0=¥,=Y,. (3.7

Only a few of them are written out explicitly in the next section where
they are used to put 7= A=0. In this simpler form the Newman-
Penrose equations are given in the literature. The above three groups
each contain equations denoted ‘“radial” or “non-radial”, the former
being distinguished from the latter because they contain the operator
D = 0/dr. Radial equations can be directly integrated with respect to r
as ordinary differential equations, giving ‘“‘constants” of integration,
independent of r. The results are then substituted into the non-radial
equations which, on equating the coefficients of different powers of r to
zero, give relations between the “‘constants”.

The principal result of the next two sections is the demonstration thai
metrics of the class under consideration are all of the form:

dst=— 1 P2 (2 5% dgdf
+ 2 (l, dar) (dr + Re{P1(r + i2) @wd(} — Ul, da?)
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where

lda* = du — Re{Qd(},
w=—(r—1X)"14+ PoQ/ou
U= U+ rdlogPlou + Re{¥PI(r + iX)"1}.
w=2at = a4 ial;
P, QY3 0 U Y

4. Preliminary Simplifications

49

are all independent of r; the last three quantities are expressible in terms
of P and @ and their derivatives; P, @ and ¥§ satisfy three differential
equations which, if solved, would completely determine the metric.

Several empty space Newman-Penrose equations with (3.7) holding

are now presented.

Radial equations:

Do = ¢
D=0
Doa=g(ec—17)
D =ap

Dy=—17+ ¥,
DA4+6%7 =ol+B—(a—pB)7
Du+d6t=gp+17+ @G- BT+ P,
DV,=3 ¥,
DU =—(y+7)
Dw=gw— @+ p+7)
DX2*=0
Dés=gée.

Non-radial equations:

=0+ (T+p—)7
do—bt=—oii+B-—a-Drtoly+7 %
0Xe A& =(r—a— P X+ 18+ (u—yp+7y) &
fgo— 8B =(@- Q)Xo — G- P E-(F-a)E.

Di=2(—0),
Du+Ade=(y+9e+¥-¥,.

4 Commun, math, Phys.,Vol.13

(4.1)
(4.2)
(4.3)
(4.4)
(4.5)
(4.6)
(4.7)
(4.8)
(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
(4.14)
(4.15)
(4.16)

The complex conjugates of (4.13) and (4.14) together with (4.6) and (4.7)
respectively yield:

(4.17)
(4.18)
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We now integrate radial Egs. (4.1)—(4.5), (4.8)—(4.12), (4.17) and (4.18):

o=~ (r+ 09" (4.19)
7=10 (4.20)
o =74 alp (4.21)
B = pa (4.22)
y =y — 070 4 L PP 2 (4.23)
W, =Pl od (4.24)
U=U— (y°+7)r+ 1072 - P30 -1 P56  (4.25)
®= 0@+ @+ )+ @ (4.26)
Xe = X0a (4.27)
&o = &% (4.28)
A= 2[g (4.29)
o= p0 + 00T + A% + 3 PR 0@ + PR o (4.30)

where A% = — U® + (0 + 99 ¢ 2 + 797022 + X0 ¢ 2, ,. X' is defined as
follows: using coordinate transformation (3.5) it is possible to set the real
part of ¢° equal to zero. Thus we write:

® =12, X real. (4.31)
Under coordinate transformation (3.4),
X040 = (9z%|0x2) X0
EOa' — (axa'/axa) an

and thus, by the existence theorem for systems of partial differential
equations [13], from now on we may take

X0t —1 g3 p
21— PQ 4P,

Put ol =wu, 23+ vat = . To keep &% and £°¢ in the form of (4.32)
further coordinate transformations

(4.32)

U'=0¢2¢uw (4.33a)
must be restricted by:
&l =0. (4.33D)
It is convenient to introduce the notation:

Dyb = Qogiou + V'
D, =Qogjou+ V.

V = 0/0x® + i9fowt = 29/0F .

As usual
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(4.33b) now becomes Dy’ = 0 and under (4.33) we have:

P'=1PD,’ P '=1PDJ (4.34)
Xov — xor_ ]
X'= X% 4 {X¢ = D, ¢’ . (4.35)

Under the remaining null rotations (3.3):
X*=X+4+2BP

and hence it is possible to put X* = 0, so that .D; becomes /0w (which
greatly facilitates later work). But under (4.33) X transforms as in (4.35),
so on using this coordinate transformation in future, to keep X = 0, we
must combine it with a further null rotation, in which

2BP' = — D . (4.33¢)
Note the following commutator relations:
DD, — D,D, = (D,Q) D,
D,D, — D,D, = (D,@) D, (4.36)
DD, - = (D;Q — D,Q) D .

It is now shown that on examining the non-radial equations (4.13)
to (4.16) 7 is of such a form that under the combined coordinate and
tetrad transformation (4.33a, b and c) it can be equated to zero. We
substitute the solutions of the radial Eqs. (4.19)—(4.31) into the non-

radial Eqs. (4.13)—(4.16), as described, and obtain respectively the
following equations.

£0079, = 70(f0 — &%) + A° (4.37)
— E0aq0, — — 70 + 1 27070 + 0(B° — &) (4.38)
EObe)ba _ X()bé:?bu — (y," +2 ,}70 _ 7;270,;0) £oa Zosam (4.39)
— (&0 + 130) Xoa :
gov g0 §°b§°b“— ~2iXX% 4 (2 80+ 2iX70) Eoa
’ ’ (4.40)
(2 B0 — 2iX70) goa,
Using (4.32) and X = 0, we obtain from (4.39) and (4.40)
A=0, hence A=0.
@ + g% = PD,Q
24+ 2¢X1% = —~ (P[P) Dy P
2iX = PPD,Q — D,Q)
With these results (4.37) becomes
Dy(P1%) + (D@ — D4Q) (Pr%)2 = — PD,Q°. (4.41)
Now under null rotations (3.3):
% =170+ BO

4%
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and thus we show there exists a {’ as in (4.33a), satisfying (4.33Db), and
such that BO satisfies (4.33¢) with 70 = — B°. From (4.33¢) and (4.34) it
is required first of all that

P PD,l = D' . (4.42)

By the existence theorem for first order linear partial differential
equations [13], such a {’ must exist. It is not unique; it can be replaced by

& =10 (443)

where f is an arbitrary function of its arguments. Substituting the value
of P1° obtained from (4.42) into (4.41), and making use of commutator
relations (4.36), we obtain

VT 0Dyl fow — V(DyL') 00 jou =0
Thus Dyl = g (¢, £) for some function g. By a suitable transformation
(4.43) it is possible to set D3¢’ = 0, and hence the required {’, satisfying
(4.33), with B® = — 19, exists. With 7% = 0, (4.38) implies u° = 0.
Under tetrad transformation (3.2) P* = Pexp(¢C°), so suitable
choice of C° makes P real. (4.33) now reduces to

{'=0(0), " analyticin (. (4.44a)

Under (4.44a), P’ = P(df’|d{) and therefore we combine it with a tetrad
transformation (3.2) to keep P real, namely:

exp(iC°) = (ALJdL)V2 (dE/jA gy (4.44D)
so that P’ = P |d{'[/d].
5. Integration
If we put 7 = A = 0, the Newman-Penrose equations have been given
in full for the present case [2, Egs. (2.7) and (2.8)], so we omit them to
save space. We can easily integrate the radial equations as follows:
Firstly Eqgs. (4.19)—(4.31) only now with 7% = u° = 2% = 0. Also,
V=P80 + Y0* + § Yo, (5.1)
where Y9 = 502 W9 4+ 3 VY (a0 + B9),
YiI=3¥) @ +:&2%,).
v=1"+ P30+ § Y0 4 § Y90 (5.2)
W, =W+ Z00* + 5 Z80° + § Z80* + } Z90® (5.3)
where Z9 = 2 (2a0 + f°) W3 + 023,
ZY =298 (@ + 1800 X ) + 89 Y9 .+ (500 + 359 ¥
Z§=3YY (@ + 180X )+ 5500 Y3, + (B + 28 Y9
Z)=2Y3 (& + ife X,,).
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The non-radial equations are then solved as explained in Section 2.
The following list of equations are all that can be obtained, although
many of them appear more than once, sometimes in a disguised form,
i.e. in linear combinations or differentiated with respect to D,, D, or D,.
Some of the calculations though routine, are very long, and much use is
made of the commutator relations (4.36). Because only the method is
important, and that has been clearly demonstrated several times [2, 6,
7, 12], we merely quote the results.

W= —2iSPD,Q — PD,iZ (5.4)
Y- =0 (5.5)
W40 =— P1D P (5.6)

W= PD,g+1D,P (5.7)

go=—1D,P (5.8)

23 — P*(D,Q — D,Q) (5.9)

U9 — — Re{P2D,(D, log P + D,Q)} (5.10)

A= —U°— XD log P + Dyi X (5.11)

W = PD,D,log P+ D,(PD;@) (56.12)

Y9 = 2720 + PDyA° + 2P (D, Q) A° (5.13)

PO— PD,y° + (3PD,G + D, P) (5.14)

D,WY 4 3D, Q¥ =0 (5.15)

V9 — VY — i P2{D,(D;2 + XD,Q) + D,Q(D; X + 2D, Q)
+ Dy(D X+ 2D,Q) + D,Q(D, X+ ED,Q)} + 4:0XU°= 0
(56.16)
D, %Y —-3¥Y9D,logP — PD,¥V} — (2PD,Q —D,P)¥}=0.(5.17)
Egs. (5.4)—(5.14) give all the “constants” of integration of the radial
equations in terms of P, @ and their derivatives. The last three Eqs.
(5.15)—(5.17), relating P, @ and ¥§ are the ones which must be solved
for explicit solutions — KERR calls them ‘““field equations”. Having ob-
tained the components of I#, n* and m# it is easy to find the components
of their covariant counterparts, and hence the metric given in Section 3,
using
Juv = 2l(,unv) - 2m(#mﬂ) .
Following Rosinson, Rosinsox and Zuxp [5], if we introduce the
quantities:
N = D,@ + D,log P
and
H=D,N + N?
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we may obtain several simplifications:

A= P?D,N

W= PD N
V9= P:D,5
Y= P:D,E

and thus (5.17) becomes
D,(PY P-%) — P(D,D,E+2ND,;E)=0.

These last relations all result from repeated application of (4.36).

6. Special Case

Apart from (4.44), the only remaining co-ordinate-tetrad trans-
formation is (3.6). Under the latter, unfortunately, X°'* = R X! and
hence it must be combined with a further coordinate transformation in
%, of the type (3.4), in order to keep X0 = 1. The complete transforma-
tion is as follows:

r = Rr, w = GQu,t, )
=17,
¥ = R1[» nH* = Rnt (6.1)
mt = m | ROG/Ou=1.

Under (6.1), the basic quantities transform thus:
Pi = R*YY, 2'=RXY
P =RP
Q' =R1Q+VG=D,G
Di Q' = D,;Q — DylogA .

Obviously we could put P = 1 or take @ purely imaginary, etc., by means
of this transformation.

1f D, P is put equal to zero, so that (6.1) is restricted to B = R(¢, {),
it is easily seen that the conditions

DE=0, DDQ=0 (6.2)

(which appear as important conditions in the following) are sufficient to
enable one to put

DiQ=0. (6.3)
Further transformation of type (6.1) is then restricted to
' = Rr, u' = Ry
¥ = R-1lr,  nF = Rn# (6.4a)

m** = m# where R is now constant,
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and
u' = w4+ f(¢, §) where f is an arbitrary function, R = 1. (6.4h)

Clearly the “field equations’ (5.15)—(5.17) are not necessarily com-
patible; following KERR consider them with P = 1, when they take the
simpler form:

D,¥Y+3D,Q¥Py=0 (6.5)
Tg - W% + DyDyD,yQ — D3D3D4Q =0 (6.6)
D,¥Y — D,(D;D,D,Q) + |D;D,Q12=0. (6.7)

[In deriving (6.6) and (6.7) extensive use is made of relations (4.36).]
These equations are compatible if ¥§ = 0 (Type III or N). Otherwise,
using (6.6), (6.5) and (6.7) become of the form:

D(PY+PH+6=0
Dy(WY+ P9 +3D,QWI+ TP+ D=0.
Here © and @ are expressions containing () and its derivatives only.
Using commutator relations (4.36) it is easy to see that (¥3 + ¥9) can
be obtained in just two ways from these two equations, namely:
3(DyD,Q) (WY+ P9 — 4D,Q0 +- D,® — D,6 =0
6(DiX) (PI+ PY — 20260 — 3D,QP +3D,QP
+D,®—D,d=0.
As Kerr pointed out, if one or both of D, D;@ and D, 2 is non-zero, the
expressions for ¥'§ + W9 can be substituted back into (6.5)—(6.7) giving
further conditions on Q.
Alternatively (6.2) holds. In this special case, allowing P to be such
that D; P = 0 instead of P = 1 does not affect (6.2), and thus the above

coordinate system may be used with (6.3) and (6.4) holding. The “field
equations” (5.15)—(5.17) now take the simple form:

Y9=cu+a+ b (6.8)

where ¢ is a real constant; @ and b are real and independent of w.

PV (PVV logP) = ¢ (6.9)
2ib= PV 7 (P2(V@ - TQ)+2P(V@—-TVQ VVlegP  (6.10)
Via+ib)+ Qc=0. (6.11)

When ¢ = 0 obviously all quantities are independent of u, and thus
Vi = 6 is a Killing vector.
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7. Explicit Solutions

All the explicit twisting degenerate solutions found so far belong to
the special subcase of Section 6. In fact RoBINSON, RoBINSON and ZUND
[6] have skilfully succeeded in bringing all the previous explicit solutions
into one larger class which they completely solve. Their method is
outlined in the following.

The solutions of (6.8)—(6.11) are those with

P2V log P = — U® = constant (7.1)

[(6.4a) may be used to put U® = + 1, 0, or —1 if required]. This means

that the Gaussian curvature of the 2-space with metric ds? = 3 P-2d{ d¢

is constant, and thus under (4.44) it is possible to put
P=2"12(1-10°0) (7.2)

(6.9) and (6.11) are now equivalent to ¢ = 0 and a + ¢b = M ({) respec-
tively, where M is an analytic function of {. It remains to solve (6.10).
Since, by (7.2), V'V P = 0, (6.10) may be written as
2ib = M () — M(Z)
= P3{VV(P1VPQ) - VV (P17 PQ)}. (7.3)
The general solution of this equation is @ = @, + @,, where @, is a par-

ticular integral and @, is the general solution of the homogeneous
equation. A simple form for @, [5] is:

[ (/2U2PHTME), U0
“= {1~ e M@ dL, U0=0. 4
Under (6.4b), @' = Q + V' or, regarding @, as fixed,
Q=0+ Vf. (7.5)

The homogeneous equation, i.e. (7.3) with b = 0, is equivalent to the
existence of a real “‘potential” I/, such that:

PV P2Q,=VVII.
But under (7.5), if we write f = P-111,
P11V P2Qy=0. (7.6)

Further change in f being limited to V'V (Pf) = 0. Hence without loss of
generality take @, as the general solution of (7.6):

Qo= P2 L()

where L is an analytic function of ¢.
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The NUT solution [2] is now given by Q,= 0, with M ({) =a + ¢b
= constant (b = 0). [A transformation (6.4b) with f such that:
Vi= (/20 P{)yta — (U20)~1ib

takes () into (23/2 U° P)~1 b which is of the form given in the reference].

The Kerr solution is given by @, =0, L = ¢k, where £ is a real
constant, and M ({) is a real constant. (Transformations of type (4.44)
and (6.4a) are needed to bring the Kerr metric into its usual form, with
angular coordinates, 0, ¢ [15, p. 191]).

The Demianski metric [10] is given by a superposition of the above
Kerr and NUT values for Q. Finally, the Kerr-Schild metrics are given
by @, = 0, M = real constant, as will be shown in Section 9.

8. Complex Coordinate “Trick”

A method of generating the Kerr and Demianski metrics from
Schwarzschild’s, by using a complex coordinate transformation, has been
demonstrated [9, 10]. Why this method works for solutions of the Eqgs.

(6.8)—(6.11) is easily seen. Such a complex transformation in general can
be written:

r'=r4+17, w=u+1i8
{'=¢ (8.1)

S and 7' are both functions of £, £ only, and are real. After the trans-
formation, »* and u’ are taken as real, with » and % complex. Thus:

0= — (r+12)1, whereas g=— (F—1i2)1.
We see that the effect of (8.1) is to leave P and ¥'$ unchanged (although
it may be necessary to add a constant to the latter), with:
Q =Q+Vis
X=X-1T. (8.2)

If P, Q, V3, X are solutions of (6.8)—(6.11), then P', @', X', W'Y will also
be solutions, where P’ = P,

Y9 = P9+ const. = c'u’ + a’ + il
¢=c, a+1ib = (a+ay)+ib+by)—i8c, (8.3)
@y, by are real constants.
T must satisfy _
b —bt+ PPVPT + 27 PV logP =0 (8.4)
and since 272" = P2(V'Q’ — V@), for consistency we must have
PVyVS=T1T. (8.5)
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Note that for a given 7', solution of (8.4), § = S, + S;, where S, is a par-
ticular integral of (8.5) and 8, is a solution of the homogeneous equation
V78, = 0. Therefore, by use of (6.4b), we can make S, zero and only
S, need be considered.

For example consider the cases for which this method was discovered.
The Schwarzschild solution is characterised by :

¢c=b=0, a= constant
R=2=0
Pasin (7.1), (7.2), U< 0.
Then by the above method we can easily obtain the Kerr or NUT
metrics. For the Kerr metric put ¢y = by = 0,
T=2k1+5U00C0 1 ~F0%0)
S =)/2k U1 P-1,
For the NUT metric put a, = 0, b, # 0,
T = constant
S=—TUlogP .

9. Generalised K-S Solutions

By a generalised Kerr Schild (K-S) solution of the Einstein vacuum
field equations we mean one which has a metric of the form:

by = Guy + 2HL,L, (9.1)

where g,, is also a metric which is a solution of the Einstein vacuum
field equations and [, is a null vector with respect to g,,. KErr and
ScHILD [3, 4] dealt with the case where g,, was the metric of flat space,
but they approached the calculations with g,, in the usual Cartesian
coordinates whercas we shall consider the case when g,, need not be
flat [11] and use the same kind of null geodesic coordinates as in the
previous sections.
Define
h#Y = gtv — 2H M

where indices have been raised with respect to g, ,.
It follows that
h¥h,, = O}
and
L0, =0

i.e. h*” is the inverse of h,, and [, is null with respect to both metrics.
Use a semicolon or a V' to denote covariant differentiation with respect
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to &, or g,, respectively. Then from the identities
Buve="0 and V,g,, =0
it follows straight-forwardly [11] that
T, = her{V, (HLL) + V,(HLL) — V, (HLL)}

where Tﬁv_= ]’ﬁv — Yo, Fﬁv and V5, are Christoffel symbols for 4, and
gu» Tespectively. Further:

Ra,u = ]{a/z + V,u Tge - VQ re + T:Q T::M - T‘;;M TQQ (92)

ou

where R;, and K,, are the Ricci tensors for 4,, and ¢,, respectively.
We assume that g,, is a known metric, with

K, , =0 (9.3)
and proceed to find the possible solutions for %,, with
R,,=0. (9.4)

Introduce a null tetrad z with respect to g,,; , in (9.1) is taken as one
of the tetrad vectors, z{. Then (9.3) is equivalent to the usual empty
space Newman-Penrose equations written in terms of this null tetrad.
Using (9.2), (9.4), takes on a tetrad component version, namely:

- - §
0= Ry, = R, .25z

= Tim— Tmia = Vé'm T8y — Vim T — v T (9.5)
+ v T + Yo T8 + vl TY + Tg’q .
- Tlgm qu,q

where Tk, = T%,24 282, and a semicolon denotes the usual intrinsic
derivative. The first of the equations gives

Ry, =uxH=0.

Hence » =0, and [, is tangent to a congruence of null geodesics.
We now make the extra assumption that o is also zero; ¢ = 0 follows from
the form of the Riemann tensor for 4,, when g,, is flat [4] but it does
not, appear to follow in general (the possibility of ¢ +# 0 is being inves-
tigated [14]). The case p = 0 (which should present no difficulties) is now
omitted and thus » = ¢ = 0 implies that g,, belongs precisely to that
class of metrics considered in Sections 2—5, and all the results obtained
there (t = @ = 4 = 0, ete.) are now freely applied here.
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The remaining Egs. (9.5) which are not identically zero are
0= Ryy=— D+ (o + ) DH + (¢ — 92 H (9.6)
0= Ryy— — (0 + @) DH + (¢* + ) H 9.7)
0=Ryy= (0 + @) (AH +2(y + ) H) — 8(5H + 2(+ ) H)

— @+ 38) (OH + 2(x+ B)H) — 8(0H + 2(@ + B) H)

9.8
— (4 3p) (OH + 2@+ ) H) + n(DH + 2(¢ — @) H) 09
+a(DH = 2(0—0)H)—-2HD(y + 7),

0= Ryy=—0{(c— 0 H}— @+ p)(o—0) H+adoH ©9)

+2¢@&+ p)H — DOH — 2D{(a + p) H}
(9.6) and (9.7) are radial equations which give
H=H@+20)-

The non-radial Eqgs. (9.8) and (9.9) are solved in the usual way. From
(9.8) we obtain several of the Eqs. (5.4)— (5.17) as well as:

X0aHO +3(y° 4+ $°) H° =0, (9.10)
uwl—gt=0. (9.11)

From (9.9):
E0eHO + 3@+ B HO=0. (9.12)

We transform coordinates by (6.1) so that D, P = 0. (9.10)—(9.12)
become

D,H'=0, (9.13)
D,X=0, (9.14)
D,H® + 3(D,Q) HO=0. (9.15)

(9.13) and (9.15) imply that D;D,Q = 0, and thus together with (9.14)
we see that not only does g,, belong to the general class of 2—5, but
also to the special case of Section 6. We are permitted to put D;Q = 0
and thus (9.13) and (9.15) are equivalent to saying that H° is constant.
Examining the form of 2#” it is clear that H° only enters into the h22
term, in fact

Yy =PI+ 2H°

where ¥3’ relates to 2#* and ¥ to g#*. Thus in general the only difference
between by, and g,, s a real constant in ¥'3, which in (6.8)—(6.11) trivially
will always give a new solution. This is not quite so trivial when g,, is
flat, i.e. the Kerr-Schild case. In this case:

¥3=0,

Y= PP(PV T logP)=0.
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Therefore P2V 7 log P = — U® = constant. Hence ¥’ is a real constant
and %, has the form given at the end of Section 7. V# = ¢4 is a Killing
vector with respect to both %,, and g,,, and is in fact translational with
respect to g,,,:

G VFV' = =200,
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