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Abstract. An example is given of an irreducible representation of a finite-
dimensional Lie algebra containing the Poincare Lie algebra and giving rise to
isolated positive masses. In addition the representation is Poincare partially
integrable (which assures the continuous physical spectrum for the energy- momen-
tum vector) and "Poincare-covariant" in a weak sense.

A connection between this example and some recently published impossibility
theorems is shown, and conclusions about a possible future work in this domain
are also drawn.

I. Introductory Remarks and Definitions

Some time ago an example was given [1] of an irreducible representa-
tion of a finite-dimensional Lie algebra containing a Poincare subalgebra
for which the squared mass operator is self-ad joint and admits only
isolated masses. This example, valid as a counterexample to a no-mass-
splitting theorem conjectured earlier [2], suffered from obvious difficulties
as to its physical interpretation. In particular the example of [1], which
is partially integrable on its translation subalgebra [contrarily of the
affirmation of [3]: it is just that the domain of integrability of the
translation subalgebra does not coincide with the invariant domain of
the entire δu(2,2) Lie algebra; in that example the energy-momentum Pμ

is taken on its maximal domain of definition], is not integrable on the
Lorentz part of su(2,2). Would it be Poincare-partially-integrable [4]
then according to [5] the spectrum of the energy-momentum vector Pμ

\vould have to be continuous. The fact that the irreducible representa-
tions of the translation group are all one-dimensional shows that there
is no surprise in the fact that in [1] the spectrum of Pμ admits gaps of
the order of magnitude of the mass-splitting (a fact which was also
mentioned by [3]).

In [3] a corollary of a rigorous no-go theorem (applied to finite
dimensional Lie groups and proved by JOST and SEGAL [6]) is proved
which makes it possible to apply the result of [6] to a very restricted
family of non-integrable (or local) representations of Lie algebras. It is
only the fact that one could think (as it is claimed in [3]) that practically
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no interesting example of mass splitting can be found within the frame-
work of non-iiitegrable representations of finite-dimensional Lie algebras
containing Poincare, that urges us to present a new, Poincare partially
integrable, example.

Moreover, in [3], it is left unclear in what sense does the result
generalize the theorem of JOST and SEGAL. One immediate remark will
be that if together with the finite translation in variance of [3] one also
supposes (a thing which is more than reasonable since the common
domain of [3] is also the "mass-spectrum domain") that the domain
contains one analytic vector for one element of the Lie algebra, then the
domain will necessarily contain (by the assumed finite translation
in variance) many common analytic vectors for a whole set of elements
of the Lie algebra. Therefore the hypotheses of [3] are quite near to the
integrability of a direct component containing Poincare, for which we
already have the theorem [6]. The example which we shall show later
hints also at the fact how integrability is connected with translational
invariance.

An interesting different approach to our problem — which however
demands another and stronger type of hypotheses — was recently dis-
cussed by COLEMAN and MANDULA [7]. These authors try to gain an
additional information about the coupling between space-time and inter-
nal symmetries from the n-particle states. Indeed, assuming that the
group giving rise to mass-spectrum is a symmetry-group of a non-trivial
$-matrix when acting in the generally admitted way on the ?ι-particle
states, and modulo very strong assumptions of "particle-finiteness",
analyticity, etc., a direct sum coupling is proved for a large family of
groups and representations. One immediately remarks that in [7] the
group hypothesis is quite crucial [otherwise one meets difficulties with
the existence of a nice invariant common dense domain and with finite
Poincare invariance for the Lie algebra it seems that for non-integrable
representations the theorem of [7] will not hold generally], and that the
result of [7] should by no means be applied to spectral-unifications
(sometimes refered to as "spectrum-generating-algebras" or "dynamical-
groups", or "non-invariance-groups") since by definition they are not
symmetry groups of S-matrix.

Before we pass to our example we make the following remarks:
a) By a representation of a finite dimensional Lie algebra, we under-

stand a mapping of the algebra to the ring of operators acting on Hubert
space (each operator with its own domain) such that there exists a
common invariant dense domain on which the operators satisfy the
commutation relations of the Lie algebra. Physical operators (and their
spectral decomposition) will therefore be considered on other (larger)
domains than the common invariant dense domain.



298 M. FLATO and D. STEENHEIMEB, :

b) By irreducibility of a Lie algebra representation we understand
Schur-irreducibility, namely that every bounded operator commuting
with all the representing-operators is a multiple of the identity operator.

To be precise, we shall say that the bounded operator B commutes
with the representing- operator X if BXφ = XBφ for all φ in some
dense subspace (obviously contained in the domain of X). We could
have given stronger definitions and especially, if X is (e.g.) skew-adjoint
and if we write B = Bl-\- iB2) with Bl and B2 self-adjoint, require that
the spectral resolutions of Bl and J52 commute with that of X. However,
if we have Schur-irreducibility with the former (weak) definition of
commutation, it is evident that we shall have also commutation according
to all stronger definitions, and therefore all definitions of Schur-irreduci-
bility are equivalent. It will therefore be enough for us, in the following
(and as far as Schur-irreducibility is concerned), to suppose commutation
in the above weak (and more practical) sense.

c) One can define a domain of partial integrability (as we do) as a
domain which contains a dense set of common analytic vectors for all
elements of the given subalgebra. In such a case it is evident (in virtue
of [3]) that no dense domain can be found in our Hubert space which
will be invariant under the entire Lie-algebra, be of Poincare-partial -
integrability, and give rise to a non-connected mass-spectrum. In accord-
ance with remark a), we shall need at least two different domains (as
indeed will be seen later from our example): one for partial integrability
and mass-spectrum, the other being the common invariant dense domain
for the whole Lie algebra.

Would one define a domain of partial integrability in a non-construc-
tive way, namely by the existence of a unique connected group of operators,
the infinitesimal generators of which close to the given subalgebra on
the given domain, then it is an open question (and we believe a difficult
one) if one can find a finite-dimensional algebra of operators with a
unique dense domain invariant under the entire Lie algebra, which is at
the same time a domain of Poincare-partial-integrability in this sense
and contains eigenvectors corresponding to different isolated mass-
eigenvalues.

d) What is the possible physical interpretation of the two domains ?
The first domain, which is the one for Poincare partial integrability and
mass spectrum, has a very clear role: it is the domain on which all gene-
rators of Poincare are represented by operators having the right spectral
properties for every particle, and thus describing the kinematics of every
particle and the mass-spectrum of all particles.

The second domain which is the common invariant dense domain
under the whole algebra (in our example it is contained in the first
domain) has quite a different role to play: it is the domain on which
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the representation of the entire algebra is irreducible, namely on which
all particles (characterized as mass eigenvectors) are glued together.

A one-particle state which belongs of course to the first domain can
in our example be expressed as an infinite series of vectors belonging to
the second domain.

II. The Example

These remarks being made we pass to the example itself : Let D J~ (m0)
be a unitary irreducible representation of the universal covering P of
the Poincare group P corresponding to a mass m0 > 0 , spin J and
positive energy. The representation space H± will be realized in the usual
way:

Denote by M'μv and P'μ the generators of the Lie algebra & of P in our
representation. Now let H be the Hubert space I/2(0, a) ® Hl : evidently
a vector in H is a function of p, a discrete variable j (taking 2 J -j- 1
values, as in [5]), and of q ξ (0, a). Now we put Mμv = I <g> M'μv and
P'μ — I ® Pμ (where / stands for the identity operator on L2 (0, a) and
the bar stands for the closure). In this obvious manner does & act on H.
For the sake of clarity we notice that P'μ and M'μv, being the infinitesimal
generators of a unitary representation of P on Hv have their usual
domains of definition on Hί} and therefore so do Mμv and P'μ on H.

Next we define idq on a domain with periodic boundary conditions.
The operators Pμ— — iP'μda will be skew-adjoint (on a domain of
vectors which are C°° periodic in q and have in the p variables the same
behaviour as the domain of P'μ in H j) and we shall make use of them as
well as of the operator A — iq defined in H.

Let Sπ be the domain in H of functions which are <7°° with rapid
decrease in the momentum variables p and C°° periodic in q. Let $0 be
the subspace of Sn of functions vanishing (with all their derivatives) for
q = 0 and q = a. Evidently both domains are dense in H. The introduc-
tion of S0 is imposed upon us as Sn is not left invariant under the action
of A = iq, while 8Q does, as can be trivially remarked. (8π and $0 will
play the role of the two needed domains as explained before).

On $0 one can therefore check the relations [Pμ, A\ — P'μ. On the
other hand, the relations [P'μ, A] = 0 = \Mμv9 A] can be checked both
on S0 an 8n. Generally speaking one will be able to check on Sπ the
commutation relations of the Lie algebra

(& __ G? (IT /TV rrt'\ ~^ Q? φ ^ ΰΰ*S 2 — °Z \-ί 4 O7 J- 4.) ^> ^ . J L ^ ^ t - x ,
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where & is generated by the Mμv, T± by the Pμ and T'± by the P'μ. All
these operators are essentially skew-adjoint on 8π and the semi-direct
product is defined by the representation D(l/2, 1/2) θ #(1/2, 1/2) of &.

We have therefore here a representation T((τ) of the Lie algebra
G ^ AQ &2 — (Jδ? θ AQ) (T± θ T±), where A0 is the one-dimensional

Lie algebra generated by A acting on T± φ T^ by ( ,. Q) .

It can be trivially checked that this representation is Schur-irreducible
(as stated before this is the kind of irreducibility in which we are inter-
ested — our representation is even topologically irreducible, in the sense
it is a "closure" of an algebraically irreducible one), with the dense common
invariant domain $0.

Moreover it is partially integrable to the group P2 = SL(2, C}. Es (the
Lie algebra of which is ̂ 2)

 on ^ne domain Sn.

If we identify the physical Poincare group P with the one the Lie
algebra of which is generated by the Mμv and Pμ, we find by reduction

on P: Σ Dj (nmf

Q)φDj(Q) θ Σ DT(nm'o}> where mJ=-^^ ,
n=l n = l a

D^ (m) stands for the representation of P with mass m, spin J, and

positive (or negative) energy, and Dj(0) for the non-faithful represen-

tation of P obtained from the previous for vanishing energy-momentum
p

μ
We have thus the mass relation m = nmfQ, where mfQ is our basic mass

and n is a positive integer. We shall interpret the Dj(0) as a vacuum-
type representation [though as one can notice our vacuum is infinitely
degenerate — contrarily to what is usually assumed in field-theory — a
natural feature of such kind of models; however the corresponding
vacuum subspace is cyclic in our representation space], the Dj as a
representation corresponding to real physical particles and the Dj as
unphysical representations (or alternatively as antiparticles, using the
hole theory of Dirac). One may remark that if one insists on getting rid
after reduction of the Dj representations which correspond to negative
energies, this is also possible if one complicates enough the model: As a
matter of fact one can look at the 19-dimensional Lie algebra generated
by T(G) (which is our 15-dimensional former represented algebra) and
the four generators Qμ = (— d\P'μ) on a domain with vanishing boundary
conditions for 9|, and of course one has to replace 8π by the space 8e of C°°
functions, rapidely decreasing in p, and vanishing for q = 0 and q = a
together with their even-order derivatives in q. Thus if we identify in
this model the physical Poincare Lie algebra as the one generated by the

oo

Mμv and the Qμ (on Se), we get the reduction Σ Dj(n2mo)> where
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m'ά = I—j m0, of the obtained representation of the physical Poincare

group into its irreducible components.

III. Poincare Covariance and Other Remarks

We now remark (restricting ourselves to our first example) that the
use of the Poincare-group will have its full meaning only if we succeed
in incorporating the Poincare covariance to our scheme. We already
know the representatives T (X), where X ζ θ, are antisymmetric operators
on the common invariant domain $0. Let U = (expT) (a, A) be the
unitary representative of the element (a, A) ζ P. Now the operators
U T ( X ) U* satisfy on U8Q the same commutation relations that satisfy
the T(X) on $0. Moreover we have U Sn = 8π (and contains $0 and U8Q),
which assures the fact that physical observables (like rest masses, etc. . .)
will not depend on a particular choice of a Lorentz frame. We have
thus established the Poincare-covariance of our representation, though
in a somehow weaker sense than that postulated in field-theory. (T(G)
and SQ are in this interpretation respectively the representation and the
common invariant dense domain corresponding to no-motion for the
"all particles'picture"). This weak form of Poincare-covariance translates
in a simple mathematical language the principles of special theory of
relativity. We therefore think that it suffices for physical applications.
In any case if we permit the existence of two different Poincare groups,
the spectral one (the Lie algebra of which is generated by the Mμv and
Pμ = — i P'μ 9ff) and the covariance one (the Lie algebra of which is
generated by the same Mμv and by the P'μ), in such a case we can
establish the Poincare covariance of our example (here covariance stands
in the usual sense of field-theory) even on $0.

We now make the following remarks concerning the degree of
arbitrariness and the physical character of our example.

1. From what was said before it is clear that we have no ambiguity
as to the non-unique extension of operators from 8Q to Sn etc. All our
operators are first defined on Sπ (with exception of A = iq which is
defined everywhere) and then we look at their restriction to the domain
$o C $π — an operation which is uniquely defined.

2. It is true that one could have chosen instead of Sπ the domain S^
which is defined from 8n by replacing (in the Fourier series in q) n by
n + t (0 < t < 1), giving rise to the mass relation m = m'0 (n -f t). Besides
of mentioning that this will be just another representation according to
our definitions, we give three reasons why to prefer our representation
making use of Sn to the other possible ones:

a) If we want to have the possibility of defining a generalized vacuum-
state (from the kind stated before) we have to have the eigenvalue
Pμ = 0 in our spectrum. This already forces the choice of t — 0.
21 Commun. math. Phys.,Vol, 12
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b) Only the choices of t = 0 and t = 1/2 will give a symmetrical
spectrum for P0, a thing which is desired if we want to have for every
eigenvalue of P2 at least one real particle.

c) Among the spaces S®, we know that S^ = Sπ is a one which
singles out: it is only Sπ which is spanned by a complete set of single-
valued functions on the circle in q, and for many evident reasons the
coordinate q will have the advantage in being considered as a circular
coordinate.

IV. Conclusions

We are now in position of establishing the connection between our
example and the impossibility theorems discussed at the beginning. As
far as the theorem of JOST and SEGAL is concerned, there is no problem.
We just do not have an integrable representation, i. e. we cannot pass
to a representation of a corresponding Lie group. However our example
is partially integrable on $π on the 14-dimensional Lie algebra ^2

: ̂  ̂ s

only AQ which prevents T(G) from being integrable on $π; in this sense
our example is an optimal one.

As to the result of [3], our example shows that the hypotheses under
which it was proved are indeed too restrictive: if we only permit the
domain of partial integrability (namely the mass-spectrum domain) to
be different from the common invariant domain of the Lie algebra
representation, the result of [3] cannot be applied.

As to the theorem of [7] two remarks are made: first is that our
example shows quite clearly how the group assumption, existence of
common invariant domain which is also invariant under finite Poincare
unitary transformations, etc., are needed for the proof, which is therefore
simply not valid local representations. Secondly — for the case of group
representations — it seems to be interesting in connection with [7] to
clarify what basic differences exist (if at all) between the usual Poincare
invariant $-matrix and the a priori possible non-trivial ^-matrix invar-
iant under our P2 group on H.

Moreover it seems to us that situations of the kind described by the
P2 group were not taken into account in [7]: as a matter of fact it was
quite explicitely supposed in [7] that the state-labelling of particles will
consist of the Poincare labelling in momentum space plus additional
indices not related with momentum space — a thing which is not satisfied
in the case of the P2 group on H.

We now conclude our article with the following three remarks:

1. It is possible to continue this promising direction in the following
ways:
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a) The construction of a non-trivial nicely behaving /S-matrix
admitting P2 as its invariance group (or admitting the 15-dimensional
Lie algebra G as its invariance algebra).

b) The study of more complicated examples (as hinted by the
example of the 19-dimensional algebra) e. g. with spin spectrum, and of
other types of local representations.

c) Introduction of internal symmetries (like $ί/(3)) to such schemes
by similar techniques.

2. Looking for "physically acceptable" mass-spectrum, people have
been interested in the last years in the so-called infinite-component field
theories. Though there exists a connection between this technique and
the general problem of Lie algebras representation, we think that as far
as the greatest success of such theories lies in the existence of a nicely
behaved mass (and spin) spectrum, we prefer to utilize our technique
which does not bring any new doubtful field concept to the theory, and
thus escaping from the well-known field-theoretical diseases of the
infinite component theories.

3. People have been trying last years to find a non-trivial relativis-
tically invariant representation of current-algebra at infinite momentum.
It might be well pointed out that besides of the formal resemblance
between this last problem and our example — both being the search for
Lie algebras representations — there exists another connection between
them: in fact once the Lie algebra representation is given, an invariant
operator can be constructed and utilized as a formal Lagrangian of the
theory. Then one can calculate the algebra of currents from this
Lagrangian (which in some simple cases is isomorphic to the original
algebra). The original representation space is then utilized to saturate
the current-algebra. Of course in such cases one should have an infinite
spin spectrum — but such examples are immediately derived by means
of our technique.
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