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Abstract. The equivalence of the axisymmetric stationary vacuum gravitational
field problem to a 3-dimensional "relativity theory" in the presence of a certain
scalar matter field is shown. An invariant classification can be achieved with
respect to the algebraic structure of the 3-dimensional trace-free Ricci-tensor.
The extension of these results to electrovac spaces is also discussed.

1. Introduction

H. LEVY [1] found recently a 3-dimensional stress tensor for axially
symmetric stationary gravitational fields. The aim of the present work
is a further development of this result to a 3-dimensional covariant
formulation of the problem.

The basic concept will be discussed in Section 2. We shall show here
that the axially symmetric stationary gravitational field problem is in
vacuo completely equivalent to a 3-dimensional relativity theory in the
presence of a certain "matter field" and with axial symmetry.

A quite general property of the Einstein spaces subject to the con-
dition

7? J_,7 7? _ ηπJΛ'μv 2 yμv — μv

and containing a Killing vector field is that they can equally well be
described as n — 1 dimensional Einstein spaces, at the expense of
appearing some additional material fields. The particular class of
symmetric Einstein spaces we picked out excels by the simple structure
of the corresponding field equations.

In Section 3 we propose an invariant classification of the related
space-times based on the algebraic properties of the 3-dimensional Ricci
tensor. Section 4 deals with the electrovac problem. In the Summary
we discuss the various new possibilities offered by our method for the
study of the axialiy symmetric space-times.
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2. Foundation of the 3 -Dimensional "Relativity"

The line element of an arbitrary axially symmetric vacuum gravita-
tional field may be written [2] :

dS* = /-1 ds* - f ( d t + ωdΦY (I)
where

ds* = e^(dQ^ + dz*) + ρ2dΦ2 (2)

and f,ω,γ are functions of xl = ρ and #2 — z only. Using the notation
of F. J. ERNST [3], we introduce the function φ by

Vφ =. - ftρ-^n X Vω . (3)

Here V is the 3-dimensional gradient operator and n stands for a unit
vector pointing in the azimuthal direction. We remark that φ agrees
with Papapetrou's scalar function [4] A. For the field of a rotating
source of finite extension, with mass m and angular momentum a m
we have the following asymptotic conditions:

if r = (ρ2 -f z2)1/2 ->oo, then
2m amz m2 ρ2

The field equations constitute two groups, the first of which is easily
written down without referring to any particular coordinate system:

f Δ f = ViVi -VφVφ Λ
}> (5)

/ Δφ = 2 \7f Vφ . J

A stands for the Laplace operator in 3-dimensional Euclidean space.
The second group of the field equations determines γ in terms of / and φ:

f) O \

Ψί ~ Ψί)

72/ρ = - i - ( / ι / 2 + ΨiΨi)

(6)

(the suffixes denoting partial derivatives). The right hand sides of the
system (6) can be written respectively as the — Tu and — jΓ12 com-
ponents of the 3-dimensional symmetric tensor

Tik = - άr(/,</,* + <p,i<p,k - ^gi*[(Ff Vf] + (P<p
This tensor was found in a slightly different form first by H. LEVY

[1], He has shown that the divergence of Tik vanishes and stated that
Tik has all the properties of a gravitational stress tensor. At this point
it is natural to ask, whether a generalization of the definition (7) to a
curved space F3 exists. Then Eqs. (5) would appear as the ''material
field equations" in F3 and Eqs. (6) would become the gravitational
equations.

Choosing the line element (2) for F3 and calculating

θi* = Rt*-ίyueR, (8)
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we get

+ γΐ2) , (9)

the remaining components vanishing. Eqs. (6) turn out to be the (11)
and (12) components of the gravitational equations

Glk=Tίk, (10)

while G^ = T^ is a consequence of the field Eqs. (5), (6). The definition
(7) of Tik is preserved, but using now the line element (2). The covariant
divergence of Tik again vanishes and the form of the field Eqs. (5) may
be maintained changing the definition of the Laplace operator to

Af™a"fn ] — y I in •

Glancing at the line element (1), we see that our abstract space F3

is equivalent to the hypersurfaces dt+ωdΦ = Q up to a conform
factor f~l .

Following the notation of ERNST, we introduce the complex "material
field" in F3 by writing

ε = f + iφ. (11)

Then Eqs. (5), (β) may be written as follows

(12)

These equations can be derived from the Lagrangian

by using the variational principle.
Sometimes it is more convenient to introduce the function ξ (Ref. [3],

see also Section 4) by

f - τ
We remark that the stress tensor is expressed in terms of the field
variable ξ as follows :

3. Invariant Classification

As is \vell known, the Weyl tensor Ci3 kl vanishes in F3, so that the
relationship between the curvature tensor and Ricci tensor reads [5]:

j ι -
(17)
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The classification with respect to the algebraic structure of the curvature
tensor is therefore completely equivalent in F3 to that of Ri3> [6]. We shall
deal with the tracefree part P\ of the Ricci tensor:

1& _ ftk
— -* (18)

It is convenient to use in the calculations the line element (2). In this
coordinate system we find:

722- 0

7n

The eigenvalue-problem
Pξvί = λvk

leads to the following characteristic equation:

[2(7ιι + 722) + Λ] [(γn + γ22 - Λ)2 - 9 (

where A = 3e2>Ά. The solutions of Eq. (21) are:

Λ = - 2 (yn + γ22) ,

Ίl- 2 722

(19)

(20)

= 0 (21)

(22)

Using the field equations (12), (13), the eigenvalues can be written in an
invariant form:

1
Reε

(23)

/l± " 12 (Reε)2

We have λ0 + λ+ -f λ_ = 0 because [P*] is tracefree.
If we restrict ourselves to physically realistic spaces, for which the

asymptotic conditions (4) hold, we have asymptotically:

— λ+ — (24)

The type of the Ricci tensor is asymptotically degenerate (D). The
alternative possibility is that A0 φ λ+, when the type is called general (G).
All other possibilities, as e.g. λ = 0 are excluded by the asymptotic
conditions (4) for physically interesting spaces.

Now we have shown that the axially symmetric stationary gravi-
tational fields may be classified in an invariant manner, with respect to
the algebraic structure of their Ricci tensor in the corresponding space
F3. The possible types are D and G1.

1 The present classification differs from that of LEVY [1].
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The necessary and sufficient condition of the degeneracy is learned
from Eq. (23) :

0. (25)

So the class of the type D vacuum solutions consists only of the static
WEYL spaces [5] and of Papapetrou's solutions [2] for the latter we
have

1

where χ is an arbitrary harmonic function. However, we recall the well
known fact that Papapetrou's solutions, not satisfying the asymptotic
conditions (4), are physically unacceptable (the mass monopole term is
lacking).

All other relevant spaces, among others the Kerr metric [7], being
now the only known solution of the field Eqs. (12), (13) which can really
represent the gravitational field of a bounded rotating source, are of
type G. For the Kerr solution one has

2α2sin20 \
J '

1 __ J^ ^ ( 1 i _Λ° 3 (r2 - 2mr + a2 cos2θ)2 \ "*" r2 - 2mr + az cos2θ , .
(-"/)

^± = ~ ΊΓ (rz~2mr + a2cos*θ)* \ ^ r2 - 2mr + α2 cosaθ /,

where the functions r ( ρ , z) and θ(ρ, z) are defined by the relations

ρ = (r2 - 2mr + α2)1/2 sinθ ,
(28)

z = (r — m) cosθ .

It is seen from (27), (28) also that the space becomes asymptotically
type D.

4. The Electrovae Problem

As we shall see, the extension of 3-dimensional ''relativity" to
electro vac spaces yields rather complicated mathematical expressions,
although the results are very similar to those in the absence of electro-
magnetism. The only important difference is that the type D electro vac
metrics are not all known.

Our notation is in agreement with Ref. [8]: Aμ stands for the electro-
magnetic 4-potential and the field variables A'3, Φ, φ, ε used here are
defined by the relations

n X VA'z = ρ~l f(VAz - ω VA^ , (29)

Φ = A± + iA'a , (30)

n X Vφ = ρ~^fVω - 2n X Im (Φ* VΦ) , (31)

ε = / - |Φ|2-f iφ . (32)
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The unit vector n is seen to be the Killing vector of the space F3

with the line element (2). In properly chosen units the first group of

the field equations which govern the axially symmetric stationary
electrovac spaces is as follows :

(Reε+ \Φ\*)Aε = (V ε + 2Φ* V Φ) Vε ,

(Ree+ \Φ\2)ΔΦ= (Pε + 2Φ* V Φ}V Φ .

To any solution of the field Eqs. (12), (13) it is possible to find its
ξf — 1

"electrovac pair" for which ε = „ , . is an analytic function of Φ.

Then one has [8]

fi=l-2Φ/?, (34)

where q is a complex constant. The field Eqs. of Sec. 2 are formally

retained by denoting ξ = (1 - gg*)-1/2!'.
It will prove advantageous to introduce the complex 3 -vectors

~ 2
and

# - (Reε + |φ|2)-ι/2 (7φ . (36)

The second group of electrovac field equations is now equivalent to the
"gravitational equations" in F3 having the line element (2) and the

stress tensor of the form

Tίk == - {(^Ojf + Gf (?,) - (H.Hl + HfHk) - gik(β'0? - H"Hf)} .

(37)
One easily finds now that the corresponding Lagrangian is

L = E + 2 (GTG* - HΉ*) . (38)

The field Eqs. (33) together with the integrability conditions for ε
and Φ yield a complex non-linear "electrodynamics" for G and H:

(V - G)G=H*H- G*G

V x G = H* x H - G* x G

(V - G)H = ~(G- G*)H

V x H = - ( 6 ? + G*) x

(39)

The covariant vectorial product A X B is defined as follows

(AxB^εHtA'Btfg . (40)

An apparent property of the field equations is their invariance
against the constant phase-shift JGΓ-> eίc H. This phase-shift corresponds
to a duality rotation of the electromagnetic field. Consequently, in the
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static limit both G and H may be taken real. Another important special
case results if H vanishes (absence of electromagnetism).

We put down here the eigenvalues of the Ricci tensor also :

Hence the condition of degeneracy λ0 = λ+ is seen to be

(G* X G- H* x /f)2 = - 4 \G X H\* . (42)

If (42) holds, the space is type D, otherwise G. For static spaces (42)
simplifies to requiring that G and H are parallel vectors. Known
examples of static electro vac spaces are the type D solutions of WEYL [9],
for which ε = ε(Φ) is assumed, or the space with the line element

ds* = - N2 (r2 - α2 cos2θ)2 [(r - m)2 - (α2 + m2) cos2(9]-3

X [dr* ((r - m)2 - (α2 + m2))-1 + dθ2] - N~* [(r - m)2 - (α2 -f m2)]

X [f2 ~ α2 cos26>]2 sin2 θdΦ* + ̂ 2 (r2 - α2 cos2θ)~2 dί2 (43)

and magnetic potential
JL3 = 2 mar sin2 Θ/JV (44)

(a, m are constants, N = (r — m)2 — m2 — α2 cos20).
This latter solution was obtained from the Kerr metric by using an

accidental symmetry of the axially symmetric spaces [10] and is of type G.
The metric found by NEWMAN et al. [8, 11] is the "electro vac pair"

of the Kerr solution and is also type G. One can construct the "electro vac
pairs" of Papapetrou's stationary solution also, which are then of type J9.
These metrics, together with some other new solutions of the electro vac
field Eqs. (39) will be dealt with in more details in a subsequent paper.

5. Summary

After the 3 -co variant formulation of the stationary axisymmetric
gravitational field problem, many of the succesful methods of general
relativity, as those based on the algebraic features of the curvature
tensor (Section 3) or maybe on optical properties, can be applied to
this particular problem. These may prove useful in finding new axially
symmetric stationary spaces.

On the other hand, our procedure may shed some light on the
question, whether general relativity can fully be "geometrized" because
it gives an example when the material field becomes part of the metric
in a higher dimensional empty space theory.

Further investigations are needed in order to find the possible
extensions of our results to more general gravitational fields.
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