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Abstract. This paper deals with the mathematical description of the statistical
linkage between the probability systems from point of view of measurement theory.
It is shown that a suitable measure for the statistical linkage represents the amount
of information contained in the random variable defined on the pointer positions
of measuring instrument about the measured random variable denned on the set
of physical states of measured object. The information becomes so a physical
quantity that expresses the magnitude of so-called entropic linkage between the
physical probability systems representing, in frame of entropic model of measure-
ment, the measured object and measuring instrument. Physical aspects and the
mathematical properties of the measure for the entropic linkage between the
measured object and measuring instrument are treated in this paper. To illustrate
an application of described formalism, a calculation is presented in which the
magnitude of Gaussian entropic linkage between the measured microobject and
measuring instrument is determined.

Introduction

In the probability description of physical phenomena new sort of
properties of physical statistical systems has been introduced in the
physics. These properties are mainly connected with the internal struc-
ture of statistical systems, e.g. with the order, the set-up or organisation
of its elements. In frame of mathematical description of these properties
certain quantitative measures, adequate to the physical and mathe-
matical requirements, were found. Entropy, playing an important role in
the thermodynamics and statistical physics, belongs to the most im-
portant measure for a property of said sort. Precise mathematical defini-
tion of the term "entropy" showns that the general entropy can be
explicitly determined through the elements of the probability distribu-
tion of a random variable defined on a physical probability system.
Therefore, the entropy of a random variable may be an adequate measure
of its probability uncertainty [1], a concept being introduced and studied
in frame of information theory [2]. The connection between the general
entropy and physical entropy was found by JAYNES in his'principle of
the "maximum entropy estimation" well known in the statistical
mechanics [3].
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Between the probability systems a statistical linkage may exist which
is mathematically given by a set of values of the conditional probabilities
for the occurrence of the elements of first system dependent on the
elements of second one. A measure for the statistical linkage was at first
introduced in information theory. Its mane is the information con-
tained in a probability system about the other one [4].

Mathematical formalism of information theory may be successfully
applied in the description of the physical probability systems as well.
Between the element set-up in the first and in the second physical proba-
bility systems a certain coherence exists which forms a new entropic
property. This may be called the entropic linkage between these systems.
It was shown in the information theory that an adequate scalar measure
of this entropic linkage is even the information. Similarly as the
entropy the information also acquires a character of a physical quantity
which enables one to describe an ensemble of physical probability systems
with statistical linkages.

Formalism used by description of two physical probability systems
with entropic linkage has an immediate application in the mathematical
description of the entropic aspect in the theory of measurements. If one
considers the measuring process as a process by which on the side of
measuring instrument the information about the measured object is
gained, then he comes, at a great extent of abstraction, to so-called
entropic model of measurement [5]. The main features of this model
may be summerized as follows:

(i) the measured object and measuring instrument are considered
as two physical probability systems,

(ii) on the set of physical states of the measured object, the measured
parameter is given as a random variable Jx with a probability distribution,

(iii) on the set of pointer positions of the measuring instrument is
given a random variable /2, too,

(iv) during the measuring process between the random variables jλ

and f2 a statistical linkage is established, the measure of which is given
by the information contained in the random variable /2 about the random
variable fv

In the next sections, using the entropic model of measurement, we
shall deal with the mathematical treatment of the physical probability
systems, the measured object and measuring instrument. As a concrete
application of the developed formalism, the magnitude of the entropic
linkage between the measured microobject with the measured random
variable being one from a couple of the complementary physical quan-
tities, will be calculated. From point of view of the theory of measure-
ments, we are able to observe only the probability system representing
the measuring instrument being linked with measured object by an entropic
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linkage. The larger the magnitude of this entropic linkage is the more
information on measured object may be gained by a measuring process.

1. Mathematical Model

Let us consider a probability system consisting of the elements
x{, x'2, . . ., x'n from the set X'. Let the class of the subsets

of set X' forms a σ-algebra on which a probability measure Px is
given. Finally, let βx = f^x') be a 9C'-measurable function on the set X'
having its values from the set X. By the tetrad {Xf, 5Γ', Px, β^} con-
taining the elements of a probability field together with the random
variable βv is a probability system Σt mathematically described. This
probability system may be understood either in the information theory
as an information source Q1 or in physics as a general physical proba-
bility system Σ^\

Let us further consider another probability system Σ2 mathematically
described by the tetrad {Y'', (W, Pγ} β2} containing a probability field
with the random variable β2 defined on the elements y^y^, . ,y'n of
the set Yf, the values of which belong to the set Y. This system may
be considered either as a receiver of information Q2 or as a general
physical probability system 27}2): Between the random variable β1 ζ Σλ

and β2 ζ Σ2 generally exists a statistical linkage determined for each point
x ζX by a probability measure rx defined on the σ-algebra
<%/ = [Fv F2, . . ., F{], Fk denotes a subset of set Y, which, as a functions
of x, is ^-measurable (βC = \E1,E2, . . .,Ej], Et denotes a subset of
set X). The triad of data 0 = {$Γ, rx, &} represents mathematical
abstraction for the communication channel and, in physics, the entropic
linkage between the physical probability systems.

The scalar measure for the statistical linkage between the random
variable β1 £ Σx and the random variable β2 ζ Σ2 is defined by so-called
average information I{βλ, β2) contained in random variable β2 about the
random variable βv The information is generally given by a Lebesgue-
Stieltjes integral

Hβi> ft) = / log/(«, V) Pχγ(dxdy) , (1)

where PXγ is the joint probability distribution given on the set of
ordered couples (x, y), x ζ X, y ζ Y, and f(x, y) is the density of informa-
tion defined by the expression [6]

f(x v] Pχ_τ(dxdy)

The quantity I(βv β2) gives in terms of information theory the amount
of information about the random variable βx ζ Qx contained in the
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random variable β2 ζQ2- In Physics it gives the magnitude of the entropic
linkage between the physical probability systems Σj1^ and Σj2).

In the case of discrete probability distribution of the random
variable βlf

φ _ rp p p. pi (O)

and a transfer matrix i£ [7] determined by a set of the conditional
probabilities, r^j), for occurrence of j-th. value of the random variable
β2, if the random variable β1 assumes its ΐ-th value, the expression for
information (1) is turned out to be

In the case of an absolutely continuous distribution function of ran-
dom variable βl9 the probability distribution (2) may be characterised
also by a function of the probability density p (x). For the transfer matrix
we obtain a transfer function rx(y) determined by the density function
of conditional probability of the value y of the random variable β2,
when the random variable β1 assumes the value x. The information in
this case is given by a Riemann integral

X Y

where

x

2. The Gaussian Entropic Linkage Between the Complementary Systems

In physics often emarges the problem of the physical realisations of
probability systems, as well as, on the other hand, that of the reduction
of physical probability systems on their mathematical probability models.
Of importance is looking for a suitable physical realisations of the general
probability systems in the theory of measurements and information. In
both cases the mathematical probability systems with a large information
content are requested which by its physical realisation leads to the
requirement of the maximal entropic linkage between the corresponded
physical probability systems. But a large entropic linkage may, due to
the physical interaction connected with it, on the other hand, causes
a change of the original probability distribution of the systems Σj1^ and
Σf2\ This is, however, highly unfavourable at physical measurements.
Ideal would be the couple of systems Σj1^ and Σf® that have the
maximum value of entropic linkage by the minimum magnitude of
physical interaction. How closely may these requirements be satisfied
is a fundamental problem which may be solved by considering the
general lows of quantum and statistical physics.
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We now turn to the determination of entropic linkage between two
physical probability systems, the measured microobject (Σj^) and meas-
uring instrument (Σj^), when on the measured microobject a physical
quantity, being from a couple of complementary quantities F and G, is
to be measured. The quantity F gets on the systems Σ^ and Σj® the
form of the random variables f± £ Σ^ and f2 ζ Σ^\ Let x or y be the
actual value of /x or f2, respectively. During the measurement a statis-
tical linkage between the random variables ]x and /2 is estabhshed. When
this statistical linkage is a deterministrical one, i.e.

rχ{y) = δ(x-y) ,

then the measuring instrument shows the same value of measured
variable as it is on the measured object. This would represent the ideal
case of measurement. The type of statistical linkage differs generally
from the deterministical one being dependent, due to the uncertainty
relations, on the value of dispersion of the complementary quantity G
given on the measuring instrument. In what follows we shall determine
the magnitude of entropic linkage between the measured microobject
and measuring instrument, when measuring a physical quantity F by
given value of the dispersion of quantity G on the measuring instrument.
For the sake of simplicity, a couple of introduced systems shall be
called the complementary systems.

We shall consider the complementary physical systems Σj^ and
Σjf on which the random variables f1 and /2 defined. Its probability
distribution are given by the density functions φ(x) and q{y, στ), where
σr is the dispersion of the complementary quantity G at the measuring
instrument. According to the uncertainty relation, for the product of the
dispersions of the random variable /2, denoted by σyi and that of its
complementary quantity, στ, we have [8]

h
<yyax^-^. (5)

Taking the optimal case in the inequality (5), we get

where the conditional density function (the transfer function) between
the systems Σj'p and Σjf^ is

i ί (y - χY)

2στ= , — exp

By Eq. (7) the statistical linkage of Gaussian type is mathematically
given. If the measured variable ]x has the probability distribution p(x),
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then due to Eq. (7) the corresponded distribution of the random vari-
able /2

 o n *° pointer positions of the measuring instrument can be
calculated, that may be in principle determined by a physical measure-
ment, when στ is given. The value of dispersion στ is in a close connection
with the physical parameters of the measuring process (e.g. with its
duration).

Having the transfer function (7), the magnitude of entropic linkage
may be calculated for every density function p(x). The larger the
magnitude of this entropic linkage is the more information about the
measured parameter contains the measuring instrument. When the mag-
nitude of entropic linkage between the complementary systems is zero,
then both probability systems are stochastically independent. In this
case the value on measuring instrument does not say anything about
the value of the measured parameter. Therefore the system Σj^ cannot
do the function of a measuring instrument. In terms of information
theory it means that between the systems Σj^ and Σjf no information
may be transmitted. Since the uncertainty relations have a universal
validity it is in principle impossible, under such conditions, to realize
physically the information transfer.

We now turn to calculation of the magnitude of Gaussian entropic
linkage I (f1} /2). Using Eqs. (7) and (4), we get for the information in
dependence on the dispersion

τi \
1 { ύ τ ) ^

where

qiy) J V{X) e x P { d x (9)

If p(x) is given, then it is possible to determine the magnitude of the
Gaussian entropic linkage between the systems Σjj^ and Σj^ for each
p(x). The probability distribution of the random variable /2 on the
measuring instrument, q(y), is connected with the probability distribu-
tion of the measured variable, p(x)} by an integral transformation (9)
with the Gaussian kernel. Since [9]

-x)= km - = ^ - e x p - - ^ - ^ τ- , (10)

we get q(y) = p(x), when στ -> oo, i.e. in this case the probability distribu-
tions on the system Σj^ and Σ^ are identical. Next, the value of I(fv f2)
for certain types of the probability distribution of fx will be calculated.
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3. The Magnitude of the Entropie Linkage Between
the Complementary Systems

The problems connected with the determination of the magnitude of
entropie linkage between the systems Σjj^ and Σff* may be divided up
into three classes :

1. To find such a probability distribution p(x) for which the mag-
nitude of entropie linkage between the systems becomes extreme.

2. To find the probability distribution p(x) for which the magnitude
of entropie linkage gets its extreme value under cetrain boundary con-
dition laid on this distribution.

3. To find the magnitude of entropie linkage, when a concrete proba-
bility distribution, p(x), is given.

Since the first two classes of problems belong to a group of highly
complicated variation problems, we shall confine ourselves to the problem
of third one. We shall therefore look for the magnitude of entropie
linkage of the probability distribution given by the following density
functions:

(i) pi{x) = (β(x1 — x) + δ(x2 — %)), i e. the random variable as-
sumes only two discrete values x± and x2 with the probability 1/2.

(ii) p2(x) = \\Z = const, x £ {0, Z), i.e. the probability distribution
is within the interval (O9Zy uniform.

(iii) p3(x) = a exp{— ax}, i.e. an exponential probability distribu-
tion. When x denotes the energy, then by the density function pz{x) is
represented the energy distribution low in an ideal gas at the thermo-
dynamical equilibrium.

In order to illustrate the skeched formalism of the determination of
entropie linkage on a physical parameter of measurement, the results
will be discussed for the case that the physical random variable Jx is the
energy having the complementary variable the time T. Taking for στ the
duration of measurement T between the systems Σj^ and Σjf\ the
probability distribution of the variable /2 turns out to be a time function.
During the measuring process is the measuring instrument at the time T
in interaction with measured system Σj^ therefore, an entropie linkage
between both systems is established. From communication point of view
it is desirable that the random variable /2 should contain as much infor-
mation as possible about the energy as the measured variable. Physically,
this endeavour is characterized by the requirement of maximum entropie
linkage between the systems Σ^ and Σjf\ How far this requirement
with regard of the measurement duration may be fulfilled we shall next
see at some given probability distributions.

Let us now determine the magnitude of Gaussian entropie linkage
between the systems Σj^ and Σjf\ when the probability distribution of
17 Commun. math. Phys.,Vol. 12
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fλ is given by the density function

- *) + 2

Inserting Eq. (11) into Eq. (8), we get

1 (στ) — τ=r / / (θ(Xi — ί
2l/2τz J J K

= γδ(xi~ x) +γδ(x2~x) . (11)

x Y

L q(y) J

with

δ ^ — x) + δ (α?2 — ^)) exp | ^i -\dx .

In expression (12) the integration with respect to the variable x and
partly to the variable y (y ζ (— oo, oo)) leads to

I(στ) = log

where

Γ σ τ ί I

•log ί i s (exp Γ
and

(y -

2
1/2 π

log ί y & ( e x p 1
Since the integrals J1 and J 2 are difficult to evaluate, we shall try to
estimate only its certain limit values. When x1 — x2, we get I(σT) == 0.
Assuming x1<^x2, then in the integral Jx or J 2 the term

exp i ^2 i or

respectively, may be neglected. Therefore we get I(aτ) = log 2. Since all
terms within the integrals Jx and J2 are positive, we have

e x p l—^—) l o g ίw^ e x p ί—*— ι \ d v

(13a)
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and

-7=?— exp { Ξ| -> c£?/.
ι/o_, ft ^ ft2 I ^

(13b)

Taking into account the inequalities (13 a) and (13 b) one can determine
the limits of the expression I{oτ) for 2J2 = x2 — x± ζ {0, oo). If crr < oo,
then

0 ^ I((7τ) ^ Iog2 .

From the form of integrals Jλ and J 2 it can be seen that the more the
value of I{στ) approaches to zero or to log2, the smaller or greater,
respectively, aτ and Δz become. When σr -> oo, we obtain

1 * σr~>oo y2πh \ ft1 )
and

δ(x2 — y) = l i m ~ 7 = ~ e χ p | ύ [ 9

i.e. the probability distribution of random variable f2 is identical with
that of the random variable /x. In this case the value of entropic linkage
gets its maximum being equal to log2. When στ = 0, we get for Eq. (12)

lim /(σT) = 0 .

li Δz < oo, then we have again

0 ^ I(στ) ^ Iog2 .

So it can be generally said that /(<7T), if crτ and Δz ζ (0, oo), satisfies the
inequality

0 g I(στ) ^ Iog2 .

Taking for στ the duration of an energy measurement T, it means that
for T = 0 no entropic linkage between the systems Σf^ and Σ^ exists
and that these are stochastically independent. No one of systems con-
tains any information about the other one.

We shall next deal with the probability distribution given by density
function of type:

p2(x) = \\Z = const. , x ζ <0, Z) ,
(14)

Substituing Eq. (14) into Eq. (8), we get

1

exp

log I - ^ ^ ^ I dx dy
17*
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with

where Φ(t) being the value of error integral for the argument t. The
expression (15) can be written as the sum of three integrals

1 (<7r) — Jι + J ̂  ~\~ «̂ 3 >
where

l

 CXΌ f
0 — o o

J» =
2ffτ

1/2 πfe
' 0 —co

Z oo

J J z e x p 1

Since these integrals are generally very complicated, we shall looking
only for its approximative values under the assumption that Z is
sufficiently small. In this case the following approximative equation is
held

Taking into account Eq. (16), we get

0 — o o

Substituing Eq. (18) into Eq. (16), we can determine the approximate
value of entropic linkage,
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From Eq. (19) it can be seen that for στ -> 0, we have

lim I(στ) = 0 .
στ->0

When στ represents the duration of energy measurement, it means that
the magnitude of entropic linkage between the systems Σjp and Σjf* is
zero, when T = 0, for T > 0 its value increases by the second power of
the duration of measurement T. In terms of information theory it shows
that the information contained in system Σj® about the system Σjp
increases simultaneously with the enlargement of the measurement
duration.

Finally we shall calculate the entropic linkage for the density function

Ps(x) = a exp{— ax} , x ζ (0, ex)) . (20)

Substituing the expression (20) into Eq. (8), we get

(21)

dy dx

with

—\dx

h2a -

The expression (21) can be written as the sum of the integrals

I(στ) = J-L + J 2 -f J3 ,
where

oo oo

_ (2/-a;)22σ?

= 1 2(Tτ

° g }/2Ϊιh

oo oc

2aστ Γ Γ
= ~W^ / / e x p

0 — o o

(y

J 3 = J α exp j - αα; +
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Since the function, — t logt, for t < 1 is positive, the integral J3 gets also
a positive value. Due to the fact that the function

for aτ -> oo becomes a step function assuming only two values, zero or 1,
the integral J 3 turns out to be zero. When στ < oo, then J 3 > 0. Denoting
by J (aτ) the value of integral Jz in dependence on the parameter στ, we
can write the result

which for στ -> 0 adopts the form

It may be seen that the entropic linkage between the systems Σ^ and
Σ^ increases with enlargement of στ and gets its extreme value for
στ ->oc.

Let us now consider the probability distribution on the set of pointer
positions of measuring instrument given by Eq. (21a). From Eq. (21a)
we have for the mean value

CO CO

yq(y)dy= exp | ^ - | J y exp{- ay]

Due to the property of the function L, we have for στ

i.e. that the expectation value of measured random variable (observable)
is by measuring instrument changes in dependence of σr. When σ τ = T,
it means that the expectation value for energy is allways change by an
energy measurement except of the case when T = oo.

The foregoing results may be summerized in three points:
(i) When στ Φ oo, the probability distribution of the pointer positions

on measuring instrument is generalfy different from that of the physical
states on the measured object.

(ii) Since the amount of information in system Σ^f about the sys-
tem Σ^ is zero for στ — 0, are in this case the systems Σj^ and Σ^f stochas-
tically independent. Therefore, the system Σ^ cannot serve as a mea-
suring instrument.
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(Hi) The magnitude of Gaussian entropic linkage between the mea-

sured microobject and measuring instrument assumes zero or maximum

value, when στ = 0 or oo, respectively. For στ ζ (0, co), I(Jl9 f2) appears

as a function of στ.

Finally it may be stated that the determination of the magnitude of

entropic linkage between the measured microobject and measuring in-

strument is of fundamental importance in theory of measurements since

it enables one to describe the measuring process as a process of informa-

tion gaining on the side of an obsever. The treated Gaussian entropic

linkage represents, however, only relatively small class of actual entropic

linkages between the measured microobjects and measuring instrument,

playing, nevertheless, an important role in the quantum theor}^ of

measurements.
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