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Abstract. We show that the *-algebra of "analytic elements" with respect to
time translations which plays a central role in HAAG, HUGENHOLTZ and WINNINK's

formulation of the Kubo-Martin-Schwinger boundary condition, is a quasi-unitary
algebra in the sense of DIXMIER. The commutant theorem proved by HAAG,
HUGENHOLTZ and WINNINK is thus reduced to DIXMIER'S commutant theorem for

quasi-unitary algebras.

1. Introduction

In a very interesting paper [1] (referred to below as HHW), HAAG,
HUGENHOLTZ and WINNINK describe general features of the equilibrium
states of quantum statistical mechanics at finite temperature. A state is
viewed as normalized positive linear functional ω on a 0*-algebra 21 of
quasi-local observables. Time evolution is described by a one-parameter
group, t-> oct, of automorphisms of 21. An algebraic formulation of the
Kubo-Martin-Schwinger [2, 3] boundary condition is given as a property
of equilibrium states with respect to the time-development automor-
phisms. Furthermore, it is shown that, in contrast to the zero tem-
perature situation, the representation of 21 obtained from an equilibrium
state ω by means of the Gelfand-Segal construction is reducible, the
corresponding weak closure being one-to-one with its commutant.

The main mathematical tool in HHW is a norm-dense *-subalgebra
21 of "analytic elements" of 21. The purpose of the present note is two-
fold. First, we fix some points of rigor in HHW using the necessary
amount of vectorial distributions: to each 0*-algebra 21 with an abelian
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?ι-parameter group of *-automorphisms £ζjβ->α f, such that oct(A) is
norm-continuous in t for each A £ 21, is associated a norm-dense
α-in variant *-subalgebra 21 equipped with an ^-parameter group of
automorphisms, β ζR->jβ with the properties stated in Proposition 2
below (formally, jβ~ α_^/2). Second, we point out the relation of the
formalism described in HHW with the notion of quasi-unitary algebras
as developed by DIXMIEB, [4]. We show that if one assumes the Kubo-
Martin-Schwinger boundary condition as formulated in HHW [(4.2) or
(4.3) of [1]; (32) below] for an α-invariant state ω, a condition physically
cogent in the finite temperature equilibrium situation, then the *-algebra
21 may be given the structure of a quasi-unitary algebra. The commutant
theorem proved in HHW (Theorem 4 in [1]) then merges into DIXMIER'S
commutant theorem for quasi-unitary algebras (Theorem 1 of [4]).

2. The Sub-*-algebra 91 of 21

Our general frame of work is that of a O*-algebra 21 acted upon by
a one-parameter strongly continuous group of automorphisms: t £ R -> oct

is a homomorphic mapping of the additive group of the reals into the
automorphism group of 21 such that oct(A) is norm-continuous in t for
each A £ 2ί (one can equivalently require continuity of all numerical
functions t-*Φ(pct(A)) for all A £21 and states Φ of 91, of. [5], 10.2
Corollary and [6], 2.6.4).

A special role will be played in the sequel by the set 2l<O0) of
"infinitely differentiable elements" of 21. We remind that the infinite-
simal operator D of the one-parameter group α is defined by the property

och(A)
h

-DA (1)

on the subset 21 ί1) of elements A £21 for which h^loc^A) — A] tends
to a limit in the norm for h = 0. One checks immediately that 21(1) is
a linear subset of 2ί and that D is linear; and furthermore that for each
t ξ R 2K1) is invariant under octί each A ζ 2l(1) being such that

norm-lim α ' + * W

; ~ ^ ( ^ } - = oct (DA) = D oct (A) . (2)

Thus 21P) consists of the A £21 such that the function

XΛ:t£R-+*t(A)ζΆ (3)

(the orbit of A under α) is differentiable.
We now define 2t(3?) as the domain of the p — th power Dp of D, p

positive integer and set

= Π 91(0) . (4)
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Using (2) recursively, one sees that, for A

the derivative being defined in the norm-sense; thus 21^) (2lίoo)) con-
sists of the A ζ 21 for which the function XΛ is Cp (O°°).

Lemma 1. Ql(p\ f = 1, 2, . . ., oo is a norm-dense, oc-invariant sub-

*-algebra of 2ί.

Proof. 21^ is evidently α-invariant. For finite p and A, B ζ 2l<̂ ) we
have, as one easily checks

D»{A*)= (DM)*, (6)

D»(AB) = Σ
& = o

(where we set D°A = A). Thus 21^ is a sub-*-algebra of 21 and the same
holds of 2ί(°°) due to (4). On the other hand 2ί(TO) has been shown by
GARDING [7] to be norm dense in 21.

As mentioned in the Introduction, our aim is to define the operator
0C-iβ/2> β r e a ^ o n appropriate elements of 21. To this end we notice
that oct acts on the functions XΛ as a shift of the argument, i.e. as a con-
volution with a Dirac measure. Looked at on Fourier transforms, this
becomes a multiplication times the function ξ->eitξ, so that we will
obtain the desired definition of α_^/2 as a multiplication (allowed under

-βξ
appropriate circumstances) times the function ξ -> e 2 . Our first task
will be to introduce the Fourier transforms %A in a precise manner.

Let ^ (R, 21) be the linear space of continuous norm-bounded func-
tions from R to 21. ^(R, 21) is a normed *-algebra under the following
definitions

XY(t) = X(t)Y(t), (8)

= X(t) , X,YίV(B,ll), t£R, (9)

= Sup | |X(f) | . (10)
tζR

On the other hand %{R, 21) can be embedded in the set ^ '( iϋ, 21) of
tempered 2t-valued distributions on R by setting

Λvhere the integral on the right-hand side is a well defined Bochner
integral and &\R) denotes the set of C™ functions on R with rapid
decrease. Let R be the dual real line with the corresponding sets £f(R)
and ϊf' (R, 21) of functions with rapid decrease and tempered 21-valued
distributions. It is known that the Fourier transform mapping of tem-
13*
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pered vectorial distributions

T £ ST(R9 21) -> ΐ i &"(&, 21), (12)
defined by

<#,/> = <Γ,/>, / 6 ^ ( Λ ) (12a)
where

is the usual Fourier transform of ^-functions, is a one-to-one bicon-
tinuous mapping of S^f(R, 21) onto &" (&, 21). We now state

Lemma 2. The correspondance A £2l-> X^ 6 ^ ( ^ , 21) defined by (3)
&s αw isometric homomorphism of *-algebras, mapping 21 cwίo ί/̂ e subset of
X ζ ^(J?, 21) characterized by the property

α ί « Z , / » = < X I / < > , / 6 ^ ( Λ ) , < € E , (14)
or else

X X Φ tζB, (14a)

/«(«) = / ( β - ί ) and /*(f) = e»

Proof. A -> X^ is obviously Knear, isometric due to (10) and the
known fact that ||αt(.4)|| = ||-4||, £ £.#, [4; 1.8.3], and *-homomorphic
because αt(-4)* = α$(-4*) andα^^-B) = α t (^) oct{B). On the other hand
the vectorial distribution XΛ is such that

(XΛ,f) = fdtf(t)XΛ(t) = fdtf(t)oct(A) = oc(f)A, fζ^(R) (lδ)

(see Appendix A), therefore by Eq. (A 5) there, we have

, /» = Φt) «(/) A = oc(δt * /) A

Conversely take an X ζΉ(Ry 21) fulfilling (14). We have, exchanging the
continuous oct with the Bochner integral

at{f ds f(8) X(s)} = fds f(β)

therefore X (s -f t) = oct {X (s)} for s, t ζR and in particular X (t)
= oct{X(O)}; q.e.d. Property (14a) results immediately by Fourier
transform.

The subset 21 of 21, which we now define, is the central object of this
paper.

Definition 1. We denote by 21 the subset of 21 <°°> consisting of the
elements A such that the ζί-valued distribution ίtΛ has compact support in
R. 21 will alternatively be considered, by means of the injective mapping
A -* XA, as a subset of %(R, 21) C &" (R, 21).
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Proposition l 21 is a norm dense, oc-invariant sub-*-algebra of 21.
Proof. Since 21 is linear and 21 (°°) is dense in 21, it suffices to check

that each A £2l(oo> is weakly adherent to 2ί, for then it follows from
Hahn-Banach's theorem that 21 is norm-dense in 21. Let A £ 2l(oo>. Using
the notation of the Appendix A it is clear that

<α(/M, φ) = <α(/) A, φ) = (*(f*φ)A = α(/J) A

for /, ψ ζ@(R) (the set of O°°-functions on R with compact supports),
and hence that α (/) A ζ 21 if / belongs to @ (R). If we arbitrarily preassign
ε > 0 and the Φfc £ 21*, k = 1,2, . . ,,n, our proof thus reduces to find
an / ζ Q) (R) realizing the condition

\Φk(*tf) - A)\ £ e .

Using the interchangeability of the continuous Φk with the Bochner
integral, we have

Φ*(α(/) - A) = / Φ,(«9μ)) (df(g) - ddto)) ,

where δ denotes the Dirac measure at the origin the last condition will
thus be fulfilled by approximating δ by elements of @(R) in the weak
topology of measures with respect to C°° functions, an elementary
procedure.

The fact that A £ 21 implies A* ζ 2t results obviously from Eq. (9),
from the fact that the distributions X and (X*) have symmetric supports
in R, and from the *-symmetric character of 21 <°°). The α-invariance of
21 follows immediately from that of 2ί(oo) and property (14). In order to
complete our proof it remains to establish the multiplicative character
of 21. Since 21 (°°) is multiplicative (Lemma 1), we have to prove that if
A, B ζ 2l<°°) are such that XΛ and XB have compact supports in R, the

same holds of JtAB = XΛXB. This results from property (18) in the
following.

Lemma 3. Let us denote by (XΛ, ltB) -> JtΛ * %B and XA -> JΓ* the
operations on 21 obtained by transporting the *-algebraic operations (8), (9)
in the Fourier transform (12):

X = %A = %A*

These operations can be directly defined on the distributions XA £ SP' (R):
one has

(18)
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where {XA)ξ ® (XβJη ̂ s ̂ e unique vectorial distribution on B X B such that

((XA)ξ Θ (Xβ)η, u(ξ) v(η)} = (XA, u) (XB, v) (19)

and

<*5,/> = <!.,,/•>, fζsrφ), (20)
ivhere

/•(!) = / F T ) , ξiB. (21)

The proof of this lemma, which is slightly technical, is given in
Appendix B.

3. The Operators jβ on 21

We denote by eβ, β ζ B, the numerical function ξ ξ B -> exp l-^ βξ\.

Since eβ is a C°°-function we can multiply by eβ the vectorial distribution
XΛ, A ζ$l, thus obtaining a distribution ββXΛ ζ <$?' (B, Qi) with the same
compact support as XΛ.

Lemma 4. For each A ξ S the ζi-valued distribution eβXΛ is of the
form £j (A) with jβ(A) an element of 21 determined by

<Σjβ(Λ), /> = (XA, ί/> = aQ)A, f ζ 9(ίt). (22)

Proof. Let K ζίί be the support of XA and take u = veβ with
v^Sfφ) and υ = 1 on K. We then have u^^{B) and β^X^ = ̂ Z ^ .
Therefore, for each / ζ^(JR), using known properties of the Bochner
integral

(eβXA> /> = (uXA, /> = < ^ , uf) = <X^, C/>

= <X^, Λ * /> = / α , μ ) [/ u(t ~ s) f(s) ds] dt

= / [/ d(f - s) oct(A) dt] f(s) ds=f as(oc(ύ) A) f(s) ds

Thus eβXA = Xa^A. Since oc(u) A ζ 21 (°°) (see Lemma (b) of Appendix A)
and since eβXA has compact support, α(ώ) ̂ 4 belongs to 21 and can be
denoted jβ{A) since it depends only upon A and /?. If / has compact
support the beginning of the previous calculation with u = eβ leads to (22).

Proposition 2. The linear operators jβ, β ζ B, of 2ί have the following
properties:

jβ(AB)=jβ(A)jβ{B), (23)

jβ(A*)=j_β(A)*, A,Bζ&, β^^βzJζR, (24)

?βAJβM)) = jβι + βί(A), (25)

h(A) = 4 , (26)

jβ(«t(A))=oct(jβ(A)), (27)
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and

jβ(cc(f)A)=ocQ)A, Aζ%, ίiS>{B). (28)

// the state ω of 21 is oc-invariant, that is if oj(oct(A)) = OJ(A) for all
t ζE and A ζ_ 21, the restriction of ω to 21 is jβ-invariant i.e. ω(jβ(A))
= ω (A) for all β ζR and A ζ 21.

Proof. The operators jβ are obviously linear. In order to prove pro-
perties (23) through (26) we have, according to (16), (17) and the
Lemmas 2 and 3, to check that

eβ (XΛ * 1B) = (eβXA) * (eβXB) , (23 a)

(eβXA)* = e^β±ϊ, (24a)

eβ,eβΛΛ = eβ,+ftXi > ( 2 5 a )

e o l ^ = 1 ^ . (26a)

We have, ίoτ f ζ S? (&),

(eβ(XΛ * XB), /> = < ^ * XB, eβf)

ί ® (lB)n, eβ(ξ + η)f(ξ+ φ

= ((eβXΛ) * (eβXB), />
whence (23 a); and

<(eβ*A)*, /> = <eβZΛ, /*>* = <*4. e

whence (24a); (25 a) and (26 a) are evident from the definition of eβ.
Property (27) further results from (22) and from the fact that due to
(A 5) of Appendix A the oct and α (/) commute.

Assume now that the state ω of 21 is α-invariant. Select an / ζ Sf (E)
such that eβf ζ SΠ$) and /(0) φ 0. With A ^21, (22) gives

Applying ω on both sides, exchanging it with the Bochner integrals and
taking account of the α-invariance of ω we have

ω(jβ(A)) f f(t) dt = ω(jβ(A))f(0) = ω(A) f Q(t) dt

= ω(A)eβ(0)f(0)

Λvhence the jβ-invariance of ω since 6 (̂0) = 1 and /(0) φ 0.
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It remains us to prove (28). We first recall that for A £21 and
), α(/) A £2ί. Then we have by (22), for g £

(Xfβ(«if)A)> 9> = α^gr) cc(f)A = cc{eβg * f) A

.4 = α(e^/ * $) A =

where we used (A 5) of Appendix A and (15). (28) follows by comparison.

4. The Kubo-Martin-Schwinger Condition

The purpose of this section is to review the algebraic formulation of
the Kubo-Martin-Schwinger boundary condition presented in [1]. If T
is fixed, k is Boltzman's constant and β — ljkT and if ω is a state of 2ί,
then the Kubo-Martin-Schwinger boundary condition for ω (if ω is to
describe equilibrium at temperature T) may be expressed as follows
(see [1], p. 225).

If A ζ 2ί and B ξ 01 then the two functions

(29a)

(29b)

are bounded C°° functions due to (5) and the property ]| oct (-<4.)|| = \\A\\,
A ζ 21. Considering them in the usual way as belonging to the set Sf' (R)
of tempered distributions on R we can write, for / ξ £P(R)9 exchanging
ω and multiplication by B with Bochner integrals and using (15)

{FAB, /> = fFAB{t) f(t) dt = ω(B • oc(f) A) = ω(B (XA, /»

{GAB,f) = fθAβ(t)f(t)dt=ω(cc(f)A B) = ω({XA,f}™ < ( 3 0 )

or, in terms of Fourier transforms

Lemma 5. For A £21 αntZ 5 £21 ίΛe functions FΛB and GAB defined
in (29 a, b) are extendable for complex values to entire analytic functions of
exponential type. Moreover one has

~ eβ{jrAB

FAB (* - » i ) = FJR{A)B (0 = ω(B at(jβ(A)))

a\ ( 3 1 b )

- » y ) = ^ W ) ί (0 = o}(at(jβ(A)) B)

{jrjβ(A)B

and

for all A £ 2ί, ^ £ 2t
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Proof. For A ζ 21, XA, and thus FAB and QAB have compact support.
Therefore the first assertion is a consequence of the Paley-Wiener
theorem [9a Theoreme XVI, p. 128]. On the other hand, we have, by
(31) and Lemma 4

for all fζSfφ) and analogously for Gj (A)B> whence (31a). The pro-

perties (31b) then immediately result by Fourier transform.
Definition 2. A state ωof^i fulfills the Kubo-Martin-Schwinger (KM8)

condition for the temperature β (β ζR) whenever, for all A ζ 21 and B ζ 21
the entire functions FAB and GAB defined in (29a, b) are related by

FAB{tJriβ)^GAB{t), tζR. (32)

States with this property will be called (temperature β) KMS-states.
Lemma 6. Either of the following conditions is necessary and sufficient

for a state ω of 21 to be a KM8-state:
(a) for all A £<& and B ζ21

$AB = e2βΰAB, (33a)

(b) for all A ξ&and B £21

ω(j2β(A)>B) = ω(BA), (33b)

(c) for all A £ 21 and B ζ 2ί

(33c)

Moreover if ω is a-invariant the following statement is equivalent to
(a) or (b)

(d) for all A, B ^

ω(j_β(A)*j_β(B)) = ω(BA*) . (33d)

Proof, (a), (b) and (c) are obviously each equivalent to (32) by virtue
of (31a) and (31b). If ω is α-invariant, ω restricted to 21 is ^-invariant,
thus (33 c) can be written using (23)

ω(jp{A) j_p(B)) = ω(BA)

whence (33d) by replacing A by A* and using (24).

5. The Quasi-Unitary Algebra Associated with an
Invariant KMS-State of 3ί

We now discuss the relation of the HHW-formulation of the KMS
boundary condition with the notion of quasi-unitary algebra introduced
by DIXMIER in [4]. We consider a fixed β ζ R (to be interpreted as Ijk T)
and a fixed normalized positive linear functional ω on 21 (to be interpreted
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as the equilibrium state of temperature T) which is α-invariant,

( Aζ<Ά, tζR (34)

and satisfies the algebraic formulation of the KMS boundary condition :

ω(j.β(A)*j_β{B)) = ω(BA*) (33d)

for all A, B £21. We define a positive sesquilinear form (•,*) on 21 by

{A,B) = ω(A*B) , A, B £ 21 (35)

ίiί o mappings A -> Aj and A -> As of 2ί mίo 21 by

(36a)

, Aζ§i (36b)

[see (24)]. Utilizing these notations, we have the following lemma.
Lemma 7. A -> ̂  αncZ A -> As are one-to-one mappings of 2ί owίo 21

' + &£', (37 a)

(aA + bB)s = ά~As -f &^ s, (37b)

(ABy = AtBi, (38 a)

(38b)

(39)

Ass = A , (40)

J." - 4* , (41)

(A8, Bs) = {B,A) = (A,B) , (42)

{A*, A) 2:0, (43)

(A*, B) = (A9 BJ) , (44)

= (A,X"B), (45a)

) , (45b)

for all A, B, X £ 21 <m<i complex numbers a, b.
Proof. (37 a) and (38 a) are a restatement of properties of jβ from

Proposition 2. By the definition of A -> J. s, we have by (24)

which establishes the first equality of (39). The mapping A —> As is the
composition of the linear mapping A -> Aj and the conjugate-linear
mapping A->A*\ therefore, (37b) follows. By (39) and (38a),

(ABY = (ABy* = {A*Bψ = ^ * ^ * = J5Mβ, A, B £<&
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hence, (38b). By (39), (25), (26)

A" = j^β((Aη*) = j_β((Ai*)*) = ΰβ(jβ(A)) = A, A ^ ;

hence, (40). Replacing A by A* in (41), which follows immediately from
(36 a, b), we obtain

{Aψ = [Aψ = As

hence, the remainder of (39) is established. If A and B in (32) are
replaced by A* and B*, respectively, we obtain

(As, Bs) = ω({A*)* Bs) = ω(B*A**) = (£, 4)

Λvhence (42), since (A, B) — (B, A) by the positivity of ω. If -4 ζ 21, then

Since ω is α-invariant, ω is invariant under ̂ /g according to Proposition2
hence, using (24), (25)

= co(j_βί2(A*)jβ/2(A))

= ω(jβ/2(A)*jβ/2(A))

which is positive since ω is positive and (43) is valid. A, B~> (Aj, B)
and A, B -> {A, Bj) are two sesqui-linear forms on 21 such that

[because of (42) and (43)] hence, these two sesqui-linear forms are equal
which establishes (44). The first equality of (45 a) follows immediately
from the definition of ( , ) and the second equality follows from (41).
(45b) follows from (45a) by using (42) and (39). Q.E.D.

Lemma 8. The null left ideal of ω in 01

0} (46)

is invariant under A->AS; hence, Nω is a two-sided ideal in 2ί and its
norm-closure Nω in 21 is a two-sided ideal in 2t. The scalar product (34)
is positive definite if and only if Nω = {0} if the C*-algebra 21 is simple,

#» = {°} _
Proof. Nω is a left ideal since ω is positive and Nω is invariant under

A ->AS by (35) and (42), thus, by (38b), it is a two-sided ideal of §L
Since 21 is norm-dense in 21, the norm-closure of any two-sided ideal in
21 is a two-sided ideal in 21. If A ζ2ί, then ω(A*A) — (A, A); conse-
quently, ( , ) is positive definite if and only if Nω = {0}. If 2ί is simple,
then {0} is the only two-sided ideal in 21. Q.E.D.

Lemma 9. The set
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is dense in 2ί for the topology defined by the scalar product (35). If, moreover,
Nω = {0}, the set

is dense in 2ί for the topology defined by the pre-hilbertian scalar product (35).
Proof. If X £ 21 C 21, then there exist 7, Z £ 21 such that X = 7 Z by

the spectral theorem. Since 21 is norm-dense in 21, we see that X can be
approximated by A B in the norm of 21 by approximating 7 by 4̂ ζ 2ί
and Z by B ζ 21 in the norm of ^4. Since

(A,A) = ω(A*A) g mil2,

it follows that the set {^41?: A, B ζ 21} is dense in 21 for the norm

Ϋ ) . Assume iVω = {0}. Let X ζ 21 be such that

for all A, B ζ 21. Due to (38a) and (44), this is equivalent to the condition

(X + X\ AB) = 0

for all A,Bζ®L. By the density of {AB: A9 B ζ2ί} in 21 for the pre-
hilbertian topology, X -f X^ = 0. Using (44) again, this implies

(X, Y + 70 - 0

for all 7 ξ 2ί. The proof that X = 0 is, therefore, reduced to showing
the density of the set

ί

in the prehilbert space 21 which follows from the density of this set in
the 0*-algebra 21. The latter follows easily by noticing that, for fλ ζ
and A ζ 21, we have due to (28)

α(A) A

The last expression can be made arbitrarily close to A in norm by
adequately choosing / = (1 -f- ββ) fx [f runs through Q)(R) as fx does].

Proposition 3. // ω is an oc-invariant normalized positive linear func-
tional on 2t, if ω satisfies the KMS boundary condition for β ζR, i.e.

ω(j_β(A)*j_β(B)) = ω(BA*), A, B £21,

and if Nω = {A ζ$ί: ω(A*A) = 0} = {0}, then 2ί equipped with the pre-
hilbertian scalar product (y) defined in (35) αwίZ the mappings A -> ̂ 43'
and A->AS defined in (36) is a quasi-unitary algebra.

Proof. A quasi-unitary algebra is an algebra 21 with a pre-hilbertian
scalar product (y), a mapping A ~> A3 and a mapping J. -> ̂ 4S which
satisfy (37), (38), (40), (42), (43), (45a), the final assertion of Lemma 9
and the continuity of A -> BA with respect to the pre-hilbertian
topology for every B £ 21 (see Definition 1 of [4]).



Quasi-Unitary Algebras Attached to Temperature States 187

6. The Representation of 21 Defined by ω

We consider now the representation of 21 defined, via the Gelfand-
Segal construction, by an α-invariant KMS-state ω of 21 which satisfies
in addition the condition

Ra = {A 6§ί: ω(A*A) = 0} = {0} , (47)

and describe features resulting from the quasi-unitary character of 21.
Let λ be this representation, with 34? and Ω the corresponding Hubert
space and cyclic vector:

), AζZl. (48)

Since α is strongly continuous and ω is α-invariant we know [4;
2.12.11] that ffi carries a strongly continuous representation U of E
implementing the α-automorphisms and leaving Ω invariant:

U(t)λ(A)U(t)-\ A£%, tζB, (49)

U(t)Ω = Ω. (50)

The Hubert space 3*f is the completion of the quotient Sί/AΌ,, where

N { A ?ί(AA } (Na={A ζ?ί:ω(A*A) = 0}, (51)

with respect to the scalar product

(A + Nω,B + Nω) = ω(A*B) , A, B ζ2t. (52)

If A, B ζ 21 are such that A = B moάNω, or else A - B ζ Nω r\ 2t = # ω ,
we have L̂ = J5 by (47). Thus the mapping A ζ§ϊ-+A + Nω = π{A)Ω ζJf
is injective and allows us to consider 21 as a linear subset of Jf7, on which
the scalar products (52) and (35) moreover coincide. Furthermore, since
2t is dense in 21 (Proposition 1) and since (A, A)V* = ω(A*A)y2^\\A\\,
21 is dense in 2l/iVω for the ̂ -norm. Jf can thus be obtained as the
completion of 21 with respect to its prehilbertian scalar product (35).
The representations λ and U can then be obtained by continuous exten-
sion from the formulae

t£R. (53)

U(t)B=oct(B) (54)

Analogously, a conjugate-linear representation ρ of 21 can be ob-
tained by continuous extension from the definition

ρ(A)B=BA 9

since, using (42), (38 b) and (40)

{BAS, BAS)V* = (AB8,ABS)V2 < \\A\\ (B*, B8)1'2 = | |^| | (B, B)1/2;
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ρ is conjugate-linear by (37 a), multiplicative by (38 b) and such that
ρ (A*) = ρ (A)* for all A £ 31, since, for A, Bl9 B2 ζ 31, using (45b) and (41)

(ρ(A) Bv B2) = ( J ϊ ^ , J52) = (Bv B2A'») = (£ 1 ? 52,4*s)

Further, the involutive conjugate-linear mapping A -> As of 31, [cf.
(37a), (40)], isometric for the J^-norm by (42), extends continuously to
a conjugation S of 2ft?. 8 has the properties

8λ(A)8=ρ(A), AζQl, (56)

ϋ(t)8 = SU(t), tζR, (57)

SΩ = Ω. (58)

One has, namely, for A} B ζ 31

/Sλμ) ^JB = fifλ(^l) Bs = ^ ( i ΰ s ) = 5^LS = ρ μ ) 5

where we used (38b), whence (56); and

Ό{t)8B = oct(Bη = ott(Bi*) - «t{B)i* = αt(B) = 8ϋ(t)B

Λvhere we used (36 b) and (27), whence (57) and finally using the fact that

{Ω,A) = (Ω,π(A)Ω) = ω(A), A ζ 3 ( C ^ ; (59)

we have, taking account of the ̂ '-invariance of ω (see Proposition 2)

(8Ω9 A) = {Ω, A8) = ω{As) = ω{A) ,

whence (58). Note that (58) entails the properties

ρμ) ί2 = £ 4 = .4β, ^ ζ § ί C ^ 5 (60)
and

φ,ρ(A)Ω)=ψ,π(A)Ω) = (π(A)Ω,Ω), A ζQί. (61)

We now see that the quasi-unitary character of 31 allows to derive
Theorem 4 of [1], namely the fact that the weak closures of A (31) and
ρ (31) are commutant of one another:

A(3l)" = ρ(2l)', (62)

from Theorem 1 in [4]. Since Ω is cyclic for ρ by (60), we conclude that
it is cyclic and separating for both λ(3l)" and ρ(3l)//. The argument in
the last paragraph of p. 278 in [4] shows that the operators A -> Aj

= jβ(A) and A -+j_β(A) in 31 have respective minimal closed extensions
J and J " 1 on JΊf (with domains Dj and Dj-i) which are self-adjoint,
inverse of each other, and such that

1, (63 a)

J = SJ^S, J-1 = SJ8 . (63b)
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Set L be the spectral measure associated by the Stone theorem to the
representation U

(64)

with H the corresponding infinitesimal generator

H = fξdE(ξ). (65)

For A, B £ 21C & we have U(t) A = xt(A), and thus

(B, U(t) A) = ω(B*oct(A)) = FΔB.(t) = / e'«(B, dJ0(f) 4 ) .

Thus in this case ί1^^* is a measure such that

dFΛB.(ξ) = (B,dE(ξ)A). (66)

From the fact that FAB* has compact support we conclude that 21 is
contained in the domain of each continuous function of H.

In particular, for β ζR, using (31a) and (31b)

4) = (FAB,, e_β) = <e.βFΛB,, 1>

(0) = ω(i?*,i

Thus e 2 and J~x coincide on 21 and we can conclude following [1 end
of p. 234] from the fact that 21 is a dense set of analytic vectors for

e~~~2~ H in jf that

J-i^e~τβΞ. (67)

Appendix A

Extension of the Mapping α to Bounded Measures
Let 21 be a 0*-algebra and α: g ζG -> ccg a strongly continuous

homomorphic mapping of the locally compact abelian group G into the
automorphism group of 21. We denote by ^^(G) the set of continuous
functions on G vanishing at infinity. ^0{G) is a Banach space for the
norm fl/H^ = Sup |/(<7)|. The strong dual of ΉQ(G) is the set M1(G) of

bounded measures on G with the norm Wμ]^ — Sup \(μ} /)]. M1(G) is

a *-Banach algebra for the convolution product μ * v and the adjunction
μ* = μ of measures.

Lemma (a) . For arbitrary A £21 αm£ μ £ ̂ ( ( r ) £&e Bochner integral

(Al)
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exists and defines an element α (μ) A with the properties

^ \ \ μ \ \ x \ \ A \ \ , (A 2)

oc(μ) (aA + bB) = aoc{μ) A + boc(μ) B , (A3)

μ,vζ:M1{G), A, B ζQί , a,b complex numbers

{a(μ) A}* = *(β) A* , (A 4)

cc{μ) oc{v) — oc(μ * v) . (A 5)

Proof. The existence of the Bochner integral (A 1) is assured by the
continuity of the function g -> ocg(A) and the fact that ||α^(^L)|| = ||̂ 4|[
which also entails (A 2). (A 3) is obvious and (A 4) stems from (μg(A))*
= <Xg(A*). On the other hand we can write, using the interchangeability
of Bochner integrals with continuous linear mappings

a(μ) φ) A = fdμ(g) «t(J dv(g') <v

whence (A 5).
Lemma (b). Let f ζ@(R), the set of infinitely differentiate functions

on E with compact supports. Then α(/) A is contained in the domain of
Dp, the pth power of the infinitesimal generator of the one-parameter group
α, for all A ζ 21 and all positive integers p. Furthermore the set {α (/) A: A £31,
/ ζ&(R)} is norm-dense in oc.

This Lemma is an immediate corollary of the Theorem in [7].

Appendix B

Direct Characterization of the Convolution in the Fourier Transform of 21

The space of rapidly decreasing 21-valued (7°° functions on R is
denoted by £f(R, 21). It is well-known that this space can be identified
with the complete tensor product Sf(R)®Ql just as ^'(i?,2l)
= y (R) ® 21. Those results about tensor products which we shall use
below can be found in, e.g. [8].

If we define a Fourier transform of Sf(R, 21) into S?(ίt, 21) by (13),
then this transform is of the form J^ <g> /, where Ĵ * denotes the usual
Fourier transform of &φ) into S?(R).

Lemma (c). Let T denote a tempered ̂ -valued distribution. Then there
exists a unique continuous linear mapping T' from £f (R, 21) into 21 such
that

<r, / A) = (T, /> -A ,

In other words, T' = T ® /.
Proof. The mapping
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is clearly bilinear and separately continuous, and therefore continuous
by the uniform boundedness theorem. But this implies that the linear
mapping T' = T ® / from the algebraic tensor product ^{R) <S> 21 to 2ί
is continuous w.r.t. the projective topology on &'(R) <g> 21. Since £f (R, 21)
is the completion of £?(R) Θπ 21, the result follows.

From this lemma it is clear that if T ζ 9" (R, 21), F ζ S? (R, 21), and P
denotes the Fourier transform of F, then

Now consider A ζ2ί<°°), then by assumption XA £C°°(R,2i), and
since all derivatives of XA are bounded in view of formula (5), it is clear
that XAf £ S?(R, SI) for all fζS?(R) [in the terminology of [9], we have
^ ζ ^ M ( ^ > 2 l ) ] . Therefore, if T ζ «^'(E, 21), we may define T XΛ

ζ ^ ' (JS, 21) by putting

< (B 2)

Lemma (d). Zeί f^Sf(R) and ^4ζ2l ( o o ), α̂ ίZ define the function
F:R->Qίby

F(ξ) = (XΛ,U), ξζlt. (B3)
ThenF ζSf(R,2l).

Proof. We have

from which it is seen that JF7 is the inverse Fourier transform of the
function XΛf £Sf{R,<2l).

Lemma (e). Let T ζ ^ ' ( i ? , 21) and A ζ2l<°°).

(B4)

w/iβre ί" is defined as in Lemma (c) and F is defined by (B 3).
Proof. We have

, /> = <ίΓXΛ, /> (by definition)

= (T',Xjy [by(B2)]

where the last equality is a consequence of (B 1) and the observation
made in the proof of Lemma (d) that XΛ f — P.

Lemma (e) obviously implies that the convolutions JtA * XB defined
by the Eq. (16) and (18) agree for A, B ζ 21 <°°>. The proof of the Eq. (17)
is straightforward.
14 Commun. math. Phys.,Vol. 12
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Note added in proof: F. ROCCA and M. SIRTTGTJE informed us that they proved
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in [la], as we learned from S. DOPLICHER). In view of this, the specifications of
some of our statements are redundant.
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