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Abstract. The product form of quasi-free states is outlined, and the types of
the generated factors are exhibited whenever the states are translation invariant.
Among these states some are shown to be involved in the study of JFermi and
Bose gases.

1. Introduction

The "quasi-free states" originated from the ''generalized free fields"
introduced by O. W. GREENBERG [1]. They were defined and studied in
references [2—7].

Whenever the quasi-free states of the 0*-algebra of commutation
relations or of anticommutation relations are examined the papers [5]
or [6] are referred to.

In Section 2, the fermion case is considered; it is chiefly shown that
any quasi-free state is, with the meaning given by POWERS [3], a product
state of partial states. These latter ones are primary if the state is
translation-invariant and their types are exhibited.

An analogous analysis is made in Section 3 in the boson case, and
similar results are obtained.

Finally we conclude by showing the physical significance of some
quasi-free states involved in the study of Fermi and Bose gases.

2. Fermions

2.1. Generalities

Let (H,s) be a real Hubert space of finite or infinite, but countable
dimension, equipped with a scalar product:

(ψ> ψ) ζH X H ~> s(ψ} φ) ζB

(one-particle space). Consider the Clifford algebra 21 (H, s) built on {H, s)
that is an involutive algebra with unit element (denoted by 1), and
generated by the set of elements B(ψ), linear with respect to ψ, which
satisfy the anticommutation relations:

* Attache de recherche au C.N.R.S.
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A unique norm can be found on 01(11, s), such that, after completion,

$ί(H, s) becomes a O*-algebra [7]. We shall note Qie(H,s) (resp. $iQ(H,sj)

the O*-subalgebra (resp. the closed vector-subspace) of $l(H, s) generated

by products of even (resp. odd) number of B(ψYs, and we shall call it

"even part" (resp. "odd part") of %l(H, s).

The following property holds:

A state ω on $l(H, s) will be called quasi-free [3—5], when:

OJ\%{H,S) = 0 (2.1.1)
together with:

ω(B(Ψl) . . . B(ψ2n)) = Σ (- 1) ! > co(B(Ψiι) B ( Ψ h ) ) ...ω ( B ( Ψ i κ ) B ( Ψ j ι t ) )

(2.1.2)

the sum being extended to all two-by-two arrangement of 1, 2, . . .,2n,
such that ik < j k , %x < ί2 < < ίn; (— l)p is the parity of the permuta-
t i o n ( 1 , 2 , . . ., 2ri) -> (iv j v ...in, j n ) .

Any quasi-free state determines an operator A acting on (H, s), which
is antisymmetric of norm less than 1 and defined by:

ω(B(ψ) B(φ)) = s(ψ, φ) + is(Aψ, φ) . (2.1.3)

Conversely, any such operator A determines by (2.1.3) a quasi-free state.
Let ωA be such a state, and let πA, $)A and ΩA be respectiirely the

representation, the representation space and the cyclic vector obtained
from ωA through the Gelfand-Segal theorem.

If A2 = — 1, a complex structure is defined on (H, s) through the
relation:

(α -f iβ) ψ = ocψ + βAψ

the right-hand side in (2.1.3) is then a scalar product which turns H into
a complex Hubert space. Then ωA is called "Fock state"; it is well
known that such a state is pure.

If A = 0, we are left with two cases:
άimH = 2n or σo; then one can easily see by looking at (2.1.3)

together with (2.1.2) that ω0 is the unique central state on 21 (H, s). I t is
a primary state of type IIX if άimH = σo [8].

άimH = 2n -f 1 co0 is the unique central state to be quasi-free; it is
not a primary state.

In the general case, the polar decomposition1 of A is written in the
following form:

A - J \A\
1 The theorem on the polar decomposition is shown to hold through the

existence of the positive square root of a positive operator. Such a decomposition
is still possible on a real Hubert space.
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with J such that J 2 = — 1 on (kβΐA)-1. Through J, this space is provided
with a complex structure. The operators J and \A\ commute since A is
a normal operator.

Θ
Let (H, s) be written as a Hubert sum H = 2J B-n {ICN), and let

nζl

ωn be ω when restricted to Ql(Hni s) (ω a quasi-free state), ω will be
called a product state [3] with respect to such a sum if for any
(n, m) ζl x /, the following relation holds:

ω(XY) = ω{X)ω(Y) for any Xζ$l(Hn,s), Yζ<2l(Hm,s).

Accordingly, we shall write:

ω = (g) ωn .

2.2. On the Product Form of Quasi-Free States

(2.2.1) Lemma. Let (Hn)nζχ a sequence of orthogonal subspacesof (H, s)
invariant under A and such that H be their Hilbert sum. ωA is a product
state:

ωA = 6d OJA

where An is A restricted to Hn.
From linearity and continuity, it is sufficient to prove that:

ωA(XY) = ωA(X)ωA(Y)
when

X = B(Ψl) B{xp2). . . B(ψQ) , Y = B(Ψl) B(φ2) . .. B(Ψm)

with ψj, ζ Hn, p — 1, . . ., q and φk ζ B^, k = 1, . . ., m. When the parities
of q and m are not the same (2.1.1) must be used. When they are the
same, by rewriting (2.1.2) into:

a sum of product terms is obtained in which one term at least is such
as the following:

ωA(B(ψ)B(φ))

with ψ ζ Hnί and φ ζ H^, and consequently is vanishing from (2.1.3) and
the hypothesis.

(2.2.2) Theorem. Any quasi-free state ωΛ is a product state with respect
to the decomposition of (H, s) into a Hilbert sum H = i?x Θ H2 0 H3, with

H2 =

Hz = Hθ(H1φH2) with A = J \A\ .
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Hv H2, ΈLZ are clearly invariant under A and they are orthogonal to
each other we obtain the result from the preceding lemma. Consequently:

O>A = ωAx ® ωAi <έ COAΛ .

From the hypothesis, A\ = — 1 and A2 = 0, the state ωAl is a Fock state
and ωAi is the central state.

(2.2.3) Theorem. The pure quasi-free states are precisely the Fock states.
I t is necessary and also sufficient for ωA be pure that ωAn also be

pure [3]. Consequently one needs only the following lemma.
(2.2.4) Lemma. // Hx = H2 = {0}, ωΛ is not pure.
Let us set:

Γ a ( i

If Θj is defined on ξ) j b y :

[ β J , π i / ( B ( V ) ) ] + = 0 for any ^ 6 #

Λvith

βjβ, = Ωj

an easy calculation shows the equivalence between πA and the represen-
tation π on § j <g> §_j defined by:

π(£(vθ) = πj{B(TlW)) ® 1 + Θj® π_j(B(T2ψ)) (2.2.5)

β j ® ί?_j is a cyclic vector for this representation, since Tx and ϊ ^ are
one to one, and the corresponding state is precisely OJΛ on the product
terms B(ψ) B(φ). As it is easily shown [9] this state is quasi-free and
consequently is precisely ωA. The representation π' defined by:

π'(B(ψ)) = Θjπj(B(T2ψ)) ® Θ_j - 1 ® Θ_jπ_j(B(TlΨ)) (2.2.6)

has precisely Ωj Θ Ω_j as its cyclic vector, and commutes with π.
Consequently π is not irreducible and ωA is not a pure state.

2.3. On the Type of Invariant Quasi-Free States

(2.3.1) Lemma. For any vector subspace E in H, we denote by 31 (i7, s)c

the commutant of Ql{E} s) in $1{H, s). If άimE = 1m:

-, s) θ ΘE%>(E±, s)

with ΘE = B{ψ1) . . . B(ψ2m) for any basis ψl9 . . ., ψ2m of E.

It is straightforward that ^{E1, s) Θ Θ ^ S I Q ^ 1 , S)C(Ά(E9 S)G. In

order to obtain the inclusion relation in the other way, it must be
noticed that:

SICE, sY ΓΛ 21 (H9 s) C 2tβ(i?-, s) e ΘE%(E^, s) .

Let us consider the elements X — B(φ1) . . . B(φp) where φt is either
a vector belonging to the basis {ψj} of E, or a vector belonging to EL.
It must be shown that if X belongs to 2ί (E, s)G, then it necessarily belongs
to ZleiE1-, s), or to ΘjsVίoiE 1, s):
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if p = 2n, and if some i can be found with 1 < i ^ 2n, such that
φ{ ζE, B(φi) anticommutes with X, that is contrary to the hypothesis.
Consequently X ζ ̂ e{EL, s)

if p = 2 72- + 1, and if some i can be found, with 1 ̂  i < 2 m, such
that ψi coincides with no φj9 j = 1, . . ., 2n + 1, then J5(^ ) anticom-
mutes with X. Consequently X £ O^^E1-, s), and the result is proved.

The mapping B(ψ)-> — B(ψ) can be extended to a unique auto-

morphism γ of the (7*-algebra %{H, s). This automorphism is such that:

= - I if XfQUΪΓϊ).

Let 7e = "o" (1 + 7) and y0 = -̂ - (1 — y) respectively the projection

operators on the even and odd parts of 21 (H, s).
From (2.1.1) the quasi-free states ωΛ are invariant under γ. Conse-

quently a unitary operator U can be found on $)A, defined by ([11],
2.12.11):

UΩΛ = ΩΛ

nA(γ{^)) = UπΛ{Σ) ϋ with U* - ϋ-1 = ̂  /

The operator 17 can be used to define complementary projection operators

Qe and Qo on the even and odd parts of £,($)A) by:

Qe(V) = ~(l + UVU)^Ve,

Qo(V)=γ(l-UVU)=Vo for any Vζ2(ξ>Λ).

We get:

*Λ(YΛX)) = Q.(πΛ{X)),

7iΛ(γ0(X)) = Q0(πΛ(X)) •

(2.3.3) Lemma. Using the notations of Lemma (2.3.1), we get for any
quasi-free state ωΛ.

{πΛ(Ql(E, *)')}" = {jιΛQ&t{E\β))}" θ

with τcj_(9l)w denoting the weak closure of π^(^l).

From Lemma (2.3.1) it is straightforward to obtain including relation:

{πΛ(Qί(E, «)•)}" 5 {πA(^(E\s))}" θ πΛ(ΘE%(E^-, s))'".

On the other hand a sequence (πA {Xn))n£N m τtA(^i{E, s)c) can be found
converging to any V £ {πA(^i{E, s)c)}'\ in the weak topology. We can
deduce from the above that V + U V U = 2 Qe (V) is in the weak closure
of 2Qe(πA(Xn)) = πA(Xn) + ϋπA(Xn) U, and analogously that Q0(V)
is in the weak closure of Q0(πA{Xn)) So V
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(2.3.4) Lemma. For any X ζ^i(H, s), an even-dimensional vector sub-
space E of H can be found, such that, for any Y ζ ^ie(E±, s), the following
relation holds:

\ωA(XY)-ωA(X)ωA(Y)\^\\Y\\.

For any X ζ%l(H,s), some X oζ2l(iZ, s) can be found, with

||X — Xoll = Ύ Consequently:

\ωΛ(XY)-ωΛ(XoY)\^γ
and

\ωA(X)ωA(Y)-ωΛ(Xo)ωA(Y)\<γ\\Y\\, for any Y

The result will be shown by exhibiting, for any Xo such as
B(ψx) B{ψn)> a n even-dimensional subspace E oίH such that, for any

ωΛ(X0Y) - ωA(X0) ωA(Y) = 0 .

We can take any even-dimensional subspace including ψv ψ2, . . ., ψn,
together with Aipx, Aψ2, . . ., A ψn. Using continuity and linear-
ity we obtain the result by proving the relation for any product

Y = B(φ1) B{ψ2q) m Sloί-̂ "1*?5)? w n i c n c a n be derived from the
definition of E, through (2.1.2) and (2.1.3).

(2.3.5) Proposition. For any quasi-free state ωA the center QA of
{πA(Ql(H, s))}" is at most two-dimensional. More precisely, if dimg^ = 2,
this center is generated by an odd hermitian operator z satisfying z2 = I.2

Let $ be the set of even-dimensional subspaces of H, we get from
([12], Lemma 2.4) and Lemma (2.3.3):

, 8)f .
The even (resp. odd) elements in the center belong to Π {nA (2ίe {EL, <$))}"

[resp. nA(ΘE^i0(E L, s)) ]. Using Lemma (2.3.4), one shows just like in
([12], Theorem 2.5 (iii) ~> (i)) that the even elements in the center are
multiples of the identity. If dimg^ > 1, i.e. QQ{SΛ) + {̂ }> a n ° ^ n e r "
mitian element z can be found in QA. z2 being even and in the center,
z2 is μl with μ some positive non-vanishing number. Taking μ~^2 z
instead of z, we are brought back to the case z2 — 1. For any z' ζ Q0(8^)?
z z' is even and consequently written as some λl. It follows z' = λz.

Particular case of quasi-free translation invariant states allows us to
make these results more precise.

2 It has been recently shown by F. ROCCA, M. SIKLΓGUE, D. TESTARD, and
M. WINNINK that ωΛ is primary (dim 8^ = 1) if and only if dim(Ker̂ 4) is odd.
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From now on H = 22{RB), s is the real part of the usual scalar pro-
duct. The translation group {Tx\x ζR*} is an orthogonal group when
equipped with s, inducing a group of automorphisms {τx\xζR3} of
3l(JET,s), defined by [7]:

τxB(ψ) = B(Txψ) for any ^ ζ £ 2 ( E 3 ) .

From the strong continuity of the mapping x -> Tx, the continuity of

the mapping x->rx(X) follows, for any X ζ 2l(i7, s).
(2.3.6) Proposition. Let ωA be a translation-invariant quasi-free state.

Using the notations of Theorem (2.2.2), Hλ, H2, Hs either have a zero
dimension, or an infinite one.

I t is known that [A, Tx]_ = 0 for any x ([5], Lemma 2) and so, since
the polar decomposition of A is unique, Tx commutes with \A\. Conse-
quently the spaces Hl9 H2, H3 are invariant for Tx and the proposition
is deduced from the following lemma:

(2.3.7) Lemma. Any translation invariant subspace of £2(.R3) has
either a zero dimension, or an infinite one.

Let ψζS,2(Rz) be such that the subspace {Txψ\x ζR3} is finite-
dimensional. Then the function x -> (ψ, Txψ) is an almost-periodic func-
tion ([11], 16.2.2), which, on the other hand, belongs to <£°(E3) (the set
of continuous functions vanishing at infinity ([13], 14.10.7)). It follows
y=0([14],§24).

(2.3.8) Theorem. With the same notations as in (2.2.2), any translation-
invariant quasi-free state is written as

with: ωA = ω ^ ® ω^ ® ω^
(i) ωΛl is pure of type 1^.

(ii) ωAz is primary of type IIV

(iϋ) ωΛs is primary of type III.
Since, from Proposition (2.3.6), the dimensions of Hx and H2 are

vanishing or infinite, ωΛi, ωAz have respectively the type 1^, 11^ when-
ever they exist. Since ωAz is translation-invariant too, only the case with
Hx — H2 = {0} must be looked at. The following lemma will be needed:

(2.3.9) Lemma. Any quasi-free state is such that:

ωΛ(Xτx(Y)) - ωΛ {X) ωΛ (7) -> 0 with \x\-+oo,X,Y
The property must be shown when X and Y are finite products of

B(ψYs, and it will be stated in any case from (2.1.2), (2.1.3), by noting
that, for any ψ and φ ξ £2(i?3), s(ψ, Txφ) ->• 0 when \x\ -> σo.

Since ωA is translation invariant, we know that there exists a strongly
continuous representation U, of Rz into ξ)A, such that

KA (TXX) = ϋ(x) πA (X) ϋ (x)* with ϋ (x) ΩA = ΩA.

The preceding lemma and ([15], Theorem 2) show that ΩA is the unique

invariant vector by the whole set of £7(a;)'s.
4 Commun. math. Phys.,Vol. 12
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I t has been noticed in Lemma (2.2.4) that the representation defined
through (2.2.6) had ΩA as cyclic vector. ΩA is, a fortiori, cyclic for the
commutant of πA ($ί(H, s)) and consequently separating for {πA ($l(H, sj)}".
Since the hypotheses of Theorem 2.4 in [16] are verified, either ωA is
a primary state of type III, or the center QA has no minimal projection
operators. By Proposition (2.3.6), if ωA is not primary, QΛ is generated

by an hermitian operator z, satisfying z2 ~ 1. There are -~- (1 + z) and

γ (I — z) as projection operators in QA, and nothing more. So OJΛ is

primary of type III .
(2.3.10) Remark. The Lemma (2.2.4) remains true when dimH 2 = σo.

Indeed it is possible to extend the complexification J of H3 to a com-
plexification of H2 Θ Hz. In the proof of (iϋ), the hypothesis H2 = {0}
was not needed. So ωAss <g> ωAa is primary of type III .

(2.3.11) Theorem. Any translation-invariant quasi-free state coA is
primary. With the same notations as in (2.2.2), we get:

(i) if # 3 = H2 = {0}, ωA is pure of type /«,,
(ϋ) if ϊlx = Hz = {0}, ωA is a state of type IIl9

(iii) if H3 = {0}, Hx and H2 Φ {0}, ωA is a state of type 11^,
(iv) if H3 Φ {0}, ωA is a state of type III.
(i) and (ϋ) are already known (2.3.8). Proofs of (iii) and (iv) will

follow, using ([10], p. 102, Corollary 3) and (2.3.10), from the following
lemma:

(2.3.12) Lemma. // ωA = ωAί <έ> ωAz is a product state with respect to
the sum H = Hx φ H2 and ωAί is pure and invariant under γ (2.3.2), the
Von Neumann algebra generated by πA (21 {H, s)) is spatially isomorphic
with the tensor product of the Von Neumann algebras generated by
πAi(Qi(Hv s)) and τzAz(Ql(H2, s)). Hence ωA is primary if OJAO is primary
([17], Prop. 1.6).

The representation πA is unitarily equivalent to the representation
π in $)Ai ® §^ 2 defined by:

if rp^Hl9

if ψ£H2

where U [see (2.3.2)] is an operator anticommuting with each τιAi(B(ψ)),
ψ ζ Hv Indeed the vector ΩAι ® ΩAz is cyclic for π, and the corre-
sponding state is precisely ωA. The lemma is at once deduced since:

Uζ{πΛi(Ql(H1,S))}" = 2(ξ>Aι) and E7» = 1 .

(2.3.13) Theorem3. Two translation invariant quasi-free states ωA and
ωA, are quasi- equivalent, if and only if A = A'.

3 E. ST0BMER private communication.
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From the theory of asymptotically abelian O*-algebras [15], it is
known that coj, is an extremal translation invariant state. Therefore, by
([18], Theorem 6.1), ωA and co^, are quasi-equivalent iff ωA = ωΛ',
hence iff A = A'.

3. Bosons

3.1. The C*-Algebra of Commutation Relations

The O*-algebra of commutation relations A (H, σ) is studied in [19].
Let us simply recall some useful definitions and results.

(H, σ) is a symplectic space, i.e. a real vector space (one-particle
space) equipped with an antisymmetric, regular and bilinear form σ
(regularity means: σ(ψ, φ) = 0 for any ψ ζ H implies φ = 0). A (H, σ) is
the involutive algebra generated by unitary elements denoted by δψ,
ψ ζ 11, verifying:

(δψ)* = δ _ v

δQ is the unit of this algebra.
The set 91 (H, σ) of representations of commutation relations is

defined as the set of representations π of A (H, σ) such that the mapping
λ ζ R -> π{δλψ) be weakly continuous for any ψ ξ H. By all these repre-
sentations, a unique norm can be induced on A (H, σ) [i.e. for any πx

and π2 ζ%l(H, a), ||^(-X:)|| = | |π2(Z)|], for any X ζ A (H, σ)]. The closure

of A (H, σ) with respect to this norm is the 0*-algebra A (H, σ). For any
π ζ$l(H, σ): π(δψ) = eiBM, with B(ψ) the field operator.

Let JŜ  and H2 be two subspaces which are regular in (H, σ) (i.e.
o\H1 x H1 and <y\H2 x H2 are still regular). Suppose cr(ψv ψ2) = 0, for
any ψx ζ Hl9 ψ2 ζ J?2 5 then, if i ϊ = Hx Θ iϊg'.

Zl (#, σ) - Zl (Hi, σ) ® A (H29 σ) .

A bijective operator T on (ίί, σ) will be said to be symplectic, if the
following law holds:

σ(Tψ, Tφ) = σ(ψ, ψ) , ψ, φ ζH .

Then the mapping:

δψ -> δTψ , ψ dH

can be extended into a unique automorphism xτ of A (Hy a).
Analogously, for any element χ in the algebraic dual of H, the

mapping:

can be extended into a unique automorphism ξχ of A (H, σ), this latter
being called ' 'gauge automorphism of second kind induced by χ".
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3.2. On Real Scalar Products Defined on (H, σ)

H is equipped with the uniform structure defined by the following
set of semi-norms:

Qφ'ψ-^ \<*(ψ, ψ)\ .

From now on we suppose H to be sequentially closed, i.e. we suppose
that any sequence (φn)neN °% elements in H, such that, for any ψ ζH,
(σ(ψ, φn))n£N i s a Cauchy-sequence, converges to an element of H. On
the other hand, let 0 be the set of real scalar products s on H such that:

(3.2.1a) \σ(Ψ, φ)\* si \\ψ\\2

s \\ψ\\l with |M|? = s(ψ, ψ).
(3.2.1b) σ, when extended through continuity, into σf on Hs (the

closure of H with respect to the norm || ||s) is regular. (H, s) is then a real
prehilbert space equipped with the norm || ||s. We shall denote by || | | s the
norm of bounded operators on (H, s).

(3.2.2) Theorem. For any s ζ β, (H, s) is a real Hiΐbert space.
Let ψ1 be in IIs, a sequence (φn)nζ^ can be found in Ht converging

to ψ± with respect to || ||s. Consequently (3.2.1) for any ξ ζϋΓ,

Urn σ'(φn,ξ) = σ'(Wl,ξ).
n->oo

Since H is sequentially closed, (3.2.1a) implies that a ψ2 can be found
in H such that, for any ζ ζ H,

lim σ(φn)ζ)^σ(ψ2fζ) .
n->oo

I t follows that or (ψ± — ψ2, ζ) = 0 for any ζ in H. From the continuity
(3.2.1a) and the regular character (3.2.1b) of σ', it follows that
ψ1=ψ2ζ H.

For any s ζ @, there is a bounded operator Ds on H with \\DS\\S < 1,
by (3.2.1a), and such that:

σ{ψ, φ) = s(Dsψ, φ) , ψ, φ ζH .

Let J\DS\ the polar decomposition of Ds; since Ds is normal (following
from the relation D^~ = — Ds, with D^ the adjoint of Ds with respect
to s), we get [J, Ds]_ = 0 ([20], p. 935). I t can be easily shown [6] that
a cr-allowed hilbertian structure is defined on H through J ([21], p. 28
and 29), i.e. if a multiplication law is defined, combining elements in H
with complex numbers such as:

(oc+iβ)ψ= ocψ+ βjψ, oc,βζR, ψζH.

then H, equipped with the scalar product:

h{φ, φ) = Sj(φ, φ) + iσ{ψ} ψ)

with Sj(ψ, φ) — — σ(Jψ, φ)t ψ and φ ζH, is a complex Hubert space;
it is straightforward that Sj ξ (S.
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The range Hs of the operator Ds is dense in H, while the operator
As — — D^1 — J ^ s l " 1 , defined on Hs, is generally unbounded. As is
bounded precisely when Hs = H. Since ||DS | | fg 1, \AS\ ^ 1, and it follows
that l^sl"1 is a positive operator. Moreover, for any s ( 6 , a conjugation
A (i.e. [Λ, J]+ = 0 with A2 = 1) can be found such that [|J[β|, yl]_ = 0
([6], Prop. 8).

Remark. If (H9 h) is a complex Hubert space with a as the imaginary
part of the scalar product h, it is well known that (H, σ) is sequentially
closed. From above we deduce that whenever (H, σ) is a symplectic
sequentially closed space, σ-allowed hilbertian structures can be found
provided that Θ be not empty.

3.3. On the Product Form of Quasi-Free States

It is shown in [6] that any quasi-free state ω on A (H, σ) is defined by:

ω(δψ) = exp \iχ{ψ) - γs(ψ, v ) | , ψ £ H

where χ is in the algebraic dual of H, and s is a real scalar product on H
verifying (3.2.1a). We are loocking only for Von Neumann algebras
generated through the representations πω corresponding to quasi-free
states via the Gelfand-Segal theorem. Since ω = ωs o ξχ with ω s such
that:

ωs(δψ) = exp j - y s ^ ,

f χ being the gauge automorphism of second kind induced by χ, the study
of the quasi-free states such as ωs is only needed. Moreover it is shown
in ([6] th. 3, Prop. 11) that ωs is primary precisely when s ζ 0 . From
now on, only these states will be examined. πs, § s and Ωs denote the
representation, the space and the cyclic vector obtained from ωs through
the Gelf and-Segal theorem.

When ||JDS|| = 1 [i.e. when Ds is a σ-allowed hilbertian structure on
(H, σ)], ω s is called "Pock state", known as a pure one.

(3.3.1) Theorem. For any s ζ β>, H1 being the kernel of \DS\ — 1, H2the
orthocomφlement of H1 in H through s [so that Δ (H} σ) = A (Hlf σ)
® A (H2, σ)], then ωs~ω1(g> OJ2, with ω^ = ωs\A (Hiy σ), i = 1,2. More-
over ωx is pure, but ω2 is not pure.

The first part follows from the decomposition:

Ψ = Ψi + Ψ2 with ψi ζ Hi, i = 1, 2 , for any ψ ζ H ,

and from its direct consequence

ωs(δψ) = ωλ{δψl) ω2(δΨz) .

ωx is a Fock state (consequently pure) on Δ (H1} σ) since Ds | Hx = J\ Hv
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The proof is achieved through the following lemma:
(3.3.2) Lemma. For any s ζ Θ, if ker(|D s | — 1) = {0}, ω s is not pure.
The image Hs of H through Ds is everywhere dense, and the mapping

ψ ζH -> πs(δψ) ζ £(ξ)s) strongly continuous, the proof that ωs\Δ (Hs, σ)
is not pure will be sufficient ([6], Prop. 5). Take the operators:

defined on Hs, with a range dense in H; this last property is straight-
forward as far as Tx is concerned, and is easily deduced for T2 from
the hypothesis of the lemma. I t implies, just as in ([22], p. 648), that
the representation π of Δ (Hs, σ) in $)Sj <g> $)8J defined by:

π(δψ) = πSj(STlψ) ® πSj(δTsψ) , ψζHs (3.3.3)

has ΩSj (S> ΩSJ as cyclic vector.

The representation π of Δ (Hs, σ) into $)SJ (8> ξ)Sj defined by:

π'(<*v) = πsj(δτj 0 πSj(δTiΨ) , ψ £HS (3.3.4)

has ΩSJ ® ΩSJ too as cyclic vector, and commutes with π. Consequently
n is a reducible representation since:

<a,(δv) = (ΩSJ ® Ωsj\π(δψ) ΩSj ® ΩSj)

ωs IΔ (Hs, σ) is not pure.
(3.3.5) Corollary. The pure states ωs are the Fock states.
Indeed, from ([17], 2.2) the tensor-product states are pure precisely

when each component state is pure.

3.4. Invariant Primary Quasi-Free States

We denote £2(i?3) by H, and by a the imaginary part of the usual
scalar product. The translation group {Tx\x ξi^3} is a group of
symplectic operators inducing [see (3.1.1)] a group of automorphisms
{rx I x £ R*} of J{HVσ) defined by:

A quasi-free state α>s, s ζ 0 , is translation-invariant as soon as, for
any x ζ J?3, τx is orthogonal with respect to s, or equivalently:

[rβ ί,Dβ]_ = 0 for any xζR*.

This can be restated by saying that xx and As commute on the domain
of As. Looking at translation-invariant quasi-free states will allow us to
make the results of preceding sections more precise. In particular, we get
the following theorem:
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(3.4.1) Theorem. The notations being as in Theorem (3.3.1), if ωs is
translation invariant, we get ωs = ω± <8> ω2 with:

ω1 pure of type 1^,
ω2 primary of type III.

Hence, if H2 Φ {0}, ωs is primary of type III ([10], p. 102, Cor. 3).
ωλ is known to be pure, hence primary of type 1^. The following

lemma is only needed:
(3.4.2) Lemma. For any s ξ 0 such that 23̂  = {0}, if ωs is invariant

it is a type III state.
Arguing as in Lemma (3.3.2), the representation π (3.3.3) must be

shown to be a primary one, of type III . ΩSJ Θ ΩSJ is cyclic for π and
separating for {π(A (H, β))}", since it is cyclic for π' (3.3.4). From ([16],
Theorem 2.4), the result follows by establishing that ΩSJ <S> ΩSJ is the
unique invariant vector. From ([15], Theorem 1), we get it from:

ωs{δψδTχφ) - ωs(δΨ) coa(δφ) -> 0 with |a;| -> σo .
Now

ωs(δψδTχφ) = ω(δψ) ω(δφ) e~^'τ^ + ί σ ^ τ ^
and

lim (8(ψ9Txφ)

using ([13], 14.10.7) just as in the Lemma (2.3.7). The Theorem (3.4.1)
is now derived.

Translation-invariance of quasi-free states also allows us to state
precisely the structure of Ds and As. In particular, using the notations
of (3.3.1) [and as in the fermion case (2.3.6)], Hx and H2 can be shown
to have zero or infinite dimension. Moreover, as in ([5], Section IV), the
bounded operator Ds, s ζ Θ, is such that, for any φ

(O,ψ) (P) = idχ(p) ψ(p) + d2(p) φ(- p ) , pζR*.

φ denoting the Fourier-transform of φ ζ 2,2(R3), with dx a real function
and d2 a symmetrical one (see [9] for the calculations).

Properties (3.2.1) are equivalent to the following relations, which are
holding almost everywhere:

with
d(p) = d1(p)d1(-p)-\d2(p)\*.

With the same notations, the operator As is such that, for any φ in its
domain and for almost every p:

(p) = iaΛP) ψ(P) + «2(P) ψ(~ P)
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with

Using (3.4.3), it can be easily seen that any invariant quasi-free state
ωsi s ζ @, can be characterized with the following relations which hold
almost everywhere:

= aΛ~ P) .

To compare these latter relations with the corresponding ones in [2]
would be interesting.

4. Conclusion

Many factors of type III have been exhibited through the study of
invariant quasi-free states of the 0*-algebras of commutation and anti-
commutation relations. In particular, for fermions, the quasi-free states
ω2λj [where J means multiplication by i in the space £ 2 {Rz)]} 0 < λ < 1/2,
are the states shown by POWERS to be algebraically inequivalent [3].

Nevertheless, to classify and study invariant quasi-free states as in
the sections above, is not only mathematically interesting. Therefore
ARAKI and WYSS, describing the equilibrium state of the Fermi gas [23],
get, for zero temperature, a Fock state and, for finite temperature, a
quasi-free state ωΛ which is primary of type III, and invariant through
translations and through the gauge-group. It can be defined as follows:
ρ being the density in the momentum space, A is the operator

(2/) (?) = i(i - 2ρ(P))UP), f z

Analogously, in the Bose case [22], ARAKI and WOODS get at finite
temperature, when the fundamental state is not macroscopically occu-
pied, a quasi-free state ωs which is invariant through translations and
through the gauge group it is defined as follows:

(7j) (p) = » (1 + 2ρ(p)) f(p), f ζ S»(2P) .

When the fundamental state is macroscopically occupied, and par-
ticularly at zero-temperature, we get states which are no longer quasi-
free, but Hubert sums of such quasi-free states.
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