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Abstract. After briefly putting algebraic quantum theory into the context of
a probabilistic interpretation with emphasis on local measurements, certain general
features of the theory are examined. Sectors are defined and shown to be the
components of the pure state space in the norm topology. Transition probabilities
are defined by a simple algebraic formula and it is shown how superpositions of
pure states may be defined. With the aid of these results, symmetries are charac-
terized and the connexion with Wigner's Theorem is established.

1. Introduction

The predictions of quantum theory were quickly realized to be proba-
bilistic in nature. These predictions do not fall within the scope of clas-
sical probability theory but they can be accommodated within a non-
commutative probability theory. The probabilistic formulation of quan-
tum theory owes much to the pioneering work of VON NEUMANN [1] but
the clearest account of the essentials has been provided by MACKEY [2],
Here the states and the observables are treated as the primary entities
of the theory and a probability measure is assigned to each pair (ω, A)
consisting of a state ω and an observable A.

The algebraic approach to quantum theory with its stress on the
<7*-algebra of bounded observables was initiated by SEGAL [3] and was
realized by ARAKI [4], HAAG and KASTLEU [5] to provide a useful tool
for understanding local quantum field theory. The relationship of alge-
braic quantum theory to Mackey's axioms has recently been clarified by
PLYMEN [6] using the concept of a Σ*- algebra introduced by DAVIES [7].
As Davies showed, it is always possible to embed an abstract O*-algebra
SI in a canonical way in a 27*-algebra 2l~ so that any state of 21 has
a unique extension to a σ-state on 2l~. 2ί~ is called the cr-envelope of 21.
In classical statistical mechanics if 21 is chosen to be the (7*-algebra of
continuous functions on a compact subset of phase space, 2l~ may be
identified with the 27*-algebra of bounded Borel functions on that subset.
In section 2, we discuss this relationship between O*-algebras and J?*-al-
gebras in the light of local measurements and show how unbounded
observables fit naturally into the scheme.

Regarding the probabilistic formulation of quantum theory as fun-
damental, we take the view that a symmetry of a physical system is
22 Commun. math. Phys.,Vol. 11
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most properly defined as a transformation leaving invariant the under-
lying probability measures. In Section 3, we discuss the implications of
this assumption in a 0*-realization of a physical system. Our main result
here is that any transformation of the states induced by a symmetry is
an isometry with respect to the metric induced by the norm on 2Γ, the
dual of 21.

Before establishing the connexion with the Wigner-Bargmann [8 and
9] analysis of symmetries, we need to define sectors, establish some of
their properties and also give an algebraic definition of the transition
probability between two pure states. This forms the material of Section 4
and allows us to formulate the superposition principle in Section 5 and
show its in variance under symmetry transformations.

We can now show in Section 6 that transition probabilities are left
invariant by a symmetry whilst the sectors are permuted by it. Thus,
applying Wigner's Theorem in the extended version due to BARGMANN

[9], we can infer the existence of a unitary or antiunitary mapping
implementing the mapping from some initial sector to the corresponding
final sector. This allows us to rederive a result of KADISON [10] that
a symmetry induces a Jordan isomorphism of the 0*-algebra. We con-
clude with a necessary and sufficient condition for a transformation of
the pure states to be induced by a symmetry.

For the convenience of the reader, we add a few remarks on the
terminology and notation used. If α is a map from a set X to a set Y,
then for any subset M of Y, or1(M) denotes the inverse image of M
in X. If α is 1—1 and onto it will be called a bijection. If α : X-> Y and
β : Y -> Z are two successive maps, β o oc denotes the composed map
X -> Z. R and C denote the fields of real and complex numbers respec-
tively. A function f: R-> R is called a (real-valued) Borel function, if
f-1 (B) is a Borel set of R for any Borel set J5 C #• A probability measure
μ on R is a non-negative Borel measure such that μ (R) — 1.

By a 0*-algebra 21, we shall always mean an abstractly denned
(7*-algebra with unit, denoted by I. For details the reader is referred to
Dixmier's book [11]. If Ω is a compact Hausdorff space, then G(Ω) denotes
the O*-algebra of continuous functions Ω -> C The spectrum of A ζ 21
is the set of complex numbers λ such that A — λl has no inverse in 21
and is denoted by SpA. Sp̂ L is always compact and if A is Hermitian
then Sp.4 is real. We shall denote by 2lΛ the Jordan algebra of Hermitian
elements of the C*-algebra 21. A Jordan homomorphism is a *-preserving
linear map of a 0*-algebra 2ί into a 0*-algebra 93 such that φ (A2) = φ (A)2

for each A £ 21. A bijective Jordan homomorphism is called a Jordan
isomorphism.

By a representation π of 21, we mean a representation by bounded
operators on some complex Hubert space J^n. π denotes the equivalence
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class of unitarily equivalent representations to which π belongs. The set
of equivalence classes of irreducible representations is denoted by 2Ϊ and
called the spectrum of 21. $(21) denotes the set of states of 2ί, i.e. the
set of positive linear functionals of norm 1. The extreme points of the
convex set $(21) are called pure states and the set of pure states is
denoted by P(2l). If ω ζ $(21), πω denotes the canonical cyclic represen-
tation in the Hubert space fflω with cyclic unit vector xω for which
ω(A) = (xω, πω(Λ) xω) for all 4 £ 21 [11 2.4.4]. This is often referred to
as the Gelfand-Naimark-Segal construction. πω is irreducible if and only
if ω is pure [11; 2.5.4] and we thus have a canonical mapping
co i—• πω: P(2l)->21. A vector state on 21 in the representation π is
a state ωx £ $(21) such that ωx(A) = (x, π(A) x) for all A £ 21 and some
unit vector x £ Jf „. A full set of states [10] is a convex subset S? C $(21)
such that A ^ 0 in 2t if ω(A) ^ 0 for all ω ζ Sf. The norm topology on
$(21) is that induced by the dual norm on 2Γ and is derived from the
metric δ(ω, ω') = \\ω — ω'j| = sup |ω(J.) — ω'(A)\. The ^-topology

ίMli
on /S(2l) is the coarsest topology making the map ω\—>ω(A) continuous
for each A £ 21.

We shall also use the concept of a spectral measure, but only in the
special case of a spectral measure over R with values in a 27*-algebra 21.
In this case we mean a map B \—> E (B) from the Borel sets of R into the
projections of 21 such that E(0) = 0, E(R) = I and E(B1r\B2)
= E(B1)E(B2) for every pair of Borel sets B1 and B2 and which is
countably additive with respect to the weak operator topology of some
faithful σ-representation of 21 [7].

2. Local Measurement and C*-Realizations

We choose the same starting point as MACKEY [2] and suppose that
if £f is any set of states of a physical system and si any set of observables
of that system, then there is a map μ from Sf' Xsi into the set of proba-
bility measures on R. The physical interpretation of μ(ω, A) is that it
predicts the probability distribution of measured values of A when the
system is in the state ω. The expectation value of A in the state ω, ω (A),
is simply the first moment of μ(ω, A): ω{A) = f λ μ(ω, A) (dλ). This
expectation value will not necessarily exist if A is unbounded.

If we wish to give a mathematical model for a physical system, we
must identify £f and si with certain abstract sets in such a way that
there is a natural probability measure associated with each pair (co, A).
Formally, this may be achieved by mapping £P and si into such sets.
This will then be called a realization of (S?f si, μ), and we shall be con-
cerned here with three types of realizations.
22*
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Definition 2.1. Let 21 be a O*-algebra and #(21) the set of states of
21. A C*-realization of (£f, si, μ) consists of maps ω ι—> ώ : £f -> S (21) and
A i—> A : si -> 2lΛ such that μ(ω, 4) = μ(ώ, A), where /2(ώ, 4 ) is the
unique probability measure on R with support in SpA such that ώ(g(A))
= fg{λ) μ{ώ,A)(dλ) for all ^ ζ C ( S p i ) 1 . A 0*-realization is called
a Σ*-realization if 21 is a 27*-algebra and if the image of Sf in $(21) con-
sists of σ-states. We have a Σ*-spectral realization of (of, si, μ), if 21 is
a Σ*-algebra, Sf is mapped into σ-states on 21, and if there is a map
A i—> EΛ from si into the spectral measures over R with values in 2t
such that μ(ω, A) (B) = ώ(EΛ (B)) for every Borel set BcR-

It is clear that (SP, si, μ) cannot have a 0*- or 27*-realization if si
contains unbounded operators. The advantage of Σ*~spectral realizations
is that they are possible even when si contains unbounded observables.
Now any O*-realization determines a canonical Σ*-realization, since
a O*-algebra 21 may be embedded into its (T-envelope 21 ~ in such a way
that any state of 21 has a unique extension to a cr-state of 21 ~ [7 Theorem
3.1]. Moreover, any Σ*-realization determines a Z^-spectral realization,
since the Hermitian elements of a Σ*-algebra are in 1 — 1 correspondence
with the compact spectral measures over R with values in 21 [6 Lemma
2.5]. If E2 corresponds to -<2ζ2lA it is easy to verify that μ(ώ,A)
= ωoEi.

It is useful to introduce an abstract version of the correspondence
A «-> Ex in the context of a triplet (£P, si, μ). We recall that a question
[2], Q £ si, is an observable such that μ{ω, Q) is concentrated on {0, 1}
for all ω ζ S?.

Definition 2.2. An observable A ζ si is said to have a spectral resolu-
tion in si, if there is a question-valued measure [2], QA, over R such
that ω oQΛ = μ(ω, A) for all co(«/.

We now turn to a description of local measurements. To measure
a particular observable, we need a measuring device, whose specification
will be supposed to include the spatial extension of the apparatus
at any time t in some frame. Thus, in Minkowski space, the
associated region may be thought of as a tube. The intersection
of such a tube with a hyperplane t = const, will be called a
local section of Minkowski space. Every measuring apparatus will be
assumed to possess a pointer, or similar device, whose position indicates
the result of the experiment. We assume that any series of measurements
can be reduced to single measurements which consist in reading the
position of the pointer at a particular instant of time. This instant of time
defines a local section s(m) associated with each measurement m, and
s (m) is compact as a consequence of the local nature of m.

1 The existence of μ is guaranteed by applying Bochner's Theorem to the func-
tion F{t) — ω(eitA). μ is just the state on C(SpA) induced by ώ.
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We assume that given any state ω ζ £?, there is a probability measure
μ(ω,m) on s(m) relative to the natural Borel structure of s(m). The
measure μ(ω,m) determines the probability distribution over s(m) of
the position of the pointer when the system is in the state ω. Let 8(m)
denote the joint support of the measures μ(ω, m) as ω varies in £P. Thus
x ζ S(m) if and only if, given an open neighbourhood Nx of x in s(m),
there exists a n c o ^ y with μ(ω, m) (Nx) > 0. 8(m) is a compact subset
of s(m), and we shall assume that S(m) is homeomorphic to a compact
subset of R. We are here ignoring, for example, the possibility of two-
or three-dimensional graphical representations of measurements2.

Before associating an observable with a measurement m, we must
provide the pointer with a scale over which it moves. We do this ab-
stractly by specifying a Borel function f:S(m)->R. Different Borel
functions give different scales and determine different observables. In
this way, we get a mapping / ι—> m (/) from the Borel functions on 8 (m)
into J / such that μ(ω, m(f)) = f% μ(ω, m), where f%μ denotes the
probability measure on R denned by (/* μ) (B) = μ(J~1(B)) for all Borel
sets B of R.

In most cases, it is a reasonable idealization to assume that the
measuring apparatus of a measurement m disturbs the system under
observation only within some compact subset d(m) of Minkowski space.
This set must be distinguished from s(m), because it would neither be
reasonable to assume that d (m) was contained in a time-hyperplane, nor
even that the time at which the pointer was read corresponded to a time
when the apparatus was in effective interaction with the system.

Let Θ be a bounded open subset of Minkowski space and let όb(G)
denote the set of observables of the form m(f), where m is any measure-
ment with d (m) C ® and / is any Borel function, / : 8 (m) -> R. Let bob (Θ)
and cob (Θ) denote the subsets of ob (Θ) determined by restricting / to
be a bounded Borel function or a continuous function respectively.

Proposition 2.3. Every m(f) ζob(Θ) has a spectral resolution with
values in bob(0).

Proof. Let B be a Borel set of R, then /~1(5) is a Borel set of S(m),
and if Xf-i(β) denotes its characteristic function, >m{χf-i(B)) is a question
in bob(0). If we now set Qm(f)(B) = m(χf-HB)), then ωoQm(f)(B)
= ω(m(Xf-HB))) = μ(ω> m(ί)) (B)' Hence ω o Qm(f) = μ(ω, m(/)) for all
ω £ Sf. This shows that B ι—> Qw(/) (P) i s a question-valued measure and
further that it is the spectral resolution of m(/).

2 Restricting S(m) to be homeomorphic to a compact subset of R has no deep
significance. If we wished to relax this condition, we ought, in the same spirit to
allows observables A for which μ (ω, A) is a probability measure on Rn, n ^ 1.
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We now assume that we have a 0*-realization of (Sf, cob(0), μ) in

a C*-algebra C*(Φ) defined by mappings m(f) \—> m(f) and ω \—• ώ, and

that y = {ώ : ω ζ &*} is a full set of states of C*(Θ).
Proposition 2.4. Let m(f) ξ cob(0), then
a) SpΛ(/) = /(,S(m)).
b) (7 W/)) = m(gof)forgί C(βVm(f))h.
c) {ra(/): / ξ 0($(m))Λ} is α Jordan subalgebra of C*{Θ) isomorphic

to C(S(m))h and f ι—> m(/) realizes this isomorphism.
Proof, a) Since Spm(/) supports the measures associated with m(f)

in C*(Φ), f(S(m)) cSpm(/). Let g : Spm(/) ~> # be any continuous func-
tion such that g o f(S(m)) = {0}. Then, making free use of the functional
calculus in O*-algebras [11; 1.5],

ώ(flf(A(/))) = / g(λ) μ(ω, m(/)) (ίλ) = 0

for all ω ( ^ . Hence g(m(f)) = 0, as ^ , being full, separates <7*(0). But
f(8(m)) is closed in Spm(/), and it follows by URYSOHN'S Lemma [12;
§ 4, N° 1] that f(S(m)) = Spm(/).

b) ώ(Λ(flro/)) = /A( f lro/) s | ( i M(ω,m) (ίλ)^= / g(λ) μ(ω,m(f)) (dλ).

Hence ώ(m{g o /)) = ώ(g(m(f)) for all ώ ζ ̂ . Thus m(go/) = g(m(f)).
c) By hypothesis, there is a homeomorphism Λ: $ (m) - > I C J R .

From a), Sp(m(&)) = h(S(m)) = I. Now # ι—• g(m(h))is an isomorphism
of (7(/)A onto a Jordan subalgebra of C*(Θ) [11; 1.5.1]. Hence

is, by b), an isomorphism of C(8(m))h onto a Jordan subalgebra of 0* (0).
Theorem 2.5. TAe C*-realization of (S?9 cob(0), //) m O*(^) mα^ be

extended to a Σ*-realization of (£f, bob(^), μ) in Σ*((P), where Σ*(Θ)
denotes the σ-envelope of C*(Θ), and to a Σ*-spectral realization of

Proof. By Proposition 2.4, f\—>m(f) is an injective morphism
C(S(m))-> O*(6)), and since G*(Θ) may be regarded as a subalgebra of
Σ* (Θ)} we equally have an injective morphism C(8 (m)) -> JC* (Θ). Picking
a faithful σ-representation of Σ*((9) and applying a result of D A VIES
[7; Lemma 2.3], we get we get a morphism B{8(m)} -> Σ*(G)i where
B{8(m)} denotes the 27*-algebra of complex Borel functions on S(m).
Identifying {m (/) : / : AŜ  (m) -> R is bounded Borel} with the Hermitian
elements of B {S (m)} in the obvious way, we may extend m (/) ι—> m (/)
to bounded Borel functions. Doing this for all m, we get a mapping
bob (0) -> Γ* (0). The states of 0* (0) may be identified with the σ-states
of Σ*(Φ) and μ(ω, m(f)) = μ(ώ, m(f)) for all bounded Borel functions
/ : S(m) -» R. We have now constructed a ̂ -realization of (<$*, bob (^), //)
extending the C*-realization of (SP, cob(0), μ) as required. The exten-
sion to a 27*-spectral realization of (£?, όb(Φ), μ) in Σ* (Θ) follows at
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once by taking the 27*-spectral realization of (S?, bob(0), μ) determined
by its 27*-realization and applying Proposition 2.3 to extend from
bob(0) toob(0).

The results of this section show that, as far as local measurements go,
there is a natural connexion between the 0*-realizations, Σ*-realizations
and 27*-spectral realizations. Which realization is chosen is largely a
matter of taste or convenience with respect to the particular problem
under consideration. It is perhaps worth remarking here that since the
von Neumann algebras so far used in physics are von Neumann algebras
in separable Hubert spaces, it is of no consequence if they are regarded
as Σ*-algebras since every a-state is automatically normal. Note also
KADISON [7; Appendix, Theorem A].

It is usual to regard as observables quantities which cannot strictly
speaking be measured by a local measurement. Thus the 0*-algebras of
strictly local observables are embedded in a O*-algebra of quasilocal
observables [5] and even global quantities such as total charge and total
energy are reckoned as observables. It is not part of the aims of this
paper to examine the relationship between local and global observables,
and the rest of this paper will be devoted to describing certain conse-
quences of assuming that a physical system may be adequately described
by a (7*-realization of certain of its observables.

3. Symmetries

A symmetry of a physical system is intuitively a transformation of
the system leaving all physically significant features invariant. We have
chosen to introduce quantum theory in terms of the set of states Sf of
a physical system, the set of observables stf of that system and a proba-
bility measure μ(ω, A) denned for each pair ω ζ Sf and A ζ J / . In this
approach, we naturally define a symmetry to be a pair of bijections
α : Sf -> Sf and δc: si ->• <stf such that μ(oc(ω), όί(Aj) = μ(ω, A), for all

α ) ( ^ and A ζ s$. Thus the a priori physically significant features are
the notions of state and observable of the system and the probability
measure assigned to a pair (ω, A). It now follows that ω {A) = α (ω) (α (̂ 4))
in the sense that, if either side of the equation exists, then so does the
other and equality holds. Thus expectation values are preserved by
a symmetry.

In the course of this paper, we shall analyse the possible forms of
a symmetry in the (7*-algebra context. To fix ideas, we suppose that the
quasilocal bounded observables of a physical system can be realized, in
the sense of the previous section, by the Hermitian elements 2lΛ of
a 0*-algebra 21 and £f by a full set of states of 21. We shall no longer
distinguish between A and A or ω and ώ for the remainder of this paper.
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Now if A ζ £0 is bounded, then so is OL(A) and it is a reasonable require-
ment that if A is a quasilocal bounded observable then so is α(A). Thus
we assume that 5c induces a mapping 2lΛ -> 2tΛ, which we again denote
by α.

If J., 5 ζ2lΛ, we set aί(A + iB) = oί(A) + &ά(J5) and thus extend α
to a mapping 5c: 21 -> 2ί.

Proposition 3.1. // oc: 6? -> S? <md 5c: 21 -> 21 αme /rora α symmetry
then oc is affine and w*-continuous and 5c is linear.

Proof. If λ, μ ζ R, λ, μ ^ 0 and A + μ = 1, and if ωv ω2 ζ £f then
λ ω1 + μ ω 2 ζ ̂ , since ^ is full. Now
oc(λω1 + /^co2) (>4) = (λω1 + /ίθ)2) (ά~1(^4)) = λiocω-^ (A) + μ(ocω2) (A)
for all L̂ £ 21. Hence α(Aωj + /^ω2) = λociω^ + μoc(ω2), i.e. α is affine.
Now the w*-topology on £f is the coarsest topology on £f making the
mappings ω ι—> ω(A) continuous for each A ζ<Ά. However oc(ω) (A)
= ω(μ~1(A)) so that the mapping ω ι—> oc(ω) (A) is w*-continuous for
each A ξ 21. Hence α is w*-continuous [13; § 2, No. 3]. Now if λ, μ £ C,
ω(5c(;U + μB)) = oc^iω) {λA + μB) = ω(λάί(A) + ^ά(J5)) for all
ω ζ £P. But y 7 is a full set of states, so that oc(Â 4 + μB) = λδί(A)
-f- μoί(B) and 5c is linear.

Now KADISON [10; Theorem 2.2] shows that a convex subset of
$(21) is full if and only if it is w*-dense in $(21). Hence we may extend
α by continuity to a mapping α : #(21) -> /S(2l) such that α(ω) (5c (̂ 4))
= ω(A) for all J. ζ 21 and ω ζ $(21). α is now a w*-homeomorphism of
/S(2l). Furthermore, we may prove, as in Proposition 3.1, that 5c is weakly
continuous, and α is clearly just the restriction of the dual of 5c"1 to $(21).

It is possible to start from the apparently weaker hypothesis that
a symmetry is determined by a mapping oc: Sf -> £f which is affine and
a w*-homeomorphism, and deduce the existence of the mapping
oc: 21 -» 21 [10; Corollary 4.7]. However, we prefer to adopt a notion of
symmetry which has a more immediate physical interpretation and
which allows us to simplify the mathematical analysis.

Proposition 3.2. // α : 8 (21) -> S (21) arises from a symmetry, and
ωv ω2 ζ $(21), then WociωJ — α(ω 2 ) | | = ||β>i —• o>2||. In other words, oc is an

isometry.

Proof. If AζQίh, then \\A\\ = sup{|ω(4)| : ω ζ^(2ί)}, [11; 2.6.3].
Hence

: ω

Now α(ω1) — α(ω2) is Hermitian, so, by [11; 1.2.6],

||α(«>i) - α(ω a ) | |

= s u p { | α K ) (A) - α(ωa) (A)\ : 4 6 SlΛ
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Hence

lαίcji) - α(ωa)||

- ω2) (OL-HA))\ : A ζθih , \\A\\ <Z 1} .

But lόc-1^)!! = Mil if A ζ2lΛ, so ||α(ω!) - α(ω2)|| - \\ωx - ω2|| and α is
an isometry.

4. Sectors and Transition Probabilities

In the last section, we derived some of the properties of a mapping
α: S (21) -> 8 (21) arising from a symmetry. Before completing this
analysis, we shall show how certain other concepts of elementary quan-
tum theory may be described in the context of O*-algebras. We begin
by relating the algebraic formalism to the Hubert space formalism. To
fix ideas, we consider a system with commutative discrete super selection
rules, so that the Hubert space of the system, Jtif, decomposes into the
direct sum of coherent subspaces ffl = φ J^{. The bounded observables

of the system are represented by Hermitian operators on J f leaving
each J^i invariant, and the set of bounded observables acts irreducibly
in each ^^ States represented by unit vectors of Jf3 having non-zero
components in more than one Jf^ are not pure states, since the relative
phase is not measurable3. Looking at the same situation from the alge-
braic point of view, we would say that we have a faithful representation
π, say, of a (7*-algebra of operators on J4f, which is the direct sum of
inequivalent irreducible representations π— (J) ^ Each unit vector

x ζ 34? defines a state ωx of 21, where ωx(A) = (x, π(A)x) for all A ζ 21.
However only those vectors belonging to a particular f̂\ define a pure
state. This leads to our first definition:

Definition 4.1. Let π be an irreducible representation of a (7*-algebra,
then the sector associated with π, S%, is the set of vector states of the
representation π. Naturally, Sh depends only on π, the unitary equi-
valence class of π.

The sectors are the algebraic analogue of the coherent subspaces and
our first task will be to investigate their structure.

Proposition 4.2. Let ω, ω' be pure states of a C*-algebra 21, then the
following conditions are equivalent.

a) ω and ω' belong to a common sector of P(2l).
b) There exists a vector x' ζ J^ω such that ωe(A) = (xf, πω(A) xf).
c) There exists a unitary element U ζ 21 such that ωf (A) — ω(U*AU).
d) πω and πω> are unitarily equivalent.
3 Such vector states are regarded as being physically unrealizable by authors

for whom the term "state" is synonymous with "pure state".
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The sectors form a disjoint covering of P (21) and S% is the inverse image of
π under the canonical mapping P(2l) -> 2Ϊ.

Proof. If c) holds, ω'{A) = (xf, πω(A) xf) with x' = πω{U) xωi so c)
implies b). If b) holds, ω, ωf ζSnω, so b) implies a). If ω ζSn, then
ω(A) = (#, π(A) x) with α; £ J^n. x is cyclic as π is irreducible, hence
τrω = π and a) and d) are equivalent, d) implies c) by a result of GLIMM
and KADISON [14, and 11; 2.8.6]. We have now also proved the final
statement of the Proposition.

We give one further characterization of a sector which requires two
preparatory results. The first, whose proof we omit, is due to GLIMM
and KADISON [14].

Lemma 4.3. Let 21 be a C*-algebra with identity and let ω and ω' be
pure states of 21, then if \ω — ω'|| < 2, the representations πω and πω> are
equivalent.

Lemma 4.4, Let π be a representation of a C*-algebra 2ί on J4?π and
let π(2l)~ denote the weak closure of π(2l) in £^(^fπ). Then the mapping
f i—> f o π is a linear isometry from the normal linear functionals on π(2l)~
into 21', the dual of 21.

Proof. If / is a normal linear functional on π(2l)~, then / o π is cer-
tainly a continuous linear functional on 21. Further |/oπ(-4)| ^ ||/||
• ||π(4)11 ^ I/I ||u4|| for all 4 £31. Now given ε > 0, there exists a
T £ π(2l)~ with || 5Γ|| ^ 1 and \f(T)\ ^ ||/|| - ε/2. Now the ultrastrong and
strong topologies agree on the unit ball of Jδf (Jti?) and by the Kaplansky
density theorem [15 and 16; p. 43—46], there exists an A £ 2ί with
| |π(4)| | 5j 1 and \foπ{A)\ iΞ> ||/|| — e. But, by the uniqueness of the
(7*-norm, π(2l) and 2ί/Kerπ are naturally isometric [11; 1.8.3] so that
| |π(4)| | = inf {\\B\\ : π{B) = π(A)}. Hence we may suppose A has been
chosen with | |4| | ^ 1 + ε. Thus

•oπ

But ε is arbitrary so ||/ o π\\ = \\f\\ as required.
This Lemma will be applied to the case where π is an irreducible

representation. The normal linear functionals on π(2l)~ = SPffl^) are
then the elements of the predual [11 A 23] and may be represented by
the operators of trace class and their norm is just the trace norm [16;
p. 37-42 and 17].

Proposition 4.5. The sectors are the components of P (21) in the norm
topology.

Proof. Lemma 4.3 and Proposition 4.2 show that the sectors are open.
Proposition 4.2 also shows that they form a disjoint covering of P(2l),
hence each sector is also closed. I t remains to show that they are con-
nected in the norm topology. We can, however, regard 8$ as the set of
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one-dimensional projection operators in fflπ. This set is path wise -
connected in the trace norm topology by virtue of a simple explicit
construction. By Lemma 4.4, the trace norm corresponds to the norm
on $£. So 8% is path wise- connected and hence connected, completing the
proof.

This result implies that §ί is a discrete space with respect to the
corresponding quotient topology under the canonical mapping P(2l) -> ζ[.

Returning now to our example of a system with commutative discrete
superselection rules, we consider the concept of transition probability.
This is customarily defined for pure states only, and if x and x' are unit
vectors of ffi representing pure states, the transition probability between
these two states is \(x9 x')\2. This quantity has a simple algebraic inter-
pretation.

Proposition 4.6. Let ωx and ωx> be the pure states corresponding to the

unit vectors x and xf, then \(x9 x')\2 = 1 — -j- \\ωx — &v||2.

Proof. If x and x' belong to different coherent subspaces, then
\(x9 x')\2 = 0 and, by Lemma 4.3, \\ωx — ωj\ = 2 as required. If x and x'
belong to the same coherent subspace ^^ say, then, applying Lemma 4.4
to the representation πi9 \ωx— ωx>\ is just the trace norm τ(T) of
T — x ®x — xr ® xf. However, r(T) is the sum of the moduli of the
eigenvalues of T [17], and a routine calculation gives

\(γ γ'W* -— 1 _ - r / 7Λ2 __ Ί —\\f,\ r,\ II2
\{x, x )\ — i — ^ τ\i) ~ l — ^ \\ωx — ωx>\\ .

This leads us to the following definition:

Definition 4.7. Let ω, ω' £ P(2l) then ω ω', the transition proba-

bility between ω and ω', is given by ω ωf — 1 — j - ||ω — ω'||2.

The temptation to use this formula to define transition probabilities
for mixed states should be resisted. For to determine a transition proba-
bility from an unknown state ωr into the state ω operationally, we need
to measure an observable so that the state after a (non-selective) measure-
ment is a mixed state, one of whose constituents is the state ω. If the
unknown state ω' can be represented by a density matrix ρ, and the
pure state by a unit vector x, then Px = x <g> x is the projection operator
onto the subspace generated by x and is an observable, at least in some
approximate sense. The state after the measurement is represented by
the density matrix Pxρ Px -f (1 — Px) ρ(l — Px). Pxρ Px is always pro-
portional to x <g> x, irrespective of the choice of ρ, and the constant of
proportionality is the transition probability. If ω were not pure, we
would not be able to find an observable with the required property. For
this reason, and to preserve the symmetry between ω and ω', we have
defined the transition probability only between pure states.
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5. The Superposition Principle

In quantum mechanics the superposition principle is exemplified by
the statement that, if φx and φ2 are normalizable solutions of the time-
dependent Schrόdinger equation, then φ1 + φ2, the superposition of φ1

and φ2, is also a normalizable solution. From a logical point of view, this
statement may be resolved into a definition, an axiom, and an assertion.
It defines "superposition" as a mathematical term, contains the implied
axiom that if φ1 and φ2 taken at time t each represent a state then so
does φx -f- φ2, and asserts that the time translation preserves super-
positions, We shall investigate the form the superposition principle takes
in the algebraic context and our discussion correspondingly consists of
three parts.

We first turn to the definition of superposition. We must not expect
to be able to superpose any two states. To show this, we again consider
the example of a system with commutative discrete superselection rules
whose existence in quantum field theory was demonstrated by WICK,
WiGHTMAN and WTIGNEE [18]. If x and x' are unit vectors representing
states ωx and ωx> lying in different sectors, l/j/2" (x — x1) and l/}/2 (x + xf)
both represent the mixed state 1/2 (ωx+ ωx>) rather than two different
superpositions of ωx and ωx

Λ. Hence superposition is restricted to pure
states taken from the same sector.

Let ω be a state in the sector S& and let Iω be the left ideal
{̂ 4 : ω(A*A) — 0} in 2ί. For any A <£ Iω, the linear functional ωA

defined by

is a pure state in 8%, and, as we have seen in Proposition 4.2, any ω' ζ 8$
may be represented in this form [19]. Note that ωz = ω and (ωΛ)B = ωBA

if B $ IωA.
Definition 5.1. Let coζP(21) and let AvA2^Qί be Hnearly inde-

pendent (mod Iω), then ωΛi+Az is called a superposition of ωAi and ω^.
The connexion with the customary definition becomes clear when

we pass to the Hubert space formalism. πω{A^)xω and πω(A2) xω are
linearly independent vectors of J^ω representing ωAl and ω^2 respectively
and πω{A^) xω + πω(A2) xω represents ωAi+Λi. Definition 5.1 automati-
cally rules out superpositions of pure states from different sectors and
ωA1+Az necessarily lies in the same sector as ωAi and ωAz. I t must be
emphasized that ωAί+Az depends on the particular choice of ω, Ax and A2,
and not merely on ωAχ and ωAt. We shall parametrize all possible super-
positions and start with a simple Lemma.

4 A statistical mixture is sometimes referred to as a superposition and what is
meant here is then called a coherent superposition.
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Lemma 5.2. Let ω ζ P(2l) and A, B $ Jω . T%eπ co^ = ω 5 /̂ cmcZ only
if B = λA (mod /ω) for some λ ζ C, A φ 0.

Proo/. If λ ζ C, λ Φ 0 and iV ζlω, then ω λ ^ + l Y = ω 4 by a simple
application of the Cauchy-Schwarz inequality [11; 2.1.2], Conversely if

U>A = ωjj, II ω^ - ωjβl = 0 and
\ω(A*B)\*

ωΛ'ωB~ ω μ * A) ω ( J 5 * 5) - A

Hence ω((B — λA)* (B — λA)) = 0 has a non-zero solution in A.
This Lemma is actually just a consequence of the fact that Snω may

be identified with P (J^ω)9 the projective space of J4?ω and that Jίfω = 2l//ω

[19 and 11 2.8.5]. I t shows that, keeping ω, A1 and A2 fixed, λ ι—• ^ X + Λ ^ 2

A ξ C, λ φ 0, parametrizes all possible superpositions of α> î and ωAs.
The triplet (ω, Aly A2) may always be chosen so that Aλ = I and ^42 = ί7,
where £7 is unitary. Let us suppose that ω and ωjj are orthogonal, i.e.
ω ωv = 0, and let us set λ = tanθ eiφ , 0 < 0 < π/2, 0 ^ ^ < 2π. Then

ω/+Λί7 U ) = cos2θ ω(^ί) + sin2θ ωπ(A) + cosθ sinθ [e** ω(A U)

+ e~iφ ω(U*A) (*)

parametrizes all superpositions of ω and cô -. If we take the mean of the
equation (*) with respect to the phase φ, the "interference term" drops
out leaving the mixed state ω' — cos2θ ω + sin2θ <X>JJ. Thus there is
a mixed state ω' with mixing ratio \λ\2 = tan 2 θ corresponding to any
superposition ω J + λ ΐ 7 .

A set Jf of pure states of 21 will be said to be closed under super-
positions if it contains every superposition of any pair of its elements.
If M is not closed under superpositions, let Λ (M) denote the smallest
subset of P(2l) closed under superpositions and containing M. For
example if M = {ωΛ.: i = 1, 2, . . ., n} where the Ait i = 1,2, . . ., n, are
linearly independent (mod/ω), then the matrix ω(A*Aί) is strictly
positive and

K = ί(λv λ2,...,λn):Σ liλi ωiAfAi) = l l

is a compact subset of Cn intersecting every ray through the origin. Any
state ω' of the form ω'(B) = Σ hh ω(A* BAi) f o r a 1 1 B ζ% with

(λj, λ2, . . ., ΛJ ξ JK"' is an element of Λ (M). The map φ : K-> Λ (M) so
defined is onto and two %-tuplets are mapped onto the same state if and
only if they differ by a common phase factor. In this way, we see that
Λ(M) is isomorphic to PTO_1(C), the complex projective space of n — 1
dimensions.

As we have seen, P(2t) is the disjoint union of its sectors and each
sector 8% may be regarded as the unit rays of a Hubert space 2l//ω,
where ω ζ 8^. This allows us to perform on P(2ί) many of the operations
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associated with a Hilbert space. We have already seen this above in the
case of the operation A which corresponds to taking linear hulls. Another
example is forming orthogonal complements: if J fcP(2 l ) , we simply
set M-L = {ω ζ P(2l) : ω ωr = 0 for all ωf ζ M). We may also close
A(M) in the norm topology and, as in the linear case, we get MLA-
= A(M). If M C$π> then A (if), as a metric space, is actually uniformly
isomorphic to a protective Hilbert space. We can introduce the concept
of an orthogonal basis in P(2l) and prove the analogue of BesseΓs ine-
quality and ParsevaΓs equation. We can also give an algebraic version
of the Gram-Schmidt orthogonalization process by taking advantage of
the representation of 8% using 2l/Iω.

We turn now to the structure of the physical states SP of the system
and the role of the superposition principle as an axiom on the structure
of the pure physical states. Let £fv = £f r\ P(2t) and let us call a sector
$π physical if Sf \ Γ\ S% φ 0. The physical spectrum of 21 is then
2ίp = {π ζ 21: 8% is physical}. We can now formulate the

Superposition Principle: The superposition of two physical pure states
is again a physical pure state. Thus A(6^p) = SPV.

If S% is a physical sector, the superposition principle says that
8% A Sfp is closed under superpositions. The exact form of 8% r\ £fv is
probably of little consequence; we assume that it is norm dense in 8%.
It is often convenient to regard 8^, r\ S^P as the whole of 8%, although
a more intelligent guess would be to take it to be those states of S$ with
a finite expectation value of the energy. We have already assumed that
Sf is convex and we follow MACKEY [2] in assuming that £P is closed
under forming countable convex combinations. It is consistent with the
emphasis on pure states in this paper to suppose that Sf^ is the set of
extreme points of £f. Thus

X3 OO

= 1 i = l

Finally, we want to show that superpositions are preserved by symmetry
transformations.

Proposition 5.3. If M c P(2l) and α: /S(2l) -> #(21) arises from a sym-
metry, then oc(A(M)) = A(a(M)).

Proof. I t suffices to prove the result if M is finite. As α is an affine
automorphism by Proposition 3.1, α must leave P(2t) invariant. However
α is also an isometry, Proposition 3.2, so that (^{M1-) — α(i^f)-1-. Hence
oc(Ά(M)) = A(a(M)). But if i f is finite A (M) = Ά(M) giving the result.

This completes the three parts of our analysis of the superposition
principle, for a time translation is merely a particular example of a sym-
metry. In conclusion, we add a few remarks on the physical meaning of
superposition. The transition ω»—> ωA is an example of a pure operation
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[5] and may be regarded as induced by a local measurement or some
local "influence" transforming pure states into pure states. The super-
position principle given above may be reformulated to read: if a state
ω ζ SPp is acted on by influences Ax and A2, the resulting state is again
in £fv and may be obtained by a single transition ω \—• <^AX+AZ corre-
sponding to the sum of the influences. This corresponds to its usual
formulation in classical physics. Actually from this point of view the
purity of ω is irrelevant and Definition 5.1 could easily be modified
accordingly.

6. Winner's Theorem and Symmetries

We now take up our analysis of symmetries to deduce that a sym-
metry leaves transition probabilities invariant and permutes the sectors.

Proposition 6.1. // α : S (21) -> 8 (21) arises from a symmetry and
ωf ωf ζ P(2ί), then α(ω) α(co') = ω ωf. Further if 8 is a sector then so
is <x(S) and oc induces a bisection ά : 21 -> 21.

Proof. As α is an affine isomorphism by Proposition 3.1, α must
leave P(2l) invariant. However, by Proposition 3.2, α is an isometry, so
by Definition 4.7, α(ω) * α(ω') = ω ωf. An isometry of P(2l) must
induce a permutation of the components of P(2l) in the norm topology
and by Proposition 4.5, these are just the sectors. Hence α induces
a bijection ά : 21 -» 21.

Proposition 4.6 shows that our definition of transition probability is
consistent with the usual one so we are in a position to apply Wigner's
Theorem [8] to deduce the form of α.

Proposition 6.2. If oc: $(21) ~> #(21) arises from a symmetry and if π
and π' are irreducible representations of 21 such that π' — oί(π) then there
exists a mapping W : M*π -> 34?n> linear with respect to the real numbers and
unique5 to within a phase factor such that oc(ωx) = ωψx for aM unit vectors
x £ 3Fn. W is either unitary or antiunitary.

Proof. The elements of 8% and 8%* are in natural 1—1 correspondence
with the rays of the Hubert spaces 3Fπ and 3Fπ> respectively. Hence
α induces a bijection of the rays of fflπ onto those of £?π>. Applying
Wigner's Theorem in the extended form due to BARGMANN [9], the
assertion follows.

We can also characterize α : 21 -> 21 and obtain thereby a result due
to KADISON [10; Corollary 4.7].

Proposition 6.3. // α : 2ί -> 21 arises from a symmetry and A £ 21 then
όί(A)2 = oί(A2). In other words α is a Jordan homomorphism and, since α
is a bijection, α is in fact a Jordan isomorphism.

5 A trivial modification is necessary if 2^n is one-dimensional.
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Proof. With the notation of Proposition 6.2, if x £ ffin is a unit
vector, (x, π{A) x) = ωα(^) = α ^ ) (ά(4)) = (Wx, π' oα(i) TΓa). Sup-
pose for definiteness that W is antiunitary, then

(x, π{A) x) = (a, (If-1 π o δc(4) if)* a;)

for all ^ ^ π and thus (α, π(4) y) = (a;, (W'1 π' ooί(A) W)* y) for all
x,y(: 3Fa. Hence π' o α ( i ) = TFπ(4*) if"1 and so

π'(R(Af) = Wπ{A**) W'1 = π ' o

If PF is unitary, we obtain π ooί(A) = Wπ(A) W~λ and again ττ'(α(^4)2)
= π ' o α ( i 2 ) . Hence oί(A2) = όt(A)2 since a O*-algebra has enough
irreducible representations [11; 2.7.3]. Thus α is a Jordan isomorphism.

It is a matter of simple manipulation to deduce that oί(AB + BA)
= α(4) α(-B) + oί(B) oί(A) for all ̂ 4, B ζ 21. This is perhaps more familiar
as the definition of a Jordan homomorphism6.

It is natural to ask whether, if we are given a bijection ά: Si -> §i,
a representation π2- of 21 in ^f ̂  for each i ζ 21 and a unitary or anti-
unitary map Wi: J ^ -^ «^«(i), we may construct a pair of mappings
α : S (21) -» >S (21), α : 21 -> 21 having the properties of a symmetry such that
oc(ωx) = α ^ α for all unit vectors x £ ̂ f t . This is not in general possible,
and to obtain a result with a converse, we must first strengthen
Proposition 6.2.

Proposition 6.4. // α: #(21) -> $(21) αmes /rom α symmetry, let
71 = φ nil π is called the reduced atomic representation. Then there exists

a mapping W : 3tfn -> ̂ π , linear with respect to the real numbers, such that
α ( ω # ) = ωwx ίor aM un^ vectors χ ζ ̂ π- If W ^s anV other such mapping,
W = W (J) eiλi 11, where I\ is the identity operator on ffi\ and λ{ is real.

In other words, W is unique7 to within a phase factor on each ̂ fV Further
W has the following properties:

a) 1(17*, Wy)\ = \(x, y)\ for all x, y^^n.

b) W(J^i) = ^ s o ) f o r a U i ζ S
c) PFπ(2lΛ)Tf-1 = π(2lΛ).
Proof. If x ζ J^i is a unit vector, cô  ζ 8i and oc(ωx) ζ /^^(i). Hence if

α(ωa ) = ωy, y must be a unit vector of J^^y Thus TΓ, if it exists, must
satisfy b) and by Proposition 6.2 must coincide on ffli with a unitary
or antiunitary operator Wt: f̂̂  -> ̂ ^y Thus PF must satisfy (Wx)^
= W\Xi for all x ζ «^π, where xi denotes the projection of x onto Jf t .
However, if we use this equation to define & W, W is automatically
linear with respect to the real numbers and satisfies a) and b). Now if

6 The term used by KADISON [10] is (7*-homomorphism.
7 A trivial modification is again necessary if some of the Jf 4 are one-dimensional.
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x ξ ffi is a unit vector ωx — 27$ | | ^ | | a ω y < where ^ = ^/ | |^ | | and the sum
is taken over all i ζ 21 such that xt Φ 0. Hence oc(ωx) = Σ[ fla J 2 oc(ωm),
and α ^ J = cop^ for all unit vectors x £ Jfπ. It remains to show that W
satisfies c). Now from the proof of Proposition 6.3, π ^ o α f i )
= Wiπi(A) Wf1 if A ζ 2tΛ. A routine calculation now shows that
π o δc(̂ 4) = TFπ(^4) IF" 1 , which implies c). The statement on the degree
of uniqueness of W follows from the construction and Proposition 6.2.

Proposition 6.5. Let π be the reduced atomic representation. Given a
mapping W: J^π -> J^π which is linear with respect to the real numbers
and satisfies:

*)\(Wx,Wy)\= \(x,y)\forx,yζJtrn.
b) W(Jfi) = Jfά{i) where oc: 21 -> 2J is a bisection.
c) Wπi^W-^π^).

Then the exist unique bisections oc: /Si (21) -» $(21), α : 21 -> 21 such that
μ(α(ω), ΰ.(A)) = μ(ω, A) for ω ζS(Qί) and A ζ 2lΛ and oc(ωx) = ω^^ /or
all unit vectors x ζ 3?π.

Proof. The reduced atomic representation π is faithful since a 0*-
algebra has sufficient irreducible representations and we may use c) to
define a mapping ά : 2lft -> 2lΛ by setting π o δc(̂ 4) = Tf π(-4) WΓ"1. Fur-
ther ά is isometric, onto and real linear since W has these properties,
α extends to a linear mapping ά : Qί -> 2t which is also an isometry and
onto as may be shown, for example, by using the inequalities max(||J.||,
||JB||) rg II4 + iJ5|| ^ 11̂ 1 + ||J5|| valid for A, B ζ2ίΛ. α must now be
defined as the restriction to $(21) of the dual of or1, so as to satisfy
α(ω) (ά (A)) = ω (A). If x ζ Jίfπ is a unit vector and A ξ 2lΛ,

α(ωβ) (ά(il)) = (α, π( i ) a;) = (Wx, πoόί(A) Wx) = ωWa(aί(A)) .

Hence oc{ωx) = ωψx as required. If J. £ 2lΛ and g is a continuous func-
tion on the spectrum of ^4, then α(g(^4)) = g(μ(A)) since ά induces an
isomorphism of the commutative subalgebra of 21 generated by A onto
that generated by oί(A). Hence μ(oc(ω), oί(A)) = μ(ω, A) for ω ζS(Qί)
and A ζ 2tΛ. Now α : P (21) -> P (21) is uniquely determined by the con-
ditions of the Proposition, hence α : 21 -> 21 is uniquely determined since
we must have oc(ω) (όί(A)) = ω(^4). Thus α: 8($i) -> ̂ (21) is also uni-
quely determined completing the proof of the Proposition.

There may still be no symmetry of the physical system which gives
rise to the mappings α and α of Proposition 6.5 because, in the analysis
of concrete physical systems, there may be physical reasons, for example
uniqueness and invariance of the vacuum, placing further restrictions on
the nature of oc and α. Even within the framework of this paper, we have
not quite completed our analysis because we assumed that oc(£f) = S?.
However, with the assumption and notations of the previous section, we
can easily fill this gap. Let π' = (J) τii then each ω ζ £fv is represented
23 Commun. math. Phys., Vol. 11 i € Sip
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by a unit vector of 3Pn> and each ω ζ ^ by a density matrix of $Pn>.

π must be faithful since Sf is full and further ά (21̂ ) = §ip. The analogues

of Propositions 6.4 and 6.5 now hold with π' replacing π. α ( ^ ) = Sf if

and only if W leaves the subspace spanned by {x ^ffln>\ \x\ = 1 and

ωx ζ £f^ invariant.
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