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Abstract. A sufficient condition is given in order that a von Neumann algebra
with cyclic vector is quasi-standard. With the help of this result it is proved that
a locally normal state with a cyclic and separating vector in the representation
space gives rise to a quasi-standard von Neumann algebra. Furthermore it is proved
that the representation space determined by a locally normal state in the G.N.S.
construction is separable.

I. Introduction

The results of this work have their origin in two recent papers [4, 9].
In [9] TOMITA proves the highly non-trivial result that a von Neumann
algebra which has a cyclic and separating vector is quasistandard.
In this paper an easy proof of this result will be given for a special case
which is of particular interest for physical applications, where the
von Neumann algebra considered is generated by the representation of
a (7*-algebra of quasi-local observables determined by a locally normal

state.
Following [4] we define an algebra 31 of quasi-local observables as

a norm-closed algebra of operators in Fock-space §^: to every finite
volume V is assigned the algebra 21 (F) of all bounded operators operating

in the sub-Fock space §^C § 3̂ hence 21 (V) is a norm closed and weakly
closed algebra then 21 is defined in $)F as the closure in the norm topology

of the union of the 21 (F) for all finite V, 21 = U 2ί(F) = <&L, where the

"local" algebra 2ljr is defined by 21L = U 21(7).

In [4] the G.N.S. representation determined by a normal state

ωv(A) = ΎΐvρvA, A £ 2l(F)

defined over 21 (F), with the additional property ωγ(A*A) = 0 implies
A = 0 for every A ζ2l(F) is constructed. Here ρv is a density operator

in $$ with Trvρv = 1 (the index F in TrF denotes that the trace is
taken in the Hubert space §_]£). One of the results that can be inferred
from that paper is that the von Neumann algebra generated by the

representatives of the elements from 21 (F) is quasi-standard [5], that
means is the left representation of a certain quasi-unitary algebra

2t(F)C2l(F). (For a fuller discussion of quasi-standard von Neumann
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algebras see Section II.) We want to stress the fact that the normal state
ωv over 91 (F) not only gives rise to a standard von Neumann algebra
[4] but that this algebra is also quasi-standard in a non-trivial sense
since the quasi-unitary algebra 51 (F) is not a Hubert algebra.

A discussion of quasi- standard von Neumann algebras is given in
Section II together with a sufficient condition (Theorem 1) in order that
a von Neumann algebra be quasi-standard. From Theorem 1 one con-
cludes immediately that the von Neumann algebra in the case of a finite
volume F is quasi- standard. A state over the 0*-algebra of quasi-local
observables will be called locally normal if its restriction to any local
algebra 21 ( F) C 21 is normal : let ω be a locally normal state over 2ί then
there exists a density operator σy on Fock space §J with TrvOy = 1
such that

ω(A)^ΎγvσvA for all A

It can be proved [1] (see also [8]) that this condition is equivalent to
the requirement that for every finite volume F there exists in the repre-
sentation space a total particle number operator Nv. It is for this reason
that for applications in statistical mechanics one deals almost exclusively
with locally normal states.

In view of the above mentioned result from [4] it follows that a locally
normal state ω over 21, with the additional property that co(A*A} = 0
implies ^4 = 0 for all A ζ 21̂ , is the pointwise limit of a sequence of
(normal) states each generating in its representation space a quasi-
standard von Neumann algebra. It is shown in Section III that this
quasi- standard structure is conserved in the limit F-^oo. This con-
stitutes an easy proof of Theorem 2, that the von Neumann algebra
generated by a locally normal state is quasi-standard provided there is
a cyclic and separating vector. As already mentioned above this is
a special case of a result obtained by TOMITA.

In Section III we will furthermore show that locally normal states
have the attractive property that their representation space is separable
(Theorem 3). Two lemmas which are needed in the proof of Theorem 2
are given in an appendix.

II. Quasi-Standard von Neumann Algebras

In this section quasi- standard von Neumann algebras will be dis-
cussed and a theorem concerning these algebras will be proved. The
definitions as given in [2] will be used.

We first define a quasi-unitary algebra stf . This is an algebra over the
complex number field with a scalar product (A , B) for its elements which
makes stf into a pre-Hilbert space; the completion of this pre-Hilbert
space will be called §. Furthermore there are given an automorphism
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A -> A& and an anti- automorphism A -> Aj such that the following five
conditions are fulfilled :

A l : (A, A*) > Q,A ζjtf\
A2: (A, A) = (Aj,Aj},A £ j/;
A3: (AB,C)^(B)A^C)9A9BίCζ^'ί
A 4 : the mapping B -> A B is continuous for all A ζ j/;
A 5 : the set of elements A B -f (^ ^B)d, where A, B £ j/ is dense in j/.
The left representation ^4 -> £7^ of j/ into the bounded operators of

£), where C7j_ is the extension to £j of the mapping B -> A B generates
a von Neumann algebra 9ί. We can now give a definition of a quasi-
standard von Neumann algebra: a von Neumann algebra is quasi-
standard if it is (spatially isomorphic to) the left representation of a
certain quasi-unitary algebra. In particular 9t is quasi-standard.
When the mapping A -> A® is the identity mapping one speaks of
a Hubert algebra resp. a standard von Neumann algebra.
N.B. A quasi-unitary algebra need not have an identity. If, however, stf
has an identity E then condition A 5 may be replaced by:

A 5' : The set of elements A -f A® is dence in j/.
In that case the vector E will be a cyclic and separating vector for 9ί.

Theorem 1. Let 91 be a von Neumann algebra in a Hubert space $)
with cyclic vector Ω such that

(i) there exists in ξ> an involution J with JΩ = Ω, J31J ^ 9ί';
(ii) there exists in ξ> a positive self -adjoint operator T with self -adjoint

inverse T~l and
TRΩ =

where IR is defined by IRRΩ = R*Ω\
(iϋ) the unitary operator Uτ defined by Uτ = T~2ίτ satisfies

Then 9ί is quasi-standard.
Proof. To prove Theorem 1 it is sufficient to prove the existence of

a subalgebra 9t C 9ΐ which is quasi-unitary and has the property that
9ΐΩ is dense in §. We construct 91 as follows:

Let Φ ζ £), E £ 9? and Rτ = UτE U~l then EτΦis strongly continuous.
If / (τ) £ ̂  (the class of infinitely differentiable rapidly decreasing func-
tions) then /(τ) RτΦ is Bochner integrable.

We define the linear operator R (/) by

= / d τ / ( τ ) Λ r Φ . (2.1)

One proves without difficulty that R(f) £ 91. Eq. (2.1) defines a tempered
distribution with values in §.

Definition 1. 9t is the set of all R £ 91 such that RτΦ has a Fourier
transform with compact support independent of Φ.
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It can be shown [10] that this definition is equivalent with

Definition T '. §t is the set of all E(f) with E ζ9ί and / compact
support.

Lemma 1. 91 is a *-algebra.
Proof, a) Let R ζ 01, then E = E (/) where the Fourier-transform / of /

has compact support. (B(f)* Ψ, Φ) = (Ψ,R(f) Φ) = / dτf(τ) (Ψ, Rτ Φ)
- / dτf(τ) (Ef Ψ, Φ) = (R* (/*) Ψ, Φ) for all Ψ, Φ ξ £. Hence Λ(/)*
= £*(/*) £9t

b) Let the functions /x(τ) and /2(τ) have Fourier-transforms ^(ε) and
/2(ε) of compact support and consider 7?3 = El(fl) E2(f2). We shall prove
that J?3 ζ §t

dτ2 El (T! + τ3) ̂ 2 (τ2 + T3) /! fa) /a (τ2) /3 (τ3)

1 (Tl) ^2(^3) /(Ti, T2) ,

where /(τ1? T2) = f dτ% ^(ΐ^ — τ3) /2(τ2 — τ3) /3(τ3). One proves easily that
/(TI} τ2) ΞΞΞ 0 if the support of /3(ε) is completely outside the sum of the
supports of ^(ε) and /2(ε). Indeed,

/(ει,e2) = / ι(e ι)/2(e a )/ 8 (ε 1 +e 2 ) . (2.2)

This proves that ,R3 ζ ̂ .

Definition 2. Let J? ζ §t, then E = E(f) where f(ε) has compact sup-

port; we define R® = E(f ), where /*(ε) = /(ε) e"a"β

Lemma 2. TΛe mapping R -> R® is an automorphism of 9ί and

Proof. We must prove first that (^E^ = EfEξ. This can be inferred
from the proof of b) in Lemma 1. Indeed, the change in f ( ε l t ε2) in (2.2)
due to the replacement /j -> /f and /2 -> /| is the same as the change due
to the replacement /3 -> /f . The proof of the second part is immediate.

Lemma 31. For Rζ&we have TRΩ - R-*Ω.
Lemma 42. The set of all (R +• ̂ -?9) Ω for E ζ9l is dense in $>.
Definition 3. Rj = R*~& for all E ζ 9t.
Lemma δ. J^β = RjΩ for all R £ 01
Proo/. ^β = TJ?*β = JRΩ.
Definition 4. We define in 9t the scalar product (E19 E2) = (E1Ω,E2Ω).

Using the Lemmas 1, 2, 3, 4, 5 one proves without difficulty that §t
with the automorphism E -> E& and anti- automorphism E -> 7?j satisfies
all axioms A 1 to A 5 of a quasi-unitary algebra.

Remark. TOMITA [9] has shown that the conditions of Theorem 1
are also necessary.

1 For a proof compare Ref. [10], Appendix.
2 For a proof see e.g. [4], Theorem 3 A.
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III. A Special Case of Tomita's Result

1. Von Neumann Algebras with Cyclic and Separating Vector

In this subsection some introductory results obtained by TOMITA [9],
which will be needed in the following, are discussed. Consider a von
Neumann algebra 9Ϊ operating in a Hubert-space § with cyclic and
separating vector Ω ζ $). Hence there exists a one-to-one correspondence
R £31 ^RΩ ζ3lΩ and 8 <-» SΩ for 8 £91'. One says that a vector
Φ £ £ has an ^-adjointive ΦR when (Φ, SΩ) = (S*Ω, ΦR) for all
S £9t', and Φ £ § has an $-adjointive Φ'5' when the relation (Φ, .ftβ)
= (R*Ω} Φs) is fulfilled for all R ζ9t. It is easy to see for instance, that
all vectors from 9tί2 have an J?-adjointive, namely ΦR = R*Ω if Φ =
RΩ. Now the space §^C§ is defined as the set {Φ £ §: ΦΛ exists},
and analogously §5 C § is the set {Φ £ § : Φ^ exists}. In §E the following
inner product (Φ, !P)E and norm ||Φ]j# can be introduced:

(3.1)

(3-2)

It can be shown that §E is a Hubert-space and that the set {RΩ : R ζ 9t}
is dense in $)R (in the topology of $)E). The operator 7β defined by

IRφ=φR,φζξ)R (3.3)

is an involution in §β. Similar properties hold for §5.
In §E is defined a self-adjoint positive definite bounded operator J^

by its matrixelements

(Φ,Γψ)R=(Φ,Ψ),Φ,Ψζξ>x. (3.4)

Since \\Γwψ\\R = H^H the mapping Ψζξ>R-> fwψ can be extended to
an isometric mapping T^3/2 of § onto ξ)β : jΓ1/2^) = §β. This isometry
maps the involution Φ ~> IRΦ in §β onto an involution Jr in §, where

J'Φ = Γ-W IR ΓV2φ, φ £ § . (3.5)

It follows that J' has the properties

J'Ω = Ω, J'ΓJ'=l-Γ. (3.6)

The operator T' defined by

(Tγ= Γ~l(l - Γ) (3.7)

is a positive definite invertible operator in § with domain $)E and range
$)s and which maps $)R isometrically onto $)s. From (3.6) and (3.7) one
derives without difficulty the equation

T' = JΊR . (3.8)

Eqs. (3.3) and (3.8) imply that the involution J' maps $)R onto $)s:

J'ί)R = $)s. (3.9)
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2. Representations Induced by Normal States

In this subsection we shall discuss in some detail the G.N.S. represen-

tation of a normal state over the set of all bounded operators 01 in a

Hubert space §

Aζ<Ά, (3.10)

where ρ has the additional property that ρ"1 is a positive self-adjoint

operator. We define the unitary operator Uτ by the equation

Uτ=ρ~iτ. (3.11)

The mapping

A-*Aτ = UτAU~l, Aζϊi, (3.12)

is an inner automorphism of 5ί, since 51 consists of all bounded operators

on $). With respect to this automorphism the state ω satisfies the same

analyticity condition and boundary condition as the equilibrium states

discussed by HAAG, HTIGEKHOLTZ and WINNINK [4]. We conclude there-

fore that the representation determined by the state ω has the same

structure as that discussed in [4]. In particular

a) In the representation space &, whose vectors κ are the Hubert-

Schmidt operators on §, exist two cyclic representations A ζ 21 -> R(A]

and A -> S(A), respectively defined by

R(A)κ = Aκ, S(A)κ = κA*, (3.13)

and with cyclic vector κQ = ρ1/2.

These two sets of operators are von Neumann algebras3 E(3l) resp.

£(31) with the property J?(3l) = S(<Ά)'. Since κQ is cyclic for S(<Ά) this
implies that κQ is separating for J?(2ί).

b) There exists in 5̂  a conjugation J with the properties

JE(A)J = S(A), JκQ^κQ. (3.14)

c) In ̂  exists a positive, self -adjoint and invertible operator T which

satisfies

TE(A) κQ = 8 (A*) κ0 = JIRR(A) κ0 . (3.15)

The automorphism A -> Aτ, A ζ 2t, is implemented by the operator Uτ,

which is of the form

Ur = R(Uτ)S(Uτ), (3.16)
and

Uτ=T-2ίτ. (3.17)

From Theorem 1 one immediately concludes that the von Neumann

algebra E (21) is quasi-standard.

3 See [3] p. 57, Prop. 1.
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It can be shown4 that the domain of T coincides with the set S)E,
introduced in Section III.l. Consequently from (3.15) follows

JTΦ = IRΦ, for all Φ ζ §* . (3.18)

As remarked above we have a cyclic and separating vector κ0 and can
therefore apply the results of Section III.l, in particular

J'T'Φ = IRΦ> for all Φ ζξ>R . (3.19)

Combining (3.18) and (3.19) it follows that

JT = J'T'. (3.20)

Since the product of two conjugations in a Hubert-space is a unitary
mapping one can write J' = J U where U is a unitary operator. Hence
from (3.20) it follows that

and because the polar decomposition is unique we have U = 1 and

T = T', J - J' . (3.21)

3. Statement and Proof of the Main Theorem

Before stating our main result we prove two lemmas that are needed.
The first is a sharper form of a result of TOMITA already mentioned above.

Lemma 6. Let again 21L = U 2ί ( F) then there exists a sequence

Ei ζJK(2y such that
\EtΩ - Φ\\R-*Q for *->oo

for any given vector Φ £ $)R.
Proof. Since the weak closure of E(31L) is equal to 9ί = R (*&)", it is

known that the set of hermitian elements from E (3ίL) is strongly dense
in the set of hermitian elements from 9ΐ. Hence for a given E ζ 9ΐ there

exists a sequence An ζ 2l/y such that E(An) — > E and E(An)* — * E*.
Therefore \\E(An) Ω ~ EΩ\\R-+ 0 for n-> oo. Because the set {RΩ} is
dense in $)R as mentioned already in Section III.l the lemma follows.

Lemma 7. There exists a countable open covering of E3 by volumes Vn

such that

Proof. Recall that 2iL was defined as the union over all finite F C E3

of the algebras 21 (F) (see introduction). Now take the Vn for instance as
open spheres with the origin as centre and radius n— 1,2, . . . Using the
fact that FC V implies 3l(F)C2l(F') the lemma is easily established.

We now state and prove our main theorem which is a special case of
TOMITA'S general result by restricting ourselves to the G.N.S. represen-

4 Compare also [10], Lemma 1, p. 31.
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tation determined by a locally normal state ω (see Section I). Denoting
by 9t the von Neumann algebra generated by the representatives of the
elements of 21 we have

Theorem 2. When ω is a locally normal state over 21 and Ω is a cyclic
and separating vector for 9ί, then 9t is quasi -standard.

The proof will be divided in several lemmas.
From the definition of locally normal states it follows that for every

finite volume V there exists a positive self-adjoint trace-class operator
ρv with the property ω(A) = TrvρvA for A £2l(F).

Lemma 8. ω(A*A) = 0 implies A = 0 for all A ζ 3ίL.
Proof. Suppose there is an A φ 0 ζ2l(F) such that ω(A* A) = 0.

The set of all elements of 21 ( F) with that property forms a closed two-
sided ideal of 2l(F). Since 21 (F) = 23 (§J) this ideal is either the set of
compact operators or 21 (F) itself. Due to the continuity of the normal
state ω (A) over 21 ( F) we conclude that ω (A) — 0 for all A ζ 21 ( F). Since
21 (F) contains the unity, this would imply that ω vanishes identically
which gives a contradiction.

Lemma 9. ρv has a self -adjoint unbounded inverse.
Proof. Since 21 (F) consists of all bounded operators in $)% we may

take in ω(A*A) the projection PΨ onto any vector Ψ £$$<. Then
co(PΨ) = TrvρvPΨ =- (Ψ, ργΨ) φ 0. This implies that ρψl exists and is
a positive s. a. operator.

Lemma 10. Let the operator U^, r real, be defined by C7f = ργiτ. Then
U¥ is a unitary operator from 21 ( F) ivhich is weakly continuous in τ and
hence strongly continuous in τ.

Proof. This follows without difficulty from the spectral decomposi-
tion of QV.

Corollary. The mapping A -> Aξ , A £2l(F) where A^ is defined by
A^ = U^A U^~l is an inner automorphism of 21 (F).

Let us now consider the G.N.S. representation determined by the
state ω. This defines up to unitary equivalence a Hubert space $), a cyclic
(and separating in our case) vector Ω and a representation A ζ 21 -> R (A)
into the bounded operators of §. Define the Hubert subspace §FC £) as
the norm closure of the set of vectors {R(A) Ω : A ζ 21 (F)}. If Qv is the
projection onto §F then [Qγ, R ( A ) ] = 0 for all A £ 21 (F), hence we may
define the operators RV(A) as the restriction of R(A) to §F for all

Then the mapping A ζ 21 (F) -> EV(A) into the bounded operators
of £jF is (up to unitary equivalence) the G.N.S. representation of 21 (F)
determined by the restriction ωv of ω to 2ί(F), with cyclic vector Ω.
The relation ωv(A) — (Ω,RV(A) Ώ) is also trivially satisfied.

We now have in §F the structure as discussed in Sections III.l and
III. 2. That means in £jF exists a conjugation JV}

Jv=Γγll*I$Γψ with JVRV(A)JV = SV(A), A
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a unitary operator £/f = Tγ2ir which implements the automorphism
A ~* Aΐ

where
T\ = /V1 (1 - /V) .

The operator fγ originally defined on $)R can in many ways be
extended to an operator on $)R (we repeate that the connection between
$)R and $) as discussed in Section IΠ.l is exactly the same as the con-
nection between §^ and $)v for every finite F). For the extension

/V of /V to ξ>R we choose :

ΓVΦ - ΓVΦ if Φ £ £$, and TVΦ = Φ if Φ £ £$ ̂  where ξ^1 is the
orthogonal complement of §^ with respect to ξ>R on which Γ is defined
(note that §^ is a closed subspace of ξ>R with respect to the topology
deduced from the norm || |]E). From this definition it follows that

(Φ, ΓΨ)R --- (Φ, Ψ) =-- (Φ, FγΨ)R if Φ, F ζ §f Then one can write

Γv = PγfPv + 1 — Pγ, where PV is the projection onto §^ defined in

ξ)R. Γv is a positive definite self -adjoint operator and one has the
following

Lemma 11. jΓVf — > ^1/2 on $)R> ^at means with respect to the strong

operator topology deduced from the norm \\ \\R.

Proof. From the Lemmas 6 and 7 it follows that there exists a
sequence of volumes Vn with Vn C Vm if n < m such that the set of
vectors {Φ : Φ ζ U £jj/n} is dense in ξ)R with respect to the norm || ||̂ .

Let now Φ ζ U §^n? that means there exists an integer nQ such that

Φ ζ $$n , hence Φ ζ § n̂ for all π ^ w0, thus PFn Φ = Φ for all % ̂  %0.

We therefore have that the uniformly bounded sequence {Pγ^} con-

verges strongly to 1 on a dense set in ξ)R, hence Pγn — *" 1 in §^5.

For Φ ξ ίft one has (fv - Γ)Φ= (Pv - 1) fΦ if n ̂  nQ and
_ 0 n

therefore ||(jΓFn - Γ) Φ||| = (ΓΦ3 (1 - PFJ ΓΦ)R-*0 for w -> oo. Again

because the set {Φ : Φ £ U §fj is dense in ξ>R it follows that || ( ΓVn - Γ) ψ \\ R

-> 0 for all Ψ ζ ξ>R, thus ΓVn — > Γ on §E and Lemma A of the appendix

now gives jΓ|/f — * /*1/2 on $)R, which proves the lemma.

From the above proof we know Γ*Vn —
 > /On $)R, a fact that also may

be written in the form s — lim ΓVn = Γ on £j7?. For later use we now
proof.

Lemma 12. fVn — > f1 on ξ>R implies ΓVn -̂  Γ on §.
Proof. This is an immediate consequence of the fact that the topology

defined by the scalar product (Ψ, Φ)R is stronger than that defined by
the scalar product (Ψ, Φ).

5 See e.g. [6], Lemma 3.5, p. 151.
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The conjugation JVn defined on §Fn can be extended (not uniquely)

to a conjugation JVn defined on §. JVn we define as follows :JVnΦ = JVnΦ

if Φ £§rn; choosing a basis {Φt}tζ/ of §F (the orthogonal complement

of ξ)v with respect to §) we set JVΦL = Φί for all iζl and e/F^Φ

= Σ C&ttΦ^Σ CtΦt (here £( is the complex conjugate of Ct).
ί i

Lemma 13. JFw —* J' in ξ>.

Proof. Let ϊ7 ζ U §^ where §Fw is considered as a subspace of $)Vn

thus y7 ζ § n̂ for some integer w0 and therefore Ψ ζ § Fπ for n ^ n0. For

n ^ UOWQ now have

= CF, r Fn

1/2 J

where we have used Γy^ = -ΓFf , which is correct if one defines

= jpι/2φj φ ζ $$Λ and filzφ =φ if φ

Now using Lemma 1 1 it follows that for n -> oo

(Γ}/n

2 Ψ, IIlflvl Ψ)R -+ (^1/2 Ψ, IRPl/2 Ψ)R = (Ψ, ̂ ~1/

= (Ψ, Γ-χ/2 IRΓ^Ψ) = (Ψ, J'Ψ] .

Since the set {Ψ : Ψ ζ U § Fw} is dense in §β with respect to the topology

defined by the norm || ||E this set is also dense in ξ)R, now considered

as a subspace of £j, with respect to the less fine topology defined by || ||.

And since $)R is dense in § with respect to the norm || || one concludes

that the set {Ψ : ψ ζ U $)yn} considered as a subspace of § is dense in

.̂ We conclude that Jv — *• J'. Since both J\ = 1 and J'2 = 1 this
-̂  y n * n

implies that JVn — * J'.

We define the operators S(A) on ?> for A ζWby S(A) = J'R(A) J'.

Then one has the following

Lemma 14. S(A)£<R' for all A ζ 21.

Proof. Take first A ζ<ΆL and Φ, ϊ7 £ U §FW> then there exists an

index nQ such that A ζ 21 ( FWo) and Φ, Ψ ξ §FW . For ?̂  > ? 0̂ we then know

from the beginning of this section JVnRVn(A) JVn = SVn(A) and

Let now Φ, ϊ7 ζ § then there exists according to Lemma 7 an index

n0 and vectors Φ ,̂ S^ ζ$v such that HΦno - Φ\\ < ε, \\Ψno - Ψ\\ < ε.
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Hence for n ̂  n0

\ ( Φ , [ J V n R ( A ) J V n , R ( B } ] Ψ } \

\((Φ - ΦJ, [JVaE(A) JVn, R(B)] Ψ}\

KΦn, ΪJ7ΛR(A) J7H, R(B)] (Ψ - ΨJ)

\(Φna, [JVnRVn(A) JVn, RVn(B}} Ψn)\

since the last term on the right hand side is equal to zero because of the
first part of the proof. Therefore we have for n -> oo

->$ for all Φ,Ψζξ> and A,B£2iL.

Hence [J1 R(A) J', R(B)] = 0 for all A, B
We conclude that 8 (A) = J'R(A) J' ζ 9T for all A ζ<ΆL and thus, by

continuity for all A ζ 21.
In order to proof that J'^RJ' = 9ί' let 0 — J'^RJ' . Then one has to

proof the following
Lemma 15. 0 = 9Γ.
Proo/. From Eq. (3.9) we know J'ξ>R = ξ>s.
Since 9ΐί2 is dense in £jβ with respect to the topology generated by

I | _ R J'^R Ω = &Ω is dense in $)s with respect to the topology generated
by || \\s. That means if R' £ 9t;, there exists a sequence $n ζ 0 such that
HΛ'β - ^nβ|̂ -> 0 for π-> oo, hence \\RΏ - SnΩ\\ -> 0 and

||Λ'*β- /S*i2 | | ->0.

Let >S' ζ 0', then for arbitrary R!, R2 ζ$l one has

(R^,R'S'R^) = (R'*Q,RfS'R^)= lim (S% Ω, Rf S'R2Ω)
n— > oo

= lim (12, Ef S'R28nΩ) - (12, E? S'R2RΏ)
n-> oo

- (^β, S'R'R2Ω) ,

that means [i?r, /S"] = 0, and hence 91' C 0. On the other hand, from
Lemma 14, 0 C 91' and thus 0 = 9T.

Lemma 16. C^ -̂ * 0Γ

T.
Proof. We already know T"-2 = Γ(l - Γ)-1 and Tγ2 = Γv(l - ΓF)~1.

Then it follows that Uτ = (T')-2^= Γ^r(l - Γ)-*r and Z7^ = T^2ίr

= ΓV r(l - ΓF)-^T, rreal.
From the analysis given in the beginning of this section it follows that

the domain of P"1/2 is $)R and the domain of (1 — jΓ)"1/2 is $)s. Analo-
gously the domain of ΓFw

1/2 is £fn and that of (1 - Γ^)-1/2 is §fn.
As already pointed out the set {Φ : Φ ζ U 5^Λ} is dense in §. Fur-

thermore |l ΓFJ| ^ 1, 1| 1 - /VJ ^ 1 for all w, Ind ||Γ|| ^ 1, ||1 - Γ|| g 1.
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Together with Lemma 12 this means that the conditions of Lemma B

in the appendix are fulfilled so that Γ^n~^ Γiτ and (1 - Γvj
ir-^ (1 - Γ)ίτ.

Hence6 Tγ*iτ -^ ( T f ) ~ 2 i τ for all real τ.

From Lemma 1 6 now easily follows R Vn (A ̂ } -^ Uτ R (A ) U~ l = R (A }τ

where QVn is the projection onto $)Vn. Thus R(A)τ £ 9ί. Let now R ζ 9ΐ,
then there exists a sequence R(Am), Am £ 31% which tends strongly to R

and therefore UτR(Am) U~l -̂  UτR U~l = Rτ. Hence Rτ ζ 9ί for all τ;
this proves

Lemma 17. Uτ<R U~l = 9?, and UτW U'1 = 9T.
With the proof of the Lemmas 15 and 17 we have shown that

all conditions of Theorem 1 are satisfied, and Theorem 2 has been
demonstrated.

4. Separability of $)

Lemma 18. Let ωv be a state over 21 (F) such that

ωv(A) = TrFρF,4 , A ζ3l(F) ,

where ρv is a trace class operator in £jj with TrFρF = 1. Let ξ>v be the
Hilbert space determined (up to equivalence) by ωv in the G.N.S. construc-
tion. Then $)v is separable.

Proof7. As shown in Section III. 2 $)v is isometric with the Hilbert
space &F consisting of all Hilbert- Schmidt operators on §J. It is well-
known that the Hilbert- Schmidt operators with a metric defined by the

norm | | |κ | | | = |/ΐrκ*κ are a seperable set provided §J is separable.
Theorem 3. Let ω be a locally normal state defined over 3i. If $) is the

representation space determined by ω in the G.N.S. construction, then $)
is separable.

Proof. From Lemma 2 it follows that there exists a denumerable set
of Hilbert spaces $)Vn, n = 1,2, . . . such that the set of vectors
JΦ : Φ ί U ξ)V\ is dense in § (see for the definition of the spaces ξ>Vn

the proof of Theorem 2). According to Lemma 18 each ξ>Vn is separable
since ω is locally normal. Thus a countable set of vectors is dense in §,
that means § is separable.

This completes the proof of Theorem 3.

IV. Concluding Remarks

As already mentioned in the introduction a state which is the thermo-
dynamical limit (F-> oo) of Gibbs states satisfies the so-called K.M.S.
condition. A question of considerable interest is whether any state

6 See [6], Lemma 3.8, p. 151.
7 A proof of this fact is also given in [7], Corol. 6.4.
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satisfying the K.M.S. condition is the thermodynamical limit of Gibbs

states. To analyse the precise meaning of this question let us recall that

a Gibbs state of a finite volume F, temperature T (β — (kT}~^) and chem-

ical potential μ is determined by a density operator ρv = Cve~β(Hv~μNv\

where Hv and Nv are the hamiltonian and particle number operator

corresponding to this volume F. We want to stress that Hv is not

uniquely determined, due to boundary effects. We shall say that Hv is

a hamiltonian for the system in volume F if the automorphism

A -> AY = eίHvt A e~iHvt of 51 (F) leads to time-translation in the thermo-

dynamical limit.

It is not a priori clear in which topology this should hold but one

should at least require that

AT^At (4.1)

in a topology independent of the representation e.g. in the norm topology.

Let us now consider a locally normal state satisfying the K.M.S.

condition. On the basis of our results in Section III we have in the

representation space ξ):

strong lim R (Af) = R (At) , (4.2)
V—xx>

which is a direct consequence of Lemma 16. Since condition (4.2) is

clearly weaker than (4.1) we cannot yet conclude that any locally normal

state which satisfies the K.M.S. condition is the limit of Gibbs states.

Appendix

In this appendix two lemmas will be proved which to our knowledge

do not exist in the literature.

Lemma A. Let A and An, n= 1,2, . . . be self-adjoint operators in

a Hilbert space $) such that \\A\\ ^ 1 and \\An\\ ^ 1 for n = 1,2, . . . Let

furthermore An —* A, then f (An) —> f (A) for every continuous function f (λ)

defined on [— 1, 1].

Proof. From An —* A follows A^ —> Ap for any integer p ([6], p. 151,

Lemma 3.9). Hence if P(λ) is any polynominal in λ one has P(An)

—> P(A). From the WEIERSTRASS' theorem it follows that there exists

a polynomial P(λ) on [- 1, 1] such that \ P ( λ ) - f(λ)\ < ε, λ £ [- 1, 1].
i

Using the spectral decomposition A = f λdE (λ) of A one gets P(A) — f(A)
-i

i
= / (P(λ) - f(λ)) dE(λ), and \(Φ,(P(A) - f(A)) Φ)| < ε for arbitrary

vector Φ £§ such that (Φ, Φ) = 1. Then |(Φ, f ( A n ) Φ) - (Φ, f ( A ) Φ)|

<: \(Φ,f(An)Φ) - (Φ,P(An)Φ)\ + |(Φ,Pμn)Φ) ~ (Φ,P(A)Φ)\
-t- |(Φ, P(A) Φ) - (Φ, f ( A ) Φ)| < 3ε for n sufficiently large.
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Hence f ( A n ) — > f(A). Replacing / by |/|2 one analogously finds

J(An) f ( A n ) — * J(A) f(A), where 7 is the complex conjugate of /. Then

it easily follows that f ( A n ) — > f(A).

Lemma B. Let A and An, n = 1,2, . . . , be positive self -adjoint opera-
tors in a Hubert space ί) such that \A\ ^ 1, \\An\\ ^ 1, n = 1,2, . . . and

An — * A. Let furthermore A~l and A~^, n = 1,2, ... be self -adjoint (not
necessarily bounded) operators which have a common dense domain D in

$). Then Al

n -̂  A\ where i = ]/ - 1.
Proof. Define the function fε (λ) on [0, 1] by : fε (λ) = λ* for ε ^ λ g 1,

and fε (λ) = εi for 0 < λ ^ ε. Then fε (λ) is a continuous function defined
i

on [0,1]. If Φ ζ A (Φ,A~1Φ) = f λ-1d(Φ9E(λ)Φ)=C(A,Φ)«χ>,
o

i
where A = f λ d E ( λ ) is the spectral decomposition of A and C(A, Φ) is

o
a finite constant dependent on A and Φ.

Hence also /V1 d(Φ, E (λ) Φ) < C(A, Φ), thus / d(Φ,E(λ)Φ)
o o

Φ,Aΐφ) - ( Φ t f t ( A ) Φ ) \ ^ \λ* - sί\d(Φ, E(λ) Φ).
o

Since there exists a continuous function gε(λ) on [0, 1] such that
μ* - ε*'| < gε(λ) and gε(λ) < 2 for 0 g λ ^ ε, gε(λ) = 0 for ε < λ ̂  1,

i
it follows that |(Φ, A1 Φ) - (Φ, fε(A) Φ)| ̂  / gε(λ) d(Φ, E(λ) Φ). Com-

o
pletely analogously one has

|(Φ, AlΦ) - (Φ, fc(An) φ)| ^ f g t ( λ ) d(Φ, En(λ) Φ) .
0

Since by Lemma A

lim fg, (λ) d (Φ, En (λ) Φ) = / gε (λ) d (Φ, E ( λ) Φ) < 2 ε C (A , Φ)
n->co Q 0

we have from a certain index n

|(Φ, Ai Φ) - (Φ, fβ(An) Φ)| ̂  2ε C(A, Φ) ,

|(Φ, Ai Φ) - (Φ, /εμ) Φ)| ̂  2ε C(A, Φ).
Thus

|(Φ, AI Φ) - (Φ, ^^ Φ)| ̂  4ε Cμ, Φ) + |(Φ, fβ(An) Φ) - (Φ, fβ(A) Φ)| .

Hence for all Φ ζD lim (Φ, 4£ Φ) = (Φ, A* Φ).
n— >oo

Since both ^4^, w = 1, 2, . . . and ^4^ are unitary this equation is valid

for all Φ ξ §. Hence ̂  — ̂  ^4% and thus ̂  — ̂  ^4*. This completes the
proof of Lemma B.
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