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Abstract. Our most complete results concern the Ising spin system with purely
ferromagnetic interactions in a magnetic field H (or the corresponding lattice gas
model with fugacity z = const. exp(—2m H P) where m is the magnetic moment
of each spin). We show that, in the limit of an infinite lattice, (i) the free energy
per site and the distribution functions nt(x19 . . .,xs; j3,z) are analytic in the two
variables p and H if the reciprocal temperature p > 0 and the complex number H
is not a limit point of zeros of the grand partition function S, and (ii) the Ursell
functions us(x19 . . ., xg; f}9 z) tend to 0 as As = max£f_,- \xt — X5\ -> oo if p > 0 and
Rei/4~-0; in particular, if the interaction potential vanishes for separations
exceeding some fixed cutoff value A, then \us\ < C exp[(—2 pm |Rei7| + s) AJX]
where s is any small positive number and C is independent of As. One consequence
of the result (i) is that a phase transition can occur as p is varied at constant H
only if H is a limit point of zeros of E (which can happen only if I&eH = 0); this
supplements Lee and Yang's result that the same condition is necessary for a phase
transition when II is varied at constant p.

For a lattice or continuum gas with non-negative interaction potential (corre-
sponding, in the lattice case, to an Ising antiferromagnet), similar results are shown
to hold provided p > 0 and the complex fugacity z is less than the radius of con-
vergence of the Mayer z expansion; for the continuum gas, however, nt and us must
be replaced by their values integrated over small volumes surrounding each of the
points x2, . . ., xs.

I t is shown that the pressure p is analytic in both p and z, if it is analytic in z
at fixed p over a suitable range of values of p and z, and further that, except for
continuum systems without hard cores, p. nt and us have convergent Maclaurin
expansions in /? for small enough z.

I. Introduction

Various authors [1, 2, 3] have studied the analytic properties of the
thermodynamic pressure p= ^~1 lira V~1 \og3(/5, z, V) and s-body

F—»oo

distribution functions ns(xlf . . ., xs) of a classical system of particles
with two-body interaction potential cp (r), in a volume V, as the fugacity z
varies at a fixed positive temperature I/A;/?. They showed how to specify
a disk

\z\<D(P) (1)
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in the complex z plane, with radius depending on /?, within which p and
ns(x1} . . ., xs) are analytic functions of z. RTJELLE [4] pointed out that
these results also apply when f} is complex, provided its real part is
positive, and therefore furnish information about the nature of the func-
tional dependence on /? too: in particular, he showed that if \z\ < D(/5)
and p > 0 then p and ns (x±, . . ., xs) are analytic functions of the two
variables (3 and z. In the same paper, RXJELLE also proved the related
result that if \z\ < D(fi) then the Ursell functions, defined [5] by

uz(xl9 x2) - n2(xv x2) - n^Xi) nx(x2)
(2)

uz(xXi x2, a?3) = n3{xl9 x2, ae3) - n2(xv x2) 7i1(xs) - nz{xl9 xz) n^xj

- n2(x2, xz) n^xj + 2n1(x1) %(,x2) nx{x^) , etc.,

have the cluster property

f - - - f \us(&i> • • • > xs)\ dv x2 . . . dv xs < co (3)

where v is the number of space dimensions. In the present paper we
consider some situations where similar analyticity and clustering pro-
perties can be proved for values of z and /3 that do not satisfy the
conditions (1).

Our discussion of analyticity is mainly based (like RTJELLE'S) on the
fugacity expansion

i W , *) = *-!- S hi(P)*1 W
1 = 2

and the corresponding expansions for ns(x±, . . ., xs). The coefficients in
the series (4) are the Mayer cluster integrals, of which the simplest is

62(j8) = ^ - / [ e - ^ ^ - l ] ^ r . (5)

Since the integrand is analytic in /3, the integral is also analytic in the
half-plane Re/3 > 0 where the integral converges, provided cp (r) satisfies
suitable conditions. The same applies to the higher cluster integrals, so
that every term in the series (4) is analytic in /? and z. One way of
showing that p{(5, z) itself is analytic, say when j8 = /?0 and z — z0 with
j80 > 0, is to show that this series of analytic functions converges uni-
formly in a neighborhood of the point (/30, z0) in the four-dimensional
space of the two complex variables jS and z. It is not sufficient, however,
to show only that the series converges for real values of j8 near /} = /30

and complex values of z near z = z0; for example, the series
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converges if /3 is real and \z\ < 1, but its sum is not analytic in p.

/ To see this, we may note that if the function defined by this series is

expanded in powers of /?, the coefficient of /?4w is (for z > 0)

i

from which it follows that this expansion in powers of p has vanishing

radius of convergence. J

The first result of this paper, given in Section II, is to show that for
systems with hard cores the thermodynamic functions and distribution
functions do have convergent series expansions in powers of P (that is,
they are analytic in /3 at p = 0). To deal with values of p that are not
near /? -= 0, we next prove (Section III) a lemma giving conditions under
which analyticity in z at fixed p implies analyticity in both variables.
In Section IV we apply this theorem to the pressure, and in Sections V
and VI to the distribution functions (for which it is first necessary to
prove analyticity in z at fixed p; the difficulty of doing this restricts the
class of systems to which our results about distribution functions apply).
Finally in Sections VII and VIII we discuss the clustering tendency, one
expression of which is (3), for the Ursell functions formed from the
distribution functions considered in Sections V and VI.

We shall assume that the interaction between the particles is deter-
mined by a two-body potential op (r) satisfying the conditions [4]

(i) convergence: q?(r) is bounded below, satisfies

/ \cp(r)\dv r < oo (continuum)
r>a ,~v

2J \<p(r)\ <oo (lattice) I [ }

for some positive a, and is bounded above for r > a; and
(ii) stability:

0 == - inf inf — Y <p(|ar,- - xA) < oo . (7)

The convergence condition ensures that cluster integrals such as (5)
converge for all values of p in the half plane Re/9 > 0. I t also ensures that
they are analytic functions of p in this half plane; to indicate how this
is proved we show that the integral (5) is analytic in p by showing [6]
that its first derivative,

dbo/dB = lim [b2(B -f- h) — b2{p)]/h
\h\~>0

where h ^ \h\ ei0 and Re/3 > 0, is independent of d. Adding
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to both sides and using the definition (5) we obtain

(p(r)dvr = Y^m f dvre-Pv<r> f dt [1 - e~ht] .
o

Since

ht f e-shtds ^ \ht\eM,
o

the absolute value of the right side of the last equation is at most

y lim \h\ f dvr e-^( r) cp (r)2 e\htp(r)\.

By (6), the integral converges if Re/3 > \h\, and is bounded in some
neighbourhood of h = 0 provided Re/3 > 0; therefore the limit is zero for
any 6, showing that b2(/i) is indeed analytic in the half plane Re/3 > 0.

The stability condition can be used [3, 4] to obtain bounds on the
cluster integrals in the half plane Re/3 > 0; these bounds are

\bt(P)\ ^ ea<*-2>**^ [IBifrf-i/lll (8)
where

-l\dvr, (Re/3>0). (9)

For a lattice system, the integral becomes a sum. The uniform con-
vergence of the pressure series (4) can therefore be proved for any com-
pact set in the region E of (/?, z) space defined by the inequalities

Re /3>0

\z\ < D((}) ^ l/[eB(P) e*0R*?] (10)

and consequently, since every term in the series is analytic, the sum
p(P)Z) is also analytic in both variables withinE. An analogous argument
applied to the fugacity expansion for the distribution functions shows
that ns(x1, . . ., xs) too is analytic when (/?, z) is in E for any s and any
JL-i, d^2 ? • • • ? " ^ s •

For potentials without hard cores, the region E includes some points
for all values of \z\\ but with hard cores, there is an upper bound on the
possible values of \z\ (see Eq. (20) below).

II. Power Series Expansion in /3

Since fi = 0 lies on the boundary of E, there is no general reason to
expect a series expansion of p or ns in powers of /} to converge. For hard-
core potentials, however, we can show that such expansions do converge
for suitable values of z. The method is to show by analytic continuation
that p and ns are also regular in a region E' similar to E but with
Re/3 ^ 0.
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A hard-core potential is defined by the condition

(p(r) = r oo for r ^ a
and < oo for r > a\

where a is a positive constant, the diameter of the hard core. For such
potentials, it is convenient to replace (6) by the slightly stronger condition

\(p(r)\ < ip(r) f o r r > a (12)

where tp(r) is a non-increasing function satisfying

/ y)(r)dvr<oo (13)
r>a

(or the corresponding condition for a lattice). The conditions (11) and (12)
together ensure that the stability condition (7) is satisfied [7], both by
w (r) itself and by the potential <pr (r) defined by

{+ if r < a

- V { r ) i f r > a

It was pointed out by JONES [8] that for hard-core potentials the analytic
continuation of the grand partition function S((i,z, V) into the left half
of the /? plane is given by

3(p,z,V) = S'(-p,z,V) (15)

where E refers to the potential cp and E' to cpr. A similar method can be
used to continue the functions p and ns into the left half-plane. For
brevity we consider only the function p, but the method and results for
ns are just the same.

Writing the integral (5) in the form

M ( 3 ) = - ~ ^ » + 4 - / [e-^V- l]d>r (16)

where Kv(a) is the volume of a ^-dimensional sphere of radius a, and
using (12), we see that b2(fi) is an entire function of j8 and satisfies

bi(P) = K(-0) (17)

where b!2 refers to the potential cp'. The same argument applies to the
higher cluster integrals, and it follows that the function of ji and z
defined by the series (4) is regular throughout any region in (/?, z)-space
having the property that the series converges uniformly on all its com-
pact subsets. The region E defined in (10) has this property, and so does
the region E \j E' with E' defined by

Re/? ^ 0
(18)

\z\<}/{eB'(~ p)exV[~2&>ne{}]}
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where &' is defined by (7) with <p' replacing cp, and

B ' ( - ft) ^ Kv(a) -f / \e~Pv(r) - } \ d v r . (19)
r>a

The fact that the conditions (18) are sufficient to ensure uniform con-
vergence of the series (4) on any compact subset of E' can be verified
using the fact that bt(ft) = b{(~ ft), together with the analogue of (8)
for the potential 9/.

Suppose now that z is given a fixed value, say z0, satisfying

| 2 0 | < l / e J 3 ' ( 0 ) = l / e j r » ; (20)

then the set of values of ft for which (ft, z0) £E \j E' includes a neigh-
borhood of the origin in the /?-plane, and so p(ft, z0) can be expanded as
a power series in ft with a positive radius of convergence (which will
depend on z0). Such power series in ft are used in various branches of
statistical mechanics [9], but had not previously been proved to be con-
vergent for any fluid system. For lattice systems, a proof implying such
convergence for sufficiently small \ft\ and small |z| has been given by
GALLAVOTTI and MIRACLE-SOLE [24], and analyticity for small \ft\ and
any z > 0 is proved in [12].

III. Extension of the Domain of Analyticity

In the rest of this paper we shall be interested in showing that p and
ns are analytic functions of ft and z for points outside the region E (or in
the case of hard cores E \j E'), particularly for those points (ft, z), with
ft > 0, where it is known from other considerations (such as the Lee-Yang
theorem [10]) that the series (4) converges. The following lemma makes
it possible to prove analyticity in both ft and z at such points:

Lemma. Let C be a closed disk in the z-plane and K the closure of
a bounded simply connected region having G in its interior (see Fig. I).
Let I be a closed interval of the real ft axis and S a closed semicircle in the
upper half of the ft-plane, whose diameter is I. Let F(ft, z) be a function
with the folloiving properties:

(i) F(/3,z) is analytic in both variables for all /? in S and z in G — that is,
it is analytic in some neighborhood of the closed set 8 x G in (j8, z) space; (21)

(ii) F((3, z) is analytic in z (at fixed ft) for all ft in I and z in K — that
is, for each /3 in I it is analytic in some neighborhood of the closed set K
in the z-plane; (22)

(iii) there is a constant M' such that

\F(fl9z)\<M' (23)

for all /? in I and z in K. Then F(/3,z) is analytic in both variables for all
ft in I and all z in Kf, the interior of K — that is, it is analytic in some
neighborhood of the set I x K' in (ft, z) space.
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Proof. By Riemann's mapping theorem [11], there is a conformal
transformation

t=f{z)

that maps the interior of K in the z plane on to the open unit disk in
the £-plane and the point z = 0 into the point t = 0. Our hypothesis (21)
then implies that F((iy z) has a series expansion in powers of t:

^z GAP) i(*)n - S GAP) *n (24)

2 plane

image
of C

XS(

t plane
circumference image of S

wplane
Imw=Ti/2

image of K

Fig. 1

whose coefficients are analytic functions of /? throughout S. If M" is the
largest value taken by \F(f}9 z)\ for /5 in 8 and z in C, then Cauchy's
inequality gives

\ G n ( p ) \ ^ M " j r - if P £ 8 (25)

where r is the least distance from t = 0 to the image of the boundary of
C. Moreover, by (22) and (23), Cauchy's inequality applied to the unit
circle in the £-plane gives

if (26)

Without loss of generality we may take the end points of / to be
— 1 and + 1 ; then the conformal transformation

W = or /3 =
1

-77 W (27)
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maps / on to the line Imw — 0 and S on to the infinite strip

0 £

We shall apply the maximum modulus principle to the function

Hn(w) = Gn (tanh-^-wj exp(— 2iwnjt~1 logr) (28)

in a rectangular region bounded by the lines Imw = 0, Irm# = -^ n ,

= ±_ L, where L is arbitrarily large. From (25) we see that \Hn(w)\
is bounded within the rectangle and satisfies

\Hn(w)\ ^ M = max (if , M") (29)

on the sides Imw = 0 and Imw = -^-n. On the right-hand end of the

rectangle we have, by (27), | l - j 8 | = |1 + /?| e~L. Since |l-j-j8| ^ 2 + j l - / 3 |
this implies that, on the right-hand end,

| 1 - p\ ̂  2 l ( e * - 1 ) . (30)

It follows by (28) that the maximum value of \Hn (w) \ on the right-hand
end of the rectangle cannot exceed the maximum value of \Gn(P)\ i n the
|8-plane disk defined by (30). In the limit L -> oo, this disk shrinks to
a point, and the limiting maximum value of \Gn((3)\ in it is at most M;by
(26), since Gn(fi) is analytic and therefore continuous at j$ = 1. A similar
argument applies to the other end of the rectangle which corresponds to
jS = — 1, so that as L -> oo the maximum value of \Hn(w)\ on the ends of
the rectangle tends to a limit not exceeding M'. Combining this with (29)
and using the maximum modulus principle we obtain

\Hn(w)\^M if 0 £lmw <Yn'

By (28), this is equivalent to

Gn (tanh ~w\ (32)

Let r' be any number satisfying 0 < r' < 1, and let T be the closed
disk |*| ̂  r' in the /-plane. When t £ T, (32) shows that the series (24)
for F(/3,z) is majorized by the geometric series

M Z [r'lfnmwln]n . (33)
n

Since r' < 1 and r < 1 we can find a positive number 6 small enough
to make I

/ < r20/^ and 0 < 0 < y rc (34)

and then it follows by (27) that the series (33) is uniformly convergent
if /J satisfies

j8)]g d. (35)
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The closed region of the /?-plane defined by (35) is a segment of a circle
with base / and angle 0; it is a subregion of S and we shall call it S'.
The majorization (33) implies that the series (24) converges uniformly
for t £ T and ft £ S', and since the terms of this series are analytic the
sum, F(/5, z), is also analytic. Given any z inside K we can always choose
r' so that the disk T contains the image of z; then we choose 6 to satisfy
(34), and since the closed region 8 denned by (35) includes / , the ana-
lyticity of F(j3, z) for all /? in / and z inside K is proved, Q.E.D.

Since this is a purely mathematical result there is no need to interpret
|8 as recriprocal temperature or z as fugacity. This freedom is useful in
some applications of the theorem; for example in Section IX we replace
P by a variable X describing the strength of a non-uniform external
potential.

IV. Analyticity of the Pressure

In this section we use the lemma of Section III to show that p((3,z)
is analytic in both variables at the point (/?0, z0) provided that the
following condition is satisfied:

There exist a closed interval / of the real f3 axis, containing /? = /?0,
and a bounded simply-connected region J in the 2-plane, containing both
z — z0 and 2 = 0, such that any closed sub-region of J is free of zeros of
3(p,z, V) for all /} in / and all sufficiently large F. (36)

An important case where this condition is satisfied is the Ising spin
system with purely ferromagnetic interactions. Here, instead of 2, we use
the variable

C = e~
2mH? (37)

where H is the applied magnetic field and m is the magnetic moment of
each spin. LEE and YANG [10]1 have shown that, for j8 > 0, all the zeros
of the Ising spin partition function Ss{fi, £, F), which is proportional to
the corresponding lattice gas grand partition function 3, lie on the unit
circle in the f plane, and hence we may always take J to be the open
unit disk and / any segment of the positive real axis; by the symmetry
of the Ising model under the field reversal transformation f —> 1/J, our
results also apply to the region |£| > 1.

For a suitable choice of / , it may also happen that some points on
the unit circle are not limit points of zeros of S({1> C, V) as F -> 00 with
j8 (z I - if so, these non-limit points form a set of open arcs which we call
ivindoivs. In particular, since the pressure and distribution functions are
known [12] to be analytic at f = 1 for small /? > 0, we expect the point
f = 1 to belong to such a window if / includes only small values of /S.
If windows do exist then / may be extended beyond the unit circle into
the region |£| > 1 through any one of the windows.

1 These authors use the symbols y, z where we use z, J.
8 Commim. math. Phys., Vol. 11
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Apart from surface effects the Ising ferromagnet is [10] isomorphic
to a lattice gas with an attractive interaction potential (that is, with
(p (r) ^ 0 for r 4- 0, but cp (0) = + oo) and fugacity

z = C e~^ (38)
where

a - lim a(r, V) - lim \~ \ Z <p(r' - r)] =-\E <P W >

the last sum covering all points on an infinite lattice except r = 0; all
our results for the Ising ferromagnet can therefore be re-interpreted in
terms of such a lattice gas.

To prove that p(P, z) is analytic in both variables for all cases where
(36) is satisfied, we apply the lemma of Section III to the function
F(fi,z) = exp[/3p(f3, z)]. (For the Ising ferromagnet, read f in place of
z throughout, unless a separate mention of f is made.) The regions / , C,
etc., in the p and z planes must be chosen in accordance with conditions
(21), (22), and (23). We choose I to be the interval referred to in (36);
let it be /?' ̂  p ^ /?". We choose O to be any disk \z\ ̂  r (|£| ^ r for
the ferromagnet) whose radius satisfies

0 < r < 1/0 B{0) exp(20 Re^)] (39)

for all j8 in /S. Such a choice is always possible, since the function B(ft)
is bounded in S. Then, it follows from (39) and (10) that the region
8 x C in (j8, z) space or (j8, C) space lies inside the region E, so that
condition (21) of the lemma is satisfied. (It might appear from (38) that
the larger region |f | < rexP can be used for the Ising ferromagnet in
place of C, but because the correspondence between Ising model and
lattice gas is not perfect at the boundaries the proof does not go through
so easily for the larger region.) To satisfy the second condition of the
lemma, we choose K to be the closure of a simply-connected region, lying
inside J and containing the points z ~ 0 and z = z0. By YANG and LEE'S
theorem [13], the function /?p(/3, z) is analytic in z throughout J for all
/?(;/, so that the condition (22) is satisfied. To show that the third
condition, Eq. (23), is satisfied, we start from the thermodynamic inter-
pretation of the grand partition function in the form

Applying the definitions of F(P, z) and oiS(P, z, V), and taking absolute
values with the help of (7), we find tha t

)\< lim [ [ 1 + 2 ; \ze^\NVN\N\\llV = ex^{\ze^\), (40)
F-̂ oo L N J

so tha t \F(fi, z)\ is bounded on the bounded set I x J.
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Since all three conditions of the lemma are satisfied, we conclude that
, z) = exp [/?£>(/?, z)] (or exp[/3 £>(/?, £)] for the Ising ferromagnet) is

indeed analytic in both variables when the condition (36) is satisfied. In
the case of an Ising ferromagnet, a sufficient condition is simply that the
magnetic field should not vanish. Since F((j, z) cannot vanish in / x J ,
the analyticity of p(/3, z) in I x J follows.

This result has the corollary that the thermodynamic energy and
specific heat per unit volume, — d{/3p)ldf3 and left2 d(/3p)ldj32, are also
analytic in /$ and z under the same conditions.

Y. Analytic Properties of Distribution Functions: Ising Ferromagnet

For a system of particles in a finite volume F, the s-particle distribu-
tion function may be defined as

n,(X.; 0, z;V)=-- £ IW^JV I' " ' / ^"V" d xs+i • • • d xNjS(p, z; V)

(41)

where Xs = (xv . . ., xs) and UN is the potential energy of the iV-particle
configuration x1, . . ., xN. The corresponding infinite-volume distribution
function is defined by

n s ( X s ; p9 z) ^ l i m n s ( X 8 ; p , z ; V ) (42)
F—>oo

if the limit exists. It is usual to take this limit by making the entire
boundary of V recede to infinity in all directions, but our results also
apply to the case where only a part of it recedes to infinity. It has been
shown elsewhere [2, 4] that the limit does exist, and defines an analytic
function of ft and z, inside the region E of (/?, z) space. To extend these
results to a larger region of (/?, z) space, we shall make use of Vitali's
theorem [14]. This theorem asserts that if a sequence of analytic func-
tions of one variable is bounded on a compact set, which in our applica-
tions will normally be K, and tends to a limit at an infinite number of
points of this set, then the sequence tends to a limit at all points of the
set and the limiting function is analytic. In our case, since both numerator
and denominator of (41) are entire functions of z, the quotient is analytic
in any region of the z-plane that is free of zeros of S; in particular, given
any compact subset of the region J described in (36), this quotient is
analytic on the subset for all sufficiently large V and all p in / . Moreover
[3, 4] the sequence (42) converges, for fixed /?, throughout the disk
z\ < D((i) and therefore, for all /? in / , throughout the disk C defined

in (39). To justify the use of Vitali's theorem it thus remains to show
that ns(Xs; (3, z; V) is bounded for fixed fi £ / for all sufficiently large V
and all z in a compact set, say K, that is contained in J and shares an
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infinite number of points with C. We have not succeeded in proving
a useful boundedness property of ns for the general class of potentials
defined by (6) and (7) but we give proofs here for two special classes.

The first special type of system we consider is the Ising ferromagnet,
in which (for f > 0, j8 > 0) ns(Xs; /?, f) is the probability of finding s
down-spins at the sites x1} . . ., xs. We consider first the function n^x^.
Following LEE and YANG [10] we consider a generalized grand partition
function for the equivalent lattice gas, with a different fugacity zi (or
magnetic field H^ acting at each of the V lattice sites, which we label
1, 2, . . ., F with the site x1 labelled 1. This generalized grand partition
function is a multinomial of degree 1 in each of the F variables £i, . . ., Cv
where t)i E= exp(— 2m H.^) == zt exp(a^) and aa- = oc{xif V) as defined
just after (38); it may therefore be written in the form

5(/i, C 1 , . . . , 4V;F) = P + C 1 Q (43)

where P and Q depend on /?, £2, . . ., £F, F only. Setting f2 =• f3 = • • •
= £y == f and denoting the resulting values of P and Q by P(C, V) and
Q{£, V) we obtain

S(p, d, f,..., C; V) = P(C, F) + dQ(C, F). (44)
In this notation the value of nx at the lattice site labelled 1 is

7H(]; ft, C; V) = /(C, F)/[l + /(C, F)] (45)
where

f(l:,V)^CQ(C,V)jP(C,V). (46)

Since S(/5, £; F) is a polynomial in £ of degree F, it follows from (44)
that Q is a polynomial of degree F — 1; it may therefore be factorized
in the form

0(C, F) = const. 77 (C - ? j(F)) (47)
i= 1

where q1(V)> . . ., # F - I ( F ) are its zeros. By virtue of the symmetry of
the Ising model under magnetic field reversal, the polynomials P and Q
are related by

PCFJ -C ' - 'Q t f - 1 , 7). (48)
Substituting (47) and (48) into (46) we obtain the factorization

fit, V) = C /̂7 T^TqAf) = tnx T^TqTW) • (49)

The last step is justified by the fact that Q{C, V) has real coefficients,
so that its complex roots occur in conjugate pairs.

For ferromagnetic interactions, we can show that all the zeros of
/(£, F), and none of the poles, are inside the unit circle. To do this we
use a lemma proved by LEE and YANG [10], which shows that
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iS*(/8, C1? • • •: CF"> V) cannot vanish if |£?-| > 1 for all i. I t follows from
this that if |d| > 1 and |f | > 1 then [by (44) and (46)] /(£, F)/f cannot
take the value — 1/Ci> s o that if |f| > 1 then |/(£, TO/CI must either be
at least 1 or else 0. Since the value 0 is impossible by continuity we
conclude that

|/(C, V)\ > |C| if |C! > i . (50)

This implies, by (49), that

\qt(V)\^l i = - l , . . . , F - I (51)
so that

|/(C, V)\ < |C| if |C| < 1 (52)
and

|/(C, F)| = 1 if |C| - 1 • (53)

According to (45) we have

/ (£ F) = w1(l; j8,C; F)/[l - 71,(1; |8,C; F) ] . (54)
The right side converges to a limit as V --> oo when |£| < r with r satis-
fying (39), and so it follows by Vitali's theorem applied to /(£, F) that
the function

/(£)=. lim /(C,F) (55)
F->oo

exists for |£j < 1 and is analytic. By virtue of the symmetry relation
/(I/O = V/(C» ^)J which is an immediate consequence of (49), wre see
that /(£) also exists for |^| > 1 and is meromorphic. It follows by (45)
that %(1 ; j8, f), defined in (42), exists if |C| 4= 1, and, incidentally, that
it also satisfies the inequality2

Ren^l ; / ? , £ ) § ] • if |f| ^ 1 . (56)

If there are windows on the unit circle, that is, sets of points that
are not limit points of zeros of £"(/?, C; V) as V -> oo, then we can also
show that nx(l; (3, f) exists for these points. Being the complement of
a set of limit points, the window itseJf is an open set. Let the arc A±A2,
comprising the points f = ei0 with Q1 ;£ 0 ^ 0% 4- 0v he a closed subset
of the window. By suitable choice of 6X and 62 we may include any desired
point of the window in A±A2.

For any £ lying on the arc, every factor in the product (49) has
modulus 1 and an argument that increases monotonically with 6; it
follows that / itself has unit modulus and a monotonically increasing
argument. For sufficiently large F, 3((3, C; F) has no zeros on A1A2', this
implies, by (44), that /(£, F) cannot take the value — 1 on this arc, and
hence that arg / cannot increase by as much as 2JC when £ traverses the

2 The corresponding result for the thermodynamic density was found by
BAKER [15].
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arc. Since arg £ itself increases by 62 — 6l9 as £ traverses the arc, none
of the quantities arg [(£ — <^)/(l — £<?*)] can increase by more than
2TT — (02 — 6^). This condition is equivalent to the statement that none
of the points qt can lie in the open circular segment Gr bounded by the
arc AXA2 and its chord (see Fig. 2); for if q £ G' then we have

°2 - q - e<oi g* \

2 arg
(57)

9 ir\
ATI \U^

so that the total contribution from the zero at q to arg / exceeds the
allowed maximum.

If q lies in Gf thenl/g* must lie in the crescent-shaped region, denoted
by G" in Fig. 2, obtained by inversion of Gf in the unit circle. Since

£plane

Fig. 2

/(£, V) has no zeros in G' for large V, it also has no poles in G" \ it is
therefore regular in the region G defined to consist of the union of the
two regions G' and G" and their common boundary, A1A2-

To apply Vitali's theorem to the sequence of analytic functions
/(£, V) in G, we must show also that the sequence converges to an ana-
lytic function at an infinite number of points of G and that it is uniformly
bounded on any compact subset of G. That the first of these conditions
is satisfied follows at once from the result of (55), which shows that the
limit of the sequence is analytic at all points of G'. To show that the
condition of uniform boundedness is also satisfied, let H be any compact
subset of G, and H' its inversion consisting of all the points of the form
1/f * with £ £ H. Since 0 is its own inversion, H' too is a compact subset
of the open set G and so the distance from Hf to the complement of G
is positive. Calling this distance d we have, for any i,

| l / f * - ? < ( F ) | : > d > 0 if (58)
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since q{ (V) must be in the complement of G. Using qi as an abbreviation
for qi(V) in (49), we obtain

i - tf/e*
n x/̂ ._̂

j (59)
I1 - g* gil + lg*l 1?» - 1/C*| _ r r / u * ! I l ~ g< g?

^ 77!i + ^ f ^ l ̂  77(?,<??
I ° )

since 1 + #/(5 < (1 — #)~1/(5 for 0 < a; < 1, by the binomial theorem. From
(49) and (46) we see that

n\qi\ = Q(0, F)/P(0,F) (60)

which, by (43), is the coefficient of ^ in S^/?, fx, . . ., CF5 F). By virtue
of the convergence condition (6) this coefficient {x12x13 . . . # l F in LEE and
YANG'S notation [10]) tends to a non-vanishing limit as V -> oo; it follows
that the last member of (59) is bounded for large V, and consequently
|/(J, V)\ is uniformly bounded for large F and f £ H.

Applying Vitali's theorem, we conclude that the function defined in
(55) exists and is analytic not only for |£| < 1 but also throughout G, and
in particular at all interior points of the arc AYA^.

Applying Hurwitz's theorem [16] to the sequence 1 -f /(£, V) we see
also that /(£) cannot take the value — 1 in G. It follows, by (45), that
n^ (1; /?, £) is analytic for all interior points of the arc ^41^42 as well as for
all points not on the unit circle.

An extension of this method serves to prove the corresponding
theorems for the two-body distribution function n2(l, 2; /3, f). General-
izing (44), we may write

S(p, Zi, C2, C, • • •, C; F) = P'(C, V) + CiOi(C, V)

so that
ng(l, 2; /?, C; F) = C 2 ^ ' / ^ ' + f («i + &) + C2^'] • (62)

The analogue of (45) [or (54)] is now

I - n 1 ( l ; ^ C ; F ) - n 1 ( 2 ; ^ C ; F ) + n 2 ( l , 2 ; / i , C;F) ~ J ^> v)
w h e r e

/'(C,F) = C2
JR'(C,F)/P'(C,F). (64)

Thus n2 can be calculated if /' and the one-particle distribution function
are known.

Let ^(C? F) and |2(C, F) be the roots of the quadratic equation

P'{C, V) + [<2i(f, V) + QM, V)] I + R'(C, V) £* = 0 (65)
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so that (64) implies
/'(C,F) = C2/f1(C)f2(O- (66)

For ferromagnetic interactions, Lee and Yang's lemma implies that if
S(P; f, f, £ . . ., C; V) = 0 and |£| ^ 1 then |£| g 1; it follows by (66)
that

| / ' (CF)/C2 |{lg}i if | C | { S } 1 -
Moreover, if the point / '(J, F) moves twice around the unit circle, then
(66) shows that at least one of the numbers f/̂  and f/£2 must take the
value 1. Since 5 (0, £; F) - 0 [by (61) and (65)] if £ = ^ or | 2 , but has no
zeros on A±A2 for large F, we see that arg/'(£, F) cannot increase by
as much as 4TZ when J traverses the arc AXA2. Consequently, by a similar
argument to the one used previously, the number of zeros of /'(£, F)
that lie inside G' is at most 1. If this number is actually 0 for all suf-
ficiently large F, then the proof goes through as before and we conclude
that /'(£) exists and is analytic in G. If the number is 1 and the set
of zeros of /'(£, F) has, as V -> oo, a limit point q within Gr then, by
Hurwitz' theorem, this limit point is also a zero of /'(£) and the proof
again goes through as before provided we exclude a neighborhood of q'
from G' and the inversion of this neighborhood from G". Finally, if /'(£)
has no zero in G' but some or all of the functions /'(£, F) have zeros in
Gr, then for large F any zero of / ' (£ F) in G' must be very close to the
boundary of G'. A single zero chose to the straight boundary does not
materially affect our proof, and a single zero very close to the arc AXA2

contributes a factor that tends to 1 in the limit F —> oo and therefore
does not affect the value of /'(£). Thus in all cases we conclude that
/'(£) is analytic in G, with the possible exception of a simple pole in G";
consequently, by (63), n2(l,2; /?, £) also exists for |f| 4= 1 and on the
arc AtA2, and is a meromorphic function of f.

In a similar way we can prove that n3(l, 2, 3; /?, f) exists and is
meromorphic in f, then w4, and so on. Finally, by applying the lemma
of Section III, we conclude that every distribution function ns(Xs; fi, f)
is analytic in both (} and £ provided j$ > 0 and £ is neither a pole of
ns(Xs; ft, C) nor a limit point of zeros of 3.

VI. Analytic Properties of Distribution Functions:
Non-negative Potentials

The second type of system for which we can usefully apply Vitali's
theorem to the distribution functions is a system with non-negative
potential, satisfying cp(r) ̂  0 for all r. Here the region J within which
we can prove analyticity in z at fixed j] is the disk \z\ < lim R(P, V)

where B(/$, V) is the distance from the origin of the z-plane to the
nearest zero of 3 (ft, z; V). We choose K to be any subset of J that is
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the closure of an open set; then K is free of zeros of S(P, z; V) for all
sufficiently large F.

It is convenient here to work with the Ursell functions, defined in (2),
rather than the distribution functions. For a finite volume, the Ursell
functions have the power series expansions [18]

uAX.;P,z;V)=Z^rffU, + n
w = 0 V V (O8)

\ * î i ' ' ' i &s + n •> P) & *^s +1 • • • ^ *E s + n

where V\(x1, . . ., xt; P) denotes the /-body cluster function defined for
I = 1 by U1(x1; j8) = 1 and for larger values of I by

Ul(xl9...9xl'9P) = Z! IT [ e - ^ ^ ' - ^ D - l l (69)

with the sum going over all connected graphs with vertices labelled
1, 2, . . .,1. The series (68) converges absolutely for all z in K and all
sufficiently large F, since us(Xs) /3, z; F), being defined in terms of dis-
tribution functions, is singular only at the zeros of S(fl, z; V). We may
therefore integrate term by term with respect to x2, - . ., xs; if we then
take absolute values on both sides, we obtain the inequality

/ • • • / us (Xs; P , z; V) d x2 . . . d x&
v v

V s
n==0

- / • • • / Ws + AXs+nl P)\dx2. . .dxs+n

(70)

where the integrals on the right range over all space.
GROENEVELD [1] has shown that

(71)

for non-negative potentials with /? > 0. Substituting this into (70) and
using the series (4) in the form

0 0 ~i

pp(P, z ) ^ z + U j j f - ' - f U^; p ) d x 2 . . . d x t (72)
1 = 2

we obtain

• • • / u8(XH; psz)dx2...dx8\^ izKd/dz,)* ipP(p, ^ 1 ) ] | , 1 = _|,i . (73)
V I

By Yang and Lee's theorem, the function zs(dldz)s(f$'p) is analytic in z,
and therefore bounded, for all z in K; hence the left side is also bounded
for all z in K and all sufficiently large V. In a similar way we can show
that

\f'-fu8(X8',p,z; V)dx2...dx8\, (74)
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where the multiple integral ranges over an arbitrarily small region co in
(x2, . . ., a?s)-space, is bounded for all z in K and all sufficiently large F.
For a lattice system, the integrals in (73) are replaced by sums, and the
expression (74) by the absolute value of any individual term in this sum.

It follows by Vitali's theorem that for non-negative potentials with
j8 > 0 the integral on the left of (73), the integral (74)3 and, in the case
of a lattice system, us(Xs; /?, z) and ns(Xs; /$, z) themselves, are analytic
in z at constant /} and Xs. That they are, in fact, analytic in both z and
/? now follows as before by the methods of section IV, provided only
that J is redefined to be

z\ < miR(B) with R(B) = Km R(B, V) ,
pei F->«3

so that Vitali's theorem applies to the same 2-plane region K for all ft
in / . For these potentials, R(fS) is [3] the radius of convergence of the
Mayer series (4).

VII. The Cluster Property: Ising Ferromagnet

Having shown that the distribution function ns (Xs; /?, z) and the
corresponding Ursell functions us are analytic in /3 and z at fixed
Xs = (xx, . . ., xs) under suitable conditions, we now consider the nature
of their dependence on the position vectors xx, . . ., xs at fixed /?, z under
these same conditions. The general property we wish to demonstrate is
that us (Xs; /?, z) is small when the points xx, . . ., xs are widely separated.
The natural measure of the wideness of this separation is the diameter
As of the point set Xs,

AS(XS) =E= max \x{ - Xj\ . (75)
i, j<Ls

For lattice systems with cp(r) ̂  0 for r > 0 (such as the Ising ferro-
magnet), we shall show that, for suitable values of /? and z,

lim us(Xs) = 0 (76)
zJA(Xs)->oo

by which we mean that we can find a function rj (A) with the properties

lim

and
(77)

for all Xs. If the potential <p{r) is cut off (i.e., if it vanishes for all suf-
ficiently large r), we shall show that rj(A) can be a decreasing exponential,
and then it follows that the Ursell functions also have the cluster property

3 The stronger result that, in the continuum case, us, ns and even log (njz8)
are analytic in z for \z\ < R(P) has been obtained by GROEKEVELD [17].
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(3). For non-negative potentials, we shall prove (3) directly but we have
not been able to prove (76).

We consider first the case of an Ising ferromagnet. As before, we use
the variable f in the place of z, and assume that |£| < 1 and fi > 0, so
that the expansion (68) converges and may be written in the form

u,(X,;P,C;V)= Z ^ - E ••• E V:¥n{X,+n;P) (78)
n — 0 ' xs + ! fV xs + U£V

where

VI (X,) ̂  Vl (X,) exp [ - J8 i «(*<)] (79)
with

« ( * ) = - - £ • E <p(\y-x\). (80)
*/6F and =#ae

By writing (62) in the form n2 = £2/ [f - £i(t)] [C - ^(C)], and using the
fact (obtained from Lee and Yang's lemma, as in the discussion of (66))
that if |C| ^ 1 then |£| ^ 1, we see that \n2\ rg |£|2/(1 - |C|)2 if |£| ^ 1.
Using this and its generalization ns < \C\S (I ~ |£|)~s in the definitions
(2) of the Ursell functions, we obtain the upper bound

K(X s . ; ,S , f ;F) |<;c s | a s / ( l - |C | ) s if |f| < 1 , p > 0 (81)

where cs is the sum of the absolute values of the coefficients on the right
of the sth equation of the set (2). Applying Cauchy's inequalities to the
function usl£

s, using the contour |f | = a — const., we obtain, by (78) and
(81), the bound

E '" E U's + n{Xs+n; )8)j ̂  n\ c8a-n(l - a)~s (82)

which holds for any non-negative integer n and any a between 0 and 1.
If we choose a in the range |£| < a < 1, then (82) shows that the

series (78) is majorized by a convergent geometric series. From this fact
it follows, by Weierstrass' test, that at fixed f the series (78) con-
verges uniformly with respect to the variables V and Xs, so that limiting
operations affecting these variables may be carried out term by term.
To prove (76), therefore, we need only show that each term of the series
tends to zero in the double limit where first V -> oo and then A -> oo.
Since the limit F —> oo is trivial, it is a question of proving that, for every
value of n,

lim E ••• E U,+n{X.+n;P)--=0. (83)
A—>oo x x^

Since

i E • • • S u\ g E • • • E \v\ < E • • • E \u\ (84)
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and A (a?1? . . .. xs) ^ «r12 = 1^ — x2\, a sufficient condition for (83) to
hold is

l im y - • - y \Uo,y)(Xs,n: B)\ = 0 .

Our proof of (85) depends on the Ursell-Mayer formula (69). Writing
fij or f{xij) for the square bracket in (69) and substituting into (85), we
see that it is sufficient to prove

I ' " Z TI l/o-l ->0 as *la-*oo (86)

for every graph summed over in (69). Since F is connected, it can be
converted into a Cay ley tree by deleting some bonds. Let T denote this
Cayley tree (it is not unique) and T' the part of T that joins vertices 1
and 2. An upper bound on the sum (86) is then given by

(fm,,)k s • • • u n \tti\
x, a w W)-1T (87)

= (/n j lLB(/3)]«+»-™--I£• •• E n \tu\

where k is the number of bonds that are in F but not in T, m is the
number of bonds in T' and we have relabelled the variables of summation
and the corresponding vertices of T, so that the bonds in Tr become
(1, 3), (3, 4), . . ., (m, m + 1), (m + 1 , 2 ) - or just (1, 2) if m -- 1. We
have also used the definition (9), which might be written B(P) — JJ \fx\

in the notation of this section. We divide the summation in the last line
of (87) into m parts, say £> 2J> • • •> U such that 2J r= 0 only if xrs

13 3 4 m + 1,2 rs

is at least as great as any of the other distances in the chain ,T13,
# 3 4 * • • . , ffTO+1,2- I n £> S m C e ^13 + : r 34 + ' ' # + # « * + 1 , 2 - •1'l2?

 W

13
Xj 3 ^ xx 2\m and therefore

Z ^~ U ' ' ' E /max^W™) I/34/45 • • • fm+lA
13 ^:J xMil

where
/max (y)^ SUp ^ y | / ( ^ ) | . (89)

It follows from the convergence of the sum for B(j3) that f(x) tends to
0 for x -> 00. Consequently by (88) we find that Ĵ 7 —> 0 for ,r12 > 00 and

13
hence, since similar arguments apply to 5J, £, etc., that the expression

34 45
(86) does the same. This proves (85) and hence completes the proof of (76).

In the special case of a cut-off potential, that is, one where

(p(r)^O i f r > X (90)
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for some ?, (the range of the potential), the function rj(A) in (77) takes
a simple form. Equation (88) now shows that J^ = 0 if xx%\m > X, and

13

working back to (83) we find (since m ^ s + n — 1) that
2 • • • E U , + n ( X , + n ; j8) = 0 i f A (Xs) > ( 8 + n - l ) X . ( 9 1 )

Xs + j &8+n

The series analogous to (78) for us(Xs; /?, f) thus begins at the term in
£* + w(-Y«) where n(Xs) is the smallest integer satisfying

A{X,)< [s + n(Xs) - 1} X .

Using the majorization (82) in this series we obtain

for j ; | < a < 1. For example, we can study the spin-spin correlation
function u.2{r) for an Ising ferromagnet in field H by choosing s = 2 and
x2 = xx + *% so that Zl = r; equations (92) and (37) then show that
uz(r) falJs off with distance according to

\u2(r)\ < const. exp[(- 2m |Rei7/3| + e) r/A] (93)

where r == log (I/a) is any small positive number, and the constant may
depend on H and e.

The exponentially decaying upper bound (92) also has the conse-
quence that the cluster property (3) holds when |£| < 1 or (by symmetry)
f | > 1 for a lattice gas with a cut-off attractive potential.

VIII. The Cluster Property for Non-negative Potentials

For non-negative potentials we can prove the cluster property both
for continuum and lattice systems, provided again that the conditions

/ 3 > 0 and \z\<R(P) (94)

are satisfied. For the lattice system, the proof depends on the result
obtained in § VI, that us(Xs; /?, z) is analytic in z if (94) holds. From this
result it follows that the series expansion analogous to (68), namely

u.(X,\ 0, z) = £ ^~~ Z • • • S U,+n(X, + n; P) (95)
n — 0 ' ocs+1 xs + n

(where the sums range over an infinite lattice), converges when (94) holds;
hence, taking absolute values and summing over x2, . . ., xs, we obtain

2 • ••2K(XS; p, z)\ < E ~r~2- • • E \Us+n(Xs+n; p)\ . (96)
X2 Xs fl = 0 ' X2 Xs f n

The interchange of summations is valid since all terms in the series are
positive. As shown in the derivation of (73), the right side of (96) is equal
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to the value taken by the function — z\ (^/^21)
s [/5p(f}, z±)] when zx -— —

By (94), this function is analytic, and therefore finite, when z1 = —
thus (96) implies that the Ursell functions have the cluster property (3).

A similar argument applies to continuum systems; this time we start
from two functions defined by the formula (74) with co taken, for one of
them, to be the part of (x2, . . ., aes)-space (call it co+) where

us(x1, . . ., xs; j8, z) > 0

and for the other, the part (call it co~) where us < 0. As shown in § VI,

both these functions are analytic in z at fixed xx, co+ and /? when (94)

holds; therefore (95) has the analogue

• • • j u8(X8; j8, z) dx2 . . . dxs = Z ~^rj '" J
*-*- (97)

J • • • J Us+n (Xs+n; P)dx2. . .dxs + n

where the first s — 1 integrations on the right are over co+ and the
remaining n are over all space. Combining (97) with the corresponding
result for a)~ we obtain

is(Xs; j8, z)\ dx2 . . . dxs ^ JJ ±-~~

'\Us+n{Xs+n; p)\ dx2. . .dxs+n

where the integrations now range over all space. Just as in the discussion
of (96) it follows that the cluster property (3) holds for continuum
systems with non-negative potentials, under the condition (94).

For a potential with a cut-off, we can show (as in VII) that the con-
vergence constituting the cluster property (3) is exponential. That is to
say, if k is any positive integer ^ s, the contribution to the sum on the
left of (96) from configurations Xs where A (Xs) exceeds kX must fall
away exponentially with increasing k, and similarly for the integral on
the left of (98). To show this for lattice systems, we retrace the derivation
of (96), but instead of summing over all x2, . . ., xs, we restrict the
summation to those terms for which A (Xs) > kX. Then by (91), the terms
for which s -\- n — l ^ & i n the sum on the right will vanish. Using
Cauchy's inequality applied to the 5th derivative of the power series (72)
we can estimate the remaining terms of this sum, obtaining

E

i - N M V

y
k — s -1- 2
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where Ms(fi, a) is the maximum absolute value of the function (d/dz^8

> %i)] o n a n y circle \z±\ = a whose radius satisfies

\z\<a<R(p). (100)

Since every term in the sum on the left side of (99) is positive, its right side
also provides a bound, similar to the one obtained in (92), on the
Ursell functions themselves:

, z)\ ^

Using the isomorphism pointed out by LEE and YANG [10], we may
apply the results (99) and (101) to the Ising antiferromagnet. These
results show, for example, that the spin-spin correlation function u2(r)
falls off with distance according to

uz(r)\ < const. exp[( - 2 fim [|Re H\ - #(/?)] -f s) rjX\ (102)
if

£>0 and \ReH\>H(P)^^j[log^~^]. (103)

The quantity we have called H(j$) vanishes for a ferromagnet because
of Lee and Yang's theorem, but for an antiferromagnet it is presumably
positive, so that the result (102) is weaker than its counterpart (93) for
the ferromagnet.

For a continuum system whose potential has a cut-off, the integral
analogue of (99) still holds, (generalizing a result given by RUELLE [4])
but we have not been able to prove the analogue of (101).

IX. Discussion

Our main results fall into two categories. First, there are the proofs
based on the lemma of Section III, showing that if the function under
consideration is analytic in a region J of the z-plane for all /? in an
interval / of the real axis, then it is in fact analytic in both /} and z.
Secondly, there are the proofs, based on Vitali's theorem, showing that
in the thermodynamic limit these functions actually are analytic in z for
some region of the z plane, and that they satisfy the cluster property.

The results in the first category are ver}^ general; the only further
generalization that might be possible is to eliminate the condition that J
must include the origin of the z-plane, which restricts the theory to
gaseous or fluid phases. The results in the second category refer to par-
ticular types of systems and are much less complete. Our best set of
results in this category refers to the Ising ferromagnet. Here we have
shown that the thermodynamic functions and distribution functions are
analytic in both ft and f if /? > 0 and £ is not a limit point of zeros of
the grand partition function (and in particular if |J| =j= 1). Thus if we
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know there is a singularity, say at (} = fic, in the thermal properties at
zero magnetic field (for example the logarithmic singularity, discovered
by ONSAGER, in the specific heat of a two-dimensional ferromagnet) we
can now deduce without knowing anything about the magnetic prop-
erties of the system that the zeros of 3 in the f plane have a limit point
at f = 1 when /5 = jSc. We have also shown for the general Ising ferro-
magnet that if |f | 4= 1 then the s-particle Ursell functions tend to zero
as A ~> oo and that this decay is rapid enough to give the cluster prop-
erty (3) if the potential has a cut-off; to complete this set of results it
would be desirable to prove the cluster property for values of f on the
unit circle that are not limit points of zeros and to remove the restriction
to cut-off potentials. For values of £ that are limit points of zeros, even
the existence of ns has not been proved, apart from the case f = 1,
where it is proved for s — 1, 2 by GRIFFITHS [19] and where it follows for
s ^ 3 from KELLY and SHERMAN'S generalization [20] of Griffiths' work.

The only other systems for which results of a similar degree of com-
pleteness are possible at present are one-dimensional. For the one-
dimensional fluid with nearest-neighbor interactions, for example, one
can show by an extension of the methods used by ELVEY and PENROSE

[21] that (at fixed /?) the distribution functions are analytic in z, and have
the cluster property, for all values of z where p((ijZ) is analytic in z;
analyticity in both variables then follows by the lemma of Section III.
In general, however, it may not be possible to deduce analyticity of
distribution functions from that of thermodynamic functions alone, even
in the Ising ferromagnet. Our proof for the distribution functions with
|f | = 1 requires the arc AXA2 to be free of zeros for large F, whereas
analyticity of the theriuodynamic functions implies only that the number
of zeros in any sub-arc of AXA% is o(V) as F -> oo.

There is an alternative method of investigating the existence and
properties of correlation functions, which brings out the connection
between the two categories of results. (A similar method was used by
FISHER [22], but he proves only convexity in X, not analyticity.) Suppose
that the system is placed in an external potential

where Al3 . . ., Xs are new complex variables and ^i(ac), . . ., ips{x) are
periodic functions of x, with an arbitrary unit cell of volume F which is
the same for all the s functions. The grand partition function for a system
in this situation has the property

ips{xs) us(Xs; /?, z; V) .
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Applying the lemma of Section III with At replacing ft, we can show,
under suitable conditions, that the infinite-volume limit of this equation is

_ 1

" s = 0 (105)
• / dx1jdx2t. . . fdXs^ixJ . . . ips{xs) us{Xs; f},z)
r

. . . BAS

where the infinite-volume modified Ursell function4 us(Xs; /?, z) is now
defined as the function that makes (105) true for all members of a suf-
ficiently wide class of test functions ipi{x), with ftp the infinite volume
limit of logE/V.

In order to prove the existence of us(Xs) by this method, however,
it is necessary to show that if \XX\, . . ., \AS\ are small then the zeros of
3(P, z; A1? . . ., Xs\ V) do not penetrate far into the 2-plane region J
defined in (36). At the time of writing we have been able to do this only
for the two types of system discussed in Sections V—VIII, the Ising
ferromagnet and systems with non-negative potentials; so this alternative
method, though pleasing because it makes the theorem of Section III
a unifying principle for the whole discussion, has not so far yielded any
additional results.
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