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Abstract. For the model of ^-coupling it is shown that in perturbation theory
a direction-dependent term is required for formulating the local field equation in
limit form.

1. Introduction

In a recent paper [1] (henceforth quoted as I) a finite form of the
local field equation was proposed for the model of JΛcoupling and
studied in renormalized perturbation theory. The purpose of this note
is to discuss certain direction-dependent singularities of the propagator
which were not taken into account in I. It will be shown that these
singularities lead to an additional term in the field equation of the field
operator as was conjectured by K. WILSON on the basis of dimensional
arguments [2]. The modified form of the field equation is1

- (Π + m2) A (x) = λ lim j(xξ) (1)
£->0

:A(x + ξ)A(x)A(x- ξ): + σt">(ξ) dμBvA(x) - a(ξ) A(x)
H x ξ ) - g(ξ)

with
tμ tv

*"'(£) = i /-<r (I2)
and

: A (xj) A (x2) A (a?3): - A (xj A {x2) A (xs) - (A (xj A (xz)\ A {x3)

— cycl. perm.

for spacelike distances {xi — xά)
2 < 0(i φ j).

Unless otherwise noted the notation of I will be used throughout the
present paper.

* The research reported in this paper was supported in part by the National
Science Foundation.

1 Throughout this paper lim will denote the spacelike limit with ξ2 < 0 and

ξμ!]/- I 2 bounded.
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2. Relation for Proper Self-Energy Parts

We start from the algebraic identity (5.38) of I

which holds for any proper self-energy part S. The integrand Es of the
renormalized integral associated with S is given by

Bstpke) = (1 - ί|) Bstpke) .

The even part of a function / of the four vector p will be denoted by

f + ( ) γ f(-ί>)) (3)

Taking the even part of (2) and applying the operator (1 — ί|) we obtain

γζT(S.W)

} (4)

The contribution from the self-energy part $ to the propagator is
given by

Js(p2)= Urn
ε» + 0

= f dJcBs(pJcε) .

Since Js depends on p2 only we have

Js(pη = lim

Multiplying (4) by exp(— iξ^ — k2)) and integrating over the internal
momenta we obtain

Σ Σ
Ϊ

Jϊd>e)+ Σ Σ
ί = 0 γζCΪ(S)

+ Σ Σ 7f

iyv(ξpε) + Σ Σ KΛ

The sets (7J, C" were defined in I, p. 183. In deriving (6) it was used
that Jsίγ = 0 for γ ζ O '(^). The quantities Z', Z / ; , 7, 7', 7", «f+ are
given by Eq. (5.42) of I, but with E$9 B£, R$γ as defined by (3).
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Summing (6) over all proper self-energy parts 8 one gets

= - iλ{Q(ξpε) - Q(ξθε) - ^ / ^ ( f θ ε ) } + iλq(ξpε) .

Here γ and Q are given by the expansions (5.23—25) of I 2 . Using (5) and

Π*(p2) = Σ - i - W ) + A(λ) + B(λ) & - m*) (8)

(Eq. (5.31) of I) we obtain for Q in the limit ε -» + 0

B(λ) (p« - m^)}

(9)

lim g'dp) = 0 .

Here

are functions of | 2 only. Qμv is of the general form

The renormalization functions α, /? will now be defined differently from
I. First we introduce the function

T(ξ, P2) = Q(ξ, P) - P2ψσ(ξη , p = (|/5», 0, 0, 0) (11)

for p2 > 0. α and β are then defined by

oc(ξ) = (12)

With these definitions we form the expression

Q(ξp) - α( | ) - ( p 2 - m 2 )—γ~ = ~^

+ g'dί?) — ̂ (i, ?ft2) — (ίP2 — ^ 2 )

where
r(£> p2) ~ Q(£P) » P ~ (yP2> ®9 ®> ^) ^ o r ^P2 > o .

Solving (13) for 77* we get

γ(ξ)Π*W) = - iλQ(ξp) + iλx'(ξp) + <(pa - m2) β(ξ) (14)
2 The first term on the right hand side of Eq. (5.24) should read Ar with Ar = 0

f or r Φ 3 and

The sum extends over all ordered pairs a, b of integers 1, 2, 3 with a φ δ.
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with

oc'(ξp) = oc(ξ) + ̂ ψ-o{?) + o(ξp),

o(ίp) = gr(ίp) - r(f, m») - (p2 - m")-^r (f, ™2) , (15)

lim o( |^) = 0 .

3. Field Equation for the Propagator and Field Operator

Multiplying (15) by Δ'F we obtain

iλG(ξp) + iλoc'(ξp)A]?(<p) + ί(p*-mZ)β(ξ)AF(p).
Inserting

Π*AF=-i(p*-m*)A'F- 1
into (16) yields

(β(ξ) + γ(ξ)) (P2 - m») Δ'r = λG(ξp) - λα'

Dividing by /? + y and taking the limit ξ -> 0 the equation

(p - m«) J , = lim /?(f) + y(f) ( }

follows. In coordinate space this becomes the field equation of the
propagator

- (D + m») (TA(x) A(2/)>0 = Km ̂ S*f{°} (19)

δ(x - y).

In order to derive the field equation of an arbitrary τ-function we
multiply (17) bjΛ(pp1.. . pr).
Using relation (5.1) and (2.15) of I we get

= λG(ξpp1 . . .pr) - λθc'{ξ) ή{ ) + i { )

where

φ = ω(ξpp1 ...pr) A'jpipi) . . . ΔF{pr) .

This implies for the r-functions

1 . . . 2 ) r : A 1 . . . * „ : ) - λoc' (ξp) τ (ppx.. . p r : h . . . * „ : ) ( 2 1 )

Σ Hv + PJ)ΐ(Pi - -Pj-iPi+i PrΆ... K )
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where

^ P) e-*^"W« (22)

r = 0 the third term of the right hand side of (21) is missing, for
= 1 it is i

Setting in (21) n = 0, dividing by /? + y and taking the limit ξ -> 0
we obtain the following set of field equations for the time ordered
functions

& - m*)τ(PPl...pr) = λ UmMj^|>. ( 2 3 )

with

n(ξpPl... Pr) = ( §)
(24)

Ps-lPi + l' "Pr) '

Field equations for the time ordered products TA (xλ) . . . A (xr) follow
by putting the momenta lcό in (22) on the mass shell and taking the
Fourier transform with respect to hό. The resulting set of equations are
Eq. (5.57—58) of I with the operator product N defined by

N(ξ xxx...xr)= T(:x + f, x, x - ξ: xx . . . xr) - oc{ξ) T{x x1. . . xr)

r

Σ <5(̂  - ^ ) τ(χi - - ^ - i ^ +i χτ).

The field Eq. (1) of the field operator J.(#) is the special case of I,
(5.57-58) and (25) with r =

I am grateful to Drs. BROS and K. WILSON for interesting discussions and
helpful criticism.
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