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Abstract. An exact formulation of LSZ field theory is given. It is based on the
Wightman axioms, asymptotic completeness, and a technical assumption stating
the existence of retarded products of field operators. Reduction formulae are derived
directly from the strong asymptotic condition. The GLZ-theorem, which states the
conditions under which a given set of retarded functions defines a field theory, is
formulated and proved in a rigorous way.

1. Introduction

The LSZ formulation of relativistic quantum field theory [1—3] has
proved to be well adapted to the needs of elementary particle physics.
In comparison with the Wightman formulation [4, 5] it suffers, however,
from a lower degree of mathematical rigour. Existence problems are not
always treated with due care, and limits are sometimes exchanged
without full justification. Even though this lack of rigour has, up to now,
not been prejudicial to the applications, it would obviously be desirable
to have a rigorous version, preferably based on the Wightman axioms.
Important steps in this direction have already been made. HAAO [6] and
RUELLE [7] proved, starting from Wightman's axioms, the so-called
strong asymptotic condition. This condition provides us with an
asymptotic particle interpretation of the theory and makes it possible to
add the axiom of asymptotic completeness to the familiar axioms of field
theory. An exact definition of the $-matrix can then be given. HEPP [8]
succeeded in deriving the LSZ reduction formulae rigorously for $-matrix
elements between states with non-overlapping wave functions. These
non-overlapping states form a total set in the Hubert space of states.
Nevertheless, Hepp's result is not completely satisfactory, because over-
lapping states are physically of considerable interest. They occur, for
instance, always when in the course of a calculation the well-known
summation over intermediate states has to be performed.

In this paper we propose to make some further steps towards a rigor-
ization of LSZ. Besides the Wightman axioms and asymptotic com-
pleteness we shall have to assume the existence of retarded operators'
(see Chapter 3 for an exact formulation of this new postulate). On this
basis we shall derive reduction formulae for the matrix elements of the
field operator and the /S-matrix, in the latter case also for overlapping
17*
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states, directly from the strong asymptotic condition. The LSZ asymp-
totic condition will not be needed. Furthermore, we shall give a rigorous
derivation of the unitarity equations of GLASER, LEHMANN and ZIMMER-
MAKN", and a rigorous version of the GLZ theorem [3] which states the
conditions under which a given set of retarded functions defines a field
theory.

Existence of sharp retarded products seems to be necessary for the
development of the formalism. We shall briefly discuss in Chapter 7 why
the various known ways of defining smooth retarded products do not
work satisfactorily. At present it is not known whether the existence of
retarded products really has to be assumed or whether it is a consequence
of the Wightman axioms. As long as this question remains unsettled the
formalism as presented in this paper cannot be considered to be
satisfactory.

As may have become clear by now, we shall treat LSZ as a field
theoretical formalism, i.e. we consider the fields as the primary objects
of the theory, the /S-matrix as a derived quantity. We will therefore not
treat the problem of interpolating a given $-matrix with an interacting
field, local or otherwise [2, 9].

As usual we shall restrict ourselves to the simplest possible case of
a single, hermitian, scalar field A (x), associated with a single kind of
spinless, uncharged particles with non vanishing rest mass m.

So as not to hide the essential aspects of the formalism in a jungle
of computation we have abbreviated, or even omitted, some proofs
which are straightforward in principle but involve lengthy algebraic or
combinatorial considerations. This applies in particular to Chapter 3,
dealing with the definition of retarded and time-ordered products, where
proofs are almost completely suppressed.

Conventions as to signs and (2π)-factors, etc., have been chosen in
accordance with the accepted usage in the theory of free fields.

2. The Basic Postulates

We start from the theory of a scalar, hermitian, Wightman field with
mass m > 0. The axioms of such a theory are, in brief [4, 5]:

Postulate 1 (Quantum mechanics). The possible states of a physical
system can be represented by vectors in a separable Hubert space Jtif,
observables and other physical quantities by operators in 3?.

Postulate 2 (Relativistic invariance). A strongly continuous unitary
representation U(Λ, a) of the connected Poincare group is defined on Jtf*.

Postulate 3 (Spectral properties). Let Pμ = / pμdE(p) be the infinite-
simal generators of the representation 17(1, a) of the translation group.
Then the support of the spectral measure dE(p) consists of the isolated
point p = 0, the one particle hyperboloid p2 = m2, p0 > 0, and a con-



LSZ Field Theory 247

tinuum in p* ^> 4m2, p0 > 0. Let Jf0, ^f^ be the eigenspaces oί the mass
operator M2 = PμP

μ belonging to the eigenvalues 0, m2, respectively.
J^Q is one-dimensional. It is spanned by a normalized vector |0), called
the vacuum. On ^f\ the operators U(A, a) define an irreducible repre-
sentation oί the Poincare group to mass m and spin 0.

Postulate 4 (Field theory). In Jf there exists an operator valued
distribution A (x) with the following properties.

a) To each strongly decreasing test function φ(xlf . . .,xn) ζ&*,
n arbitrary, there corresponds an (in general unbounded) closed operator

An(φ) = f A(x1) . . .A(xn) φ(xv . . .,xn)dx1. . . dxn , (1)

called a field monomial. All field monomials ̂ 4w(note: A1 = A) are defined
on |0), and the vector An(φ) |0) depends on φ strongly continuously.
The linear hull D oί the set of all vectors An(φ) |0> is dense in 3?.

It follows from these assumptions that An(φ) is defined on all of D.
b) A (φ) is hermitian for real φ.
c) A transforms under the Poincare group as a scalar:

A (Λx + α) = U(A, a) A (x) U* (Λ, a) . (2)
d) A is local:

[ A ( x ) 9 A ( y ) ] = 0 for (x - y)* < 0 . (3)

e) A (x) has non-vanishing matrix elements between |0) and 3?^. By
multiplication with a constant we can then obtain that {1| A(x) |0) is
equal to the corresponding free field matrix element for all |1) £ Jf^.
This normalization will be assumed.

Under these assumptions the Haag-Ruelle asymptotic condition can
be proved [5, 7], which we shall use in HEPP'S formulation [8].

Let © C y be the space of test functions f(p) with support in the set

β = {p: 0 ̂  p* ^ 4m2, pQ > 0} . (4)

To each / £ © we associate an operator

(5)

(q* + m*)V*, (6)

A (x) = (2π)-3/2 / d*pΆ(p) e-^x . (7)
Define Φ(t) = 4ί>(ί)...4:>(ί)|o>, (8)

ϊi ζ ©> n arbitrary. The superscript (*) means that a star may or may
not be present. Φ(t) is a well defined vector in 3? for all finite values
of t} depending continuously on t. The strong asymptotic condition states
then the existence of a free, scalar, hermitian, field Am(x) with mass m,

such that = Af". . . A^ |0> . (9)
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Here the limit is to be taken in the strong topology of & \ and

f(p) = ϊ(ω(p),p )£#' in p. (10)

A1? is the destruction operator

ί_(?) Jίn*(- g) , (12)

m*). (13)

Stars appear on the r.h.s. of (9) in the same places as in (8).
Similarly there exists another free field Aoni>, such that (9) holds in

the limit t -> + oo with Aίn replaced by ^Loufc.
Let 2£ be the set of all vectors of the form (8), <3Γin the set of all

vectors (9), JSf and Jδfίn the linear hulls of £ and ^Γin respectively. The
closure of JδPin will be called Jf ίn. Analogously we define ^fout, j£?out,
^out »jιjιe asymptotic condition (9) can of course be extended to J5? by
linearity1.

We can now formulate the fifth postulate of the theory.

Postulate 5 (Asymptotic completeness). We have

A sixth and last postulate of a more technical nature will be for-
mulated in the next chapter.

Finally, let us introduce some additional notations which will be
useful in the sequel. The functions /, g, are called non-overlapping if
supp/n supp$ = 0. The functions /, g ξ © are called non- overlapping if
the corresponding /, g defined by (10) are non-overlapping. « 0̂, Jfg1 are
the subsets of 3£ , ^ίn obtained by taking only the vectors (8), (9) in
which the wave functions /$ are pairwise non- overlapping. j£?0, jSf^11 are
again the respective linear hulls.

3. The Retarded and Time Ordered Products

The retarded [2] and time ordered [1] products of fields play an
important part in the formalism. They are formally defined by

E (χl9 . . ., xn) = (- i)«-ι Σ θ fa, XK . . ., xin] [. . . [A to), A(xί2)], . . .,A(xin)] ,

n •> ̂ ) ̂  toi) - - 4foJ . (15)
1 It' is actually possible to prove the strong asymptotic condition for states of

the form

Φ (t) = / & q3 exp(- it 27 ± &) 7(± ft, - -, ± ϊ») ̂ (ϊi) - A(qn) |0>

with / ζ £?, supp/ C Q ® ® ^> i.e. for non-factorizing multiparticle wave func-
tions. This fact is, however, not essential for our purposes. We will therefore not
give the proof, which is rather lengthy.
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Here θ (x±, . . ., xn) is a function which is equal to one if x% > x$ > > x®9

zero otherwise. The summation extends in the first case over all per-
mutations of the arguments (#2, . . ., xn), in the second case over all per-
mutations of (xlί . . ., xn).

Unfortunately the expressions (15) have no exact meaning because
distributions can in general not be multiplied with discontinuous func-
tions. We shall therefore use a different definition, namely we shall
define R, T as objects having a certain number of properties, which will
be used later on, and which are formally satisfied by the expressions (15).
It is not known at present whether objects having these properties do
always exist in a Wightman field theory. Their existence must therefore
be assumed.

Postulate 6 (Existence of retarded products). There exist operator
valued distributions E(xv . . ., xn) for all positive integers n, with the
following properties.

i) B(φ) = f dxjE(x1) . . ., xn) φ(xί9 . . ., xn), φ £<$?, has the proper-
ties of a field monomial as specified in Postulate 4, i.e. R(φ) is a closed
operator which is defined on D and maps D into itself.

ϋ) E(φ) is hermitian for real φ.
iii) B(XJ) = A(x1).
iv) M(XI} #2, . . ., xn) is symmetrical in the variables x2, . . ., xn.
v) The E satisfy the identities [3]

B(x, y, xv . . ., xn) - B(y, x} xv . . ., xn)

where the summation extends over all partitions of {x1} . . ., xn} into
two subsets, one of which may be empty.

vi) The support of B(xv . . ., xn) is contained in the set

Tn = {(«!, . . ., xn) : (x, - xt) tV+,i = 2,...,n}, (17)

F_|_ the closed forward cone.
vii) The E are covariant ,i.e.

E(Λxl + a, . . ., Λxn + α) = U(Λ, a) B(xl9 . . ., xn) U*(Λ, a) (18)

for all Poincare transformations (A, a).
The support condition vi) could be relaxed without seriously impeding

the usefulness of the formalism. It would suffice to demand that
B(x1} . . ., xn) vanish outside a ε-neighbourhood of Tn, or even that it
decrease strongly at infinity outside Tn. With this latter formulation the
formalism becomes applicable to quasilocal fields. Such a weakening of
the support condition would of course necessitate the abandonment of
the covariance condition (18) for Lorentz transformations. The for-
malism would then lose its explicit invariance, but this is not necessarily
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more than a minor nuisance. Covariance under translations, however, is
essential. In this paper we shall always work with the sharp support (17).

Once we have the retarded products R, we can define the chrono-
logical and antichronological products T(x1, . . .,xn) and T(xl9 . . ., xn)
with the help of the relations [10]

R(xlyx2) . . .,xn)

= (- fc)"-1 Σ (- i)*-1 τ(*iv - - -> *ώ T(*I> *w •> *J

The summations extend as in (16) over all partitions of the set {xz, . . ., xn}
into two subsets. The relations (19), together with the requirement of
total symmetry of T and T, allow the recursive construction of T, T in
terms of 72 -operators.

The following important properties of R, T, and T can be derived
from these definitions2

a) R(XI} . . ., χn) = - i[R(x1} . . ., xn-!),A(xn)] (20)

if a$ < «$ for ί = 1, . . ., n — 1.

b) T(xv . . ., χn) = Γfc, . . ., αΛ) Γ(»fc+1, . . ., xn) ,

1 (X1} . . ., Xn) = 1 (Xjc+ι, . ., Xn) 1 (X1, . . ., Xjc) ,

if α? > ̂  for all i = 1, . . ., &, 7" = k + 1, . . ., w.

c) Γ^, . . ., a?n)* = Γί^, . . ., αn) on2) . (22)

Besides the retarded products R we shall have occasion to consider
also the generalized retarded products (g.r.p.), if only in an auxiliary
role. For their formal definition and a comprehensive discussion of their
properties we refer to ref. [11] and the original papers quoted there.
Here we shall use the following rigorous definition, based on postulate 6.

Let 8 be the index set (1, . . .,ri). An n-cell is a set of signs cr^
= + or — , attached to the proper subsets / of 8, such that cr/ φ tfcj,
and σj/yj j " = a i', if /' n /" = 0 and (T/> = σ/». Two w-cells are called
adjacent if all σ/ except two are the same in the two cells. The two
differing signs belong then to two complementary subsets I0, C ^o °f $•
IQ is called the border between the two cells.

With each ?ι-cell Cμ we associate a g.r.p. Θμ(xl9 . . ., xn), such that the
following two conditions are satisfied.

a) Let Cμ) Cv be adjacent, with border /0.= {iv . . ., ik}. Let σ/β be
negative in Cμ> positive in Cv. We define a ^-cell Cu in 70 by attributing
to each proper subset of 70 the sign that the same subset has in Cμ, and

2 As has already been remarked in the introduction we shall not give any proofs
in this chapter, since they are not central to our purpose and would lengthen the
paper in an inadmissible way. The reader can easily convince himself, that every-
thing stated in the remainder of this chapter is formally true for (15).
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a (n — &)-cell Gβ in C^o m ^ne same way. Then

Gμ(xv . . ., xn) - Gv(xv . . ., xn)

= - i[#«tei» . . ., xik), Gβ(xiM, - , αj]

b) A particular w-cell is specified through the condition that ai = -f-
for i = 2, . . ., n, if σz is the sign attached to the subset consisting of the
single element i. The g.r.p. corresponding to this cell is R(xl9 . . .,xn).

It can be shown that operator distributions satisfying these require-
ments exist and are uniquely determined (if Postulate 6 holds). They
can be written as R(xl9 . . ., xn) plus a sum of multiple commutators of
jR-operators of lower order. The θμ have the general properties of field
monomials and are hermitian. The commutator of two arbitrary g.r.p.
GΛ9 Gβ, depending on non-overlapping sets of variables, can always be
written in the form (23) as difference of two g.r.p.

From Gμ(x1} . . ., xn) we derive another g.r.p. G+ (xl9 . . ., xn\ xn+1) by
fixing its cell as follows: the signs of proper subsets of (1, . . .9n) shall
be the same in C£ as in Cμ) and an+1 is positive. Then:

θ+(xl9 . . ., a?Λ;a?n + 1) = 0 if a# + 1 > x$ for i=l,...9n9

G+fa, . . .; αΛ + 1) = - i[0(xl9 . . ., xn), A(xn + l)] (24)

if Xn + ι<%ί for i=l,...,n.

The g.r.p. obtained through m-fold iteration of this process will be
denoted G+(xl9 . . ., xn\ xn+ι, - , %n+m) They are symmetrical in the
variables behind the semicolon. For ordinary retarded products we have
E+(XI} . . ., xn\ xn+1) = B(xl9 . . ., xn+1).

The vacuum expectation values of R, T, T, Gμ are denoted r, τ, τ,
gμί respectively. The time ordered function τ(xl9 . . ,xn) has the familiar
cluster expansion

Tfo, ..,*„) = Σ ττ(*ή> •••)••• rτ( , «J > (25)

where the truncated functions ττ have the correct space like asymptotic
decay, i.e.

/ Π & Xi TT(XI} . . ., xn) φ(xv x2 + α2, . . ., xn + an) , φ ζ Sf

is as a function of α2, . . ., αn, in the Schwartz space Sf of tempered test
functions.

4. Eeduction Formulae

In this chapter we wish to derive reduction formulae, i.e. relations
expressing matrix elements of the field operator on the one hand, of the
$-matrix on the other hand, in terms of retarded or time ordered func-
tions. For this we prove first a variant of the strong asymptotic condition.

Let f(p) ζ ©. Following HEPP [8] we introduce the function

J(x91) = (2π)-5/2 / d*p e-tv* elt^~ J(p) . (26)



252 O. STEINMANN:

From the equivalent representation

J(x, t) = (2π)~5/2 / d*q δ+(q) [2ω (g)] e~*** f dp, f f a , g) e**<*-*>

we obtain with the help of RTTELLE'S work on smooth solutions of the
Klein-Gordon equation [7, 12] the estimates

,

f d* x \J(x0, x, t)\ ̂  c'N\t\*l* (1 + \x0 - t\)~*

for all integers N > 0. Estimates of the same form hold for all deri-
vatives of /.

We can now prove
Theorem 1. Let

n m

S* (fc) *-its*}

(28)

= / Π (V *i li(*i, t)} ίί {ί* 9{ iffy, t)} 7(%, . . ., χn, ylt . . ., ym) |0>
1 1

with fi} fa £ ©.
Then

st. lim Φ (t) = Σ Πr toy, h) Π Ay |0> . (29)
--

Here the summation extends over all ordered subsets {iv . . ., im} with m
elements of the index set {!,...,?&}. A}** is the creation operator for
a particle with wave function fk) and

τ(9, f) = fdp dq /(- p) g* (q) τ(p, q) . (30)

The limit (29) vanishes if n < m.
The same result, with Ain replaced by Aoni, holds of course in the

limit t -> + oo. In both cases the chronological product T can be replaced
by the antichronological product T. The τ in (30) has then of course also
to be replaced by τ.

The proof of Theorem 1 follows narrowly the familiar proof of the
asymptotic condition (9). First we show that the strong limit of Φ(t)

exists, by showing that
consider

|~3/2. In order to do this we

m Γ n m Ί

i ϊt (~ Pi) ̂ } Π {V 9f 9i(<ti) ^"J} \Σ Pf + Σ C J

plh(- Pt) e-it^]π{dίq'jgf(qί) e~^} [Σ PΪ+ + Σ <6~]

- ft, . . ., - qm) $(?[, . . ., q'm) |0> . (31)

The vacuum expectation value occurring here can be developped into
its cluster expansion. The corresponding truncated functions can be
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shown, as was the case in (25), to have the correct decrease in space like
directions. Terms in this cluster expansion containing truncated func-
tions of three or more points give contributions vanishing in the limit
\t\ -> oo Sit least as |ί|~3, because

) <0| T(x1) . . ., *,)

This follows as usual from the estimates (27) and the space like decrease
of truncated vacuum expectation values. ({0| T T |0}r can be written as
a finite sum of derivatives of continuous functions with strong decrease
in space like directions.)

The contribution to (31) from the 2-point function terms in the cluster
expansion vanishes for the following reason. Consider any variable p{.
Because of the support properties of fi9 gj} this variable can only be
associated in a non-vanishing 2-point function with either a q^ or a p'^.
In the former case we have

(Pt + #~) r(- Pi, - qs) = 0
because of the factor ό4 (pt + qf) contained in f . The corresponding terms
Pfy <lϊ~ can thus be dropped in the first square bracket in (31). In the
sscond case we obtain

because in the support of /^(— pt) we have

Thus pf can again be dropped in the first square bracket. For the same
reason we can drop qj~9 if qs is associated with a qk. This takes care of
all the terms in this square bracket, i.e. after dropping all of them there
is nothing left.

Hence the convergence of Φ(t) is proved. The limit Φin can be deter-
mined by calculating its scalar products {ϊ^nlΦin) with a dense set of
states Ψ-ln in tfP in. This is easily done for Ψin of the form (9) :

Ψ(t) as in (8), Φ(t) given by (28). This limit can be determined as in the
convergence proof. One has to study an expression of a structure similar
to (31), where now, however, the two square brackets are missing. The
2-point function terms survive alone in the limit and can easily be
calculated to give the result demanded by (29).

In the special case m = 0 Eq. (29) becomes

lim Φ« = ΛMΠO>, (32)
ί—> — oo ,

hence all vectors in «3Γίn can be obtained as limits of vectors of the
form (28).
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We are now in a position to derive reduction formulae for the matrix
elements

M=(Φn\Gμ(ψ)\Ψ^ (33)
with i

Gμ(ψ) = f Π diXiβμ(x1, . . ., Xι) ψ(xly . . ., Xl) ,

\ <34)

= fΠtfkβμfa,..., fcz) φ(kl) ...,*,), ψ ζ se

Φ in=4*...4>>, y ta-4f...^*|0>, (35)

fί> §3 ζ. ̂  In order to be sure that M exists we shall assume that either
Φin £ ̂ jj1 or Ψin ζ Zgiff , i.e. at least one of the two states is non-over-
lapping. In this case M exists because Gμ(ψ) is defined on «2f{,n, as can
be proved with the methods of Hepp's paper [8]. This non-overlap
assumption is not used in the derivation of the reduction formula: our
result (Theorem 2) is valid for Φin, Ψin both overlapping, if Oμ(ψ) is
defined on all of «3Γin. Whether this is generally true as a consequence of
our assumptions is not known.

We shall avoid a lot of irrelevant combinatorics by giving the explicit
derivation of the reduction formula only for a typical special case,
namely for the case that Gμ is the field operator A, and that all /^ are
orthogonal to all gίt except possibly for a single pair:

/* (P) & *)= °for a11 *''
Let K be the index set {1, . . ., n}, K' the set {2, . . ., n}, K± and K2

two complementary subsets of K, and K{, K% two complementary subsets
of K'. Analogously we define L — {1, . . ., m}, L1 — {2, . . ., m}, LltZ, L'1)2.
%, ml5 etc., are the numbers of elements in Kv Llt etc.

Define
n __ m

F (Kv LI} t) — f 77 dxjf (xi} t) ]J dyjtjj (y^ t) dz φ (z)
1 i (37)

'<0\T(X1)Y1)A(z)T(X,)Y2)\θy.

Here Xx, Y'α stand for the sets of variables {̂ }, i ζ J^Γα, and {ί/J, ^ ζ I/α.
F' (K[, L{, t) is defined analogously, with integration over the variables

#2> •> *^n> 2/2' *' 2/w

From Theorem 1 we obtain

M if JΓ2 = £j = 0

lίw, 7^/zr r A Jr(9rι» /i) \^in A(φ) Ψ\n) if "̂2 = \xι}> %Ί — $nm j} (AI, jL/t, r) = -ί y , v ,,., . . . lτ,/ v .« τ^ ^ -r /- -v
ί->-oo v 1J 1? ; τ(^, /α) <Φ(n| ^4 (9?) IΨ/n) if KZ = 0)L1= {yj

0 in all other cases . (38)

Φ^, ίjF/n are obtained fron Φin, Ψ^ by dropping the first creation
, .in* ..in* ,. Ίoperator A^ or A ~ respectively.
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Because of

τ(x, y} + τ(x, y) = <0| A (x) A (y) |0> + <0| A (y) A (x) |0>

we have τ(gl9 /J + τ(gl9 /α) = (fl9 g ̂ . With this we obtain from (38):

ί—> — °° K L

. A *' 1

 n, + m,F, κ, , (39)

For evaluating this expression we need the result of the following
auxiliary consideration. Let G(tv . . ., tn) be an expression of the form

n _
G(tl9 . . ., y = / JJ {dxififa, ti)}D(x1) . . ., χn) . (40)

i
with D a tempered distribution, and /^ functions of the form (26), where
the ft may now be arbitrary functions in ^') without restrictions on their
support. ](x, t) is, for fixed ί, a test function in x. With the familiar
notations 3 3

X<X == i ίζ X**' d" = £ι ~^'

α = {&1, αa, α3}, |α| = Oj + α2 + α8

we obtain

(x0-t)Nx«f(x9t)

C ) >τr\— 5/2 / '»^-^~l~lα V^ //^ / /7^/n Avn Γ -?*/n ^τ f M i t ? — i p & a — ΐ t ( o ( p )— \Ajl,) ' ^— v) ' ' y^^ v \ [JU JJ tJA^J L— ' ' j rOv 0 "— /J t/

^ r , x

where the /αj8 are defined by

aα[/(p) e-«»w] = *-"»<

From (41) we obtain the estimates, for any integers N, M ^ 0:

CMN a positive constant. Similar estimates hold for all ^-derivatives of /.
Let o(x2, . . .9xn>tz, . . ., tn) be a G°° ί unction, all of whose £-deriva-

tives are for fixed t absolutely bounded with bounds increasing at most
polynomially with increasing ^ . Then

__

G1 (xl9 tl9 . . ., tn) = fff{dxjf(xi9 y} σ(x%, . . ., xn, t2, . . ., tn)
i = 2 (43)

•Dfa, . . .,xn)

is a tempered distribution in xl9 which is polynomially bounded in the
parameters tt. Gl can be written as a derivative of a continuous function
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<?.&,« PS]: G^^A^Λ-) (44)

TOth !<?,(*, ί,)| ̂  c(l + |αs|H (1 + M* (1 + ί)σ (45)

for suitable integers A, B, C, and a positive constant c. £ stands for
Max \ti\.

Let p(^) £ ξ), with o = 1 in kl <£ 1 .
(46)

ρ = 0 in \u\ ^ 2 .
Let

Finally, let ^ (y = ̂  ̂  (̂ ^ y ,̂ ̂  _ y ̂ ^ (̂ ^ ̂  ^
or, through integration by parts :

0' ft) = fdxG2(x, t<) ί)x [/! («, y ρ; (^o - ^] . (49)
N^ _

The derivation D^ does not alter the relevant properties of /x and ρt and
will therefore be dropped for the sake of simplicity. Then

l#'fe)| ^ CCMN(l

The as-integral exists if M is chosen sufficiently large. The #°-integral
can be estimated as follows :

/
and, with ̂  > jδ + 2:

r du (l + H)J ^ π , ι/jΓί^-""« Γ
J _J*tt (l + ltt-ί^ ̂  V +KN) J

|«-ίĵ /|ίι|

^ jfXi + j/ϊ)^-8

for some positive constant ^Γ .̂ Hence

for a fixed M > A + 3 and arbitrary JV, i.e. Gr decreases for t -> oo
stronger than any inverse power of ί.

From this result we derive easily

Km tN\G(ti)- G°(y| = 0 f o r a l l i V > 0 , (51)
ί-»00

if
7i(^i> *i) et($ - *i)} D(xlt . . ., xn) . (52)
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The function F defined in (37) is of the form (40). We can therefore
apply (51) and obtain

lim

= lim / [ ψxi If fe *) ρw (a? - ί)} Π {<% &(%', t) ρm (y? - t)}
'-+- °° i i
• dz φ(z) ρ |t|(z«) <0| T(Xι, T1)A(z) T(ΣZ, Γ2) |0> . (53)

The supports of ρ\t\ (u) and ρ\t\ (u — t) do not overlap for sufficiently
large |ί|. Because of (21) we can then replace the expectation value
occurring in (53) by <0| T(XV YJ T(z, X2, Γa) |0> without changing the
limit. The p^-factors can then again be dropped due to (51). From (39)
and (19) we conclude

M = r (Φin) ψfr φ) + (/1; &) r (Φ!n, Ψ(Λ> ψ) (54)
with

r(Φίn, Ψm, ψ)

t— >— oo

r(z,x1,...,xn,y1,...,ym) (55)

= (_ i). ίm+» lim ffl [dp. ft (p.) e-itP-t] π [dq. S(_ q} e-tt<t]
1—+ — 00

• die φ(k) r(k, pv . . ., pn, qv . . ., qm) .

Consider what happens to the α -space form of (55) if in one or more
of the functions Ji} g^ the argument t is replaced by — t. The limit in
this case can again be computed by introducing the factors ρ^ . It is then
seen at once that the limit vanishes because of the support condition (17).
We can therefore replace the factors exp(— itp^)9 exp(— i t q f ) in the
p-spa.ce form of (55) by [exp(— itpf) — exp(£ί#£~)] and [exp(— itqf)
— exp(iίg/*")] respectively, without changing the result.

Let p-itu _ pitu
δt(u) = i* - ̂ —. (56)

The functions δt(u) converge for £-> — oo to 2π δ(u) in the topology of
tempered distributions.

Define

; Pl, . . ., pn) = Π (Pi - ™?} r (*, Pi, - , Pn)

611 Ψtn, ψ) = (~

r(Φin, Ψ m) ψ) and therefore also the r.h.s. of (58), depends only on the
values of /ί? gj9 on the mass shell: for any χ(p) ζ (7°°,
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χ(ω(p),p) = 1, the limit

Γn~m urn
ί->00

ίΠ\dqjoχ(- q ) δt(q+)] f»™v(k; Pl, . . ., qm) (59)

exists after integration over the test function φ(k) /7/f(ft) IJ §j(— ty),
and is independent of the special choice of χ. We can therefore consider

ΫMS? as ̂ ne restriction of famp to the mass shell in the variables pi9 q^ i.e.
we can use (59) to define this restriction. If famp is continuous in the
variables pj~9 qf in a neighborhood of the mass shell, then this definition
coincides with the familiar one. This is the case, in particular, if all the
wave functions fi} gs are mutually non-overlapping [8].

With this definition (58) becomes

Π [^9t(- 9ii\
dkψ(k) f jBp (k pi,..., pn, qι,.. , qm) . (60)

Formally this can be written

)] 77 [̂  a+(ί
y (fc) P»P(i; ft, . . ., pΛ, - Sl> . . ., - ίm) (61)

Π [#*i iί te)l 77 [d*Vj %(%•)]
, xn, yl9 . . ., ym) .

Here ^(a.j = (2π)~3/2 f dp e-*** δ+(p) f ( p ) (62)

is a smooth solution of the Klein-Gordon equation. Note, that /^ is not
the Fourier transform of ]i \

In order to give a rigorous meaning to (61) the right-hand sides have
to be defined by a limiting procedure of the type (58). This will be
understood in the future.

Substitution of (61) into (54) yields, finally, the desired reduction
formula. In the general case, i.e. without the restriction (36), one proves
in the same way :

Theorem 2. Let, θμ(φ), Φin, Ψ^ be defined by (34), (35). Assume Φin £ ̂
or Ψίn ζ &™.

Then

<Φinl βμ(φ) i^in> = Σ Π (/cv gβi) gμ(Φ*(*i), ΨM), y) (63)
ί = l

with

in, ψ) - (- 2«)-+» / Π [ί*2Ί δ+(Pi) It (Pi)]
ί

Λ ψ(k1, . . ., kt) (64)
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The superscripts + and amp refer asusual to the variables behind the semicolon.
The mass-shell restriction of g+&mv is defined as in (59), by

lim fΠ[dpioχ(Pi) <5,(pΓ)] (65)
ί— >oo

(qj) ί,(φ-)] ̂ +ampfe •; ft. . Pn, - &, , - ίm)

The scalar product (/, $) is defined as in (36). The sum in (63) extends over
all possible ways of pairing an arbitrary number r(Q ^ r ̂  Min(?&, m)) of
α/s w^A £&e same number of /?/s. Φm(αe)> ^Ίnίft) αre obtained from Φin,
ϊ^n? &y omitting those creation operators whose wave functions appear in
one of the factors (/αί, (jβ{).

The following important remark has been made by POHLMEYER [14].
Assume that Ψin £ 3S^. The vector Gμ(φ)\Ψ^ is then defined, and
therefore also the matrix element {Φ| Gμ(φ) \Ψιny for arbitrary Φ
in particular for all vectors of the form

Φ = Π ί ( P ί , ,Pn}Π£n*(Pi) |0> . (66)

where /is square integrable with respect to the measure fj [2 ω (jp^)]"1^3^*
Let Zf be the space of these functions. From the fact, that the products
Π fi(Pί)> fi ζ <^> are total in Zf we obtain easily

Theorem 3 (Pohlmeyer9s Theorem). Eq. (65)' defines a linear
form §+™v (kh 9pi9 - q,) on the space ^(k^ . . ., ft,) ® L%(pv . . .,pn)
® N(q1} . . ., qm)} continuous in the first two factors. Here N(q,j) is the
linear space spanned by the products JJ g$ (q^) of non-overlapping functions

htp
In other words : the expression

can be identified with a function F (p1} . . ., pn) ζ L%.
An analogous result with {p^}, {qj} interchanged is of course obtained

Reduction formulae for /S-matrix elements can be derived in a similar
way. Let out* .out* |πχ

Φout = Λ; -'A?n i°> ™.

Ψ -A^* Al?*\(}\^in - ASί .. ASm \0) .

Both states may be overlapping.
Consider

ites* ±
1

18 Commun. math. Phys. , Vol. 10



260 0. STEISΓMANN:

The limit for t -> oo of these expressions for all possible choices of the
signs of t can be calculated by again introducing the auxiliary function
ρt, and making use of (21) and Theorem 1. In the special case n = m = 1
we obtain

= ]imfdpdqf*(p) g(- q) τ^(p, q)^Ά^L+2τ(f, g) . (69)

Define the expression σ(pl9 . . ,pnί — qί9 . . ., — qm) as follows. Take

m2) Π (flf - ™2) * (ft, . . ., - qm) ,

and expand it into a cluster sum according to (25). Replace all 2-point
functions fampT(p, q) by 2ω(q) δ*(p + q). For the famp T with 3 or more
variables substitute their mass shell restrictions defined as in (59).

With the help of (69) we obtain then the general result :

Theorem 4. Let Φout, ψ^, be defined by (67). Then

In analogy to Theorem 3 we see that a is a separately continuous,
bilinear form on Zf ® Lf , i.e. it is the kernel of a continuous linear mapping
of Lf into Lξ, or vice versa.

5. Completeness Equations

In this chapter we shall derive what is usually called, somewhat
inappropriately, unitarity equations. We prefer to speak of completeness
equations, since these equations essentially express the consequences of
asymptotic completeness for the g.r.p.

Let {/1? /2, . . .} be a complete orthonormal basis of L\, with fi ζ £?:

q). (72)

Let

Consider the set of sequences

Nt = {nl ni . . .} (74)

of non-negative integers, with

Wl =£»*.<«>. (75)
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Define

\Nt> = Π « I)'1* Π \A?f* |0> (76)

The vectors (JV^) form a complete orthonormal basis of 3f.
We take the vacuum expectation value of the identity (23) :

§μ(Pl> ' >Pn) ~ 9v(Pl> ' ->Pn)

i, - - , Pn) |o> (77)

(For the sake of simplicity we assume that (ίl9 . . ., ίn) = (!,.. ., n).)
The two terms on the right can be evaluated by summing over the
system \N^ as intermediate states. The vacuum contributions cancel, so
that we have to compute

J = 1 \Ni\ = ϊ
(78)

The reduction formula (63) gives, if we make use of the symmetry
properties of (7+amp:

ί \
ί L

(79)
i

' Pn' ~

The functions f j f X j ( q j ) form a basis of L\. Hence, because of
Theorem 3 :

<7/amp(. ..,ft»;-ϊι, ,-ίι)
This can be substituted into (77) to give the result

9μ(Pl> ' >Pn) -§v(Pl>' - Pn)

1=1 I [l 1
-Π »-(*) (80)

This is the desired general completeness equation.
The well-known GLZ equations (Ref. [3], Eq. (15)) can be obtained

in the same way from (16), or directly as a linear combination of suitable
equations of the set (80).
18*
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With the help of the completeness equations the following expansion
theorem can be proved.

Theorem 5. The series

Σ - f d p i φ(p1} . PnUdtoSΪ™* (ft, - ,2>»; - a, , - ft)

-:A^(q1)...A^(ql): (81)

converges on ^ξ strongly to &μ(φ) for all φ £ SP.
The double colon denotes of course Wick ordering.
A straightforward calculation shows that (81) describes the matrix

elements <Φin| βμ(φ) \ψ^9 Φin ζ &*, Ψin £ £*, correctly. Only a finite
number of terms contribute to such a matrix element, so that no con-
vergence problems arise. Theorem 5 is therefore proved if we can demon-
strate that the series (81) converges strongly on 3£^. We shall demon-

strate this only for the special case of a one-particle state |/} = A^ |0).

The proof of the general case proceeds in complete analogy, but involves
a good deal of uninteresting combinatorics.

The integration over the test function φ is not relevant for our
purpose and will be dropped.

Let θl be the lih term in (81). Consider

(- PHI - a> •> - ft)

The integral occurring here can be written as a sum of integrals, each of
which extends in each variable qί} q'j over one of the half spaces qio,
q'jQ I 0. The expectation value in (82) is different from zero only in the
four following cases.

1st case. The integration goes over qio ̂  0, g? 0 ̂  0, all i, j, and I — I' .
Then

Π {2ω(9z ) δ*(qi + ql) δ+(qt) d_(q® (83)

The sign ^ means that the two sides give the same result if substituted
in (82), when we take due regard to the symmetry of ^+amP in the
variables qt.
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The contribution to (82) of the first term in (83) is

; - ft , - ft)
(84)

Consider the completeness Eq. (80) associated with the commutator

[&μ(- Pv •> - Pn)> &μ(Pι> •> K)] The r.h.s. is, up to a factor, equal
to (84) minus the corresponding sum in which the <5_ have been replaced
by <5+. These two terms have non overlapping support in the variable
(Pi + - + pn)> hence they exist separately if their difference exists,
which is the case because of (80). The existence of (84) is thus proved.

The contribution of the second term in (83) is

(pl"Ί^ fll{dqt ί_(ft)} ίftίg,' Mft) /(ϊι) «-

(- 2V, - ft, - , - ft) $+•"» (Pi; gί, ft, - , ft-ι)

This is again one of the two terms in the r.h.s. of the completeness
equation associated with [δ+ (- plf . . ., - pn\ qt), Q+ (p[, . . ., p'n\ - gj)],
where the variables qlf q\ are to be amputated and restricted to the mass
shell. This does not destroy the existence of our expression because of
Theorem 3.

2nd case. Integration over qίo > 0, all i, q'jQ < 0, all j except one,
and 1 + 2 = 1'. For symmetry reasons we get the total contribution of
all these terms by taking the case where q'γ is the exceptional variable,
and multiplying the result with V . As in the first case it can be shown
that the resulting contribution to (82) is, up to a factor, equal to one
term in the r. h. s. of the completeness equation for [&μ(— pί9 . . ., — pn),
$+amp^ . . .,p'n 9 9V, - Jϊ'-i)] and therefore exists.

3 rd case. Integration over qio > 0 for all ί except one, g; 0 < 0 for all /,
and I = Γ + 2. This is exactly analogous to the second case.

4th case. Integration over qio>0 for all i except one, qjQ < 0 for
all j except one, and I = V . Again we can restrict ourselves to the special
case qlo < 0, g£0 > 0, and multiply the corresponding contribution with
I2. We obtain as contribution to (82) one term of the r.h.s. of the com-
pleteness equationfor [<3+amP(- Pl, ...,-p^- ft'), fll+ ™^, . . .,K; &)].

This completes the proof of Theorem 5 in the special case of a one-
particle state.

Theorem 5 contains as a special case the Haag expansion of the field
operator [3, 15]:

(85)

; - glf . . ., - g,)
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We assume that knowledge of the field A(x) completely fixes the
physical content of the theory. The functions r are therefore physically
relevant only insofar as they intervene in the expansion (85), i.e. two
sets of retarded functions r(x1, . . ., xn) are physically equivalent if the

^ β . t j q^ of the two sets coincide on the mass shell of the qit

6. The GLZ-Theorem

In this chapter we want to give a rigorous version of Theorem II of
the paper by GLASER, LEHMANN and ZIMMERMANN [3]. This theorem
states the conditions under which a given set of retarded functions
defines a field theory. It is thus a counterpart to Wightman's recon-
struction theorem.

Theorem 6. Let r(x1, . . ., xn), gμ(xv . . ., xn), n = 2, . . ., be tempered
distributions with the following properties:

a) r(x1, . . ., xn) is real, invariant under the connected Poincarέ group,
and symmetrical in the variables x2, . . ., xn.

b) The support of r is contained in Tn, defined in (17).
c) The mass shell restrictions <7+^£p(&ι, , &z;Pι> ->Pm> — #ι> ->

— qn) defined by (65) exist if integrated over test functions of the form
m

$(&!, . . ., kl)IJίi(Pi) $(<lι> - - -> #J> ψζ^9fiζ^ non-overlapping, g^L\.
i

d) The gμ satisfy the completeness equations (80).
Then the series (85) defines a Wightman field A (x) in the Fock space

J^in, which satisfies Postulates 1—6 of chapters 2 and 3. The retarded func-
tions calculated from this field are physically equivalent to the given r.

Before proving this theorem we wish to make two comments.
1) If the support conditions for E are weakened in the way mentioned

after Eq. (18), then condition b) of the theorem has of course to be simi-
larily weakened. Invariance of r can then be demanded for translations,
while Lorentz invariance has to be demanded only for ramp (p L p2, . . ., pn)
with p2, . . ., pn on the mass shell.

2) The conditions given here are apparently much stronger than the
ones in the original formulation of GLASEE,, LEHMANN, and ZIMMEBMANN,
where no mention of generalized retarded products was made. To this we
wish to say the following. The GLZ equations containing r exclusively
are a consequence of the completeness equations postulated in d). If
distributions r satisfying a), b), c), and the GLZ equations, are given,
then the generalized gμ can be formally calculated from them with the
help of the completeness equations. The assumptions on gμ demand then
that these formally defined gμ exist in a rigorous sense, and satisfy con-
dition c). It is thus in principle possible to formulate all the conditions
in terms of the ordinary retarded functions exclusively. However, such
a formulation would look extremely complicated.
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Proof of Theorem 6. That the series (85) converges strongly on
has already been demonstrated in the proof of Theorem 5. In order to
show that A is a Wightman field we have to prove the existence of the
Wightman functions. To this end let us introduce the more general series

#„ (A,. , Pn) (86)

which converges strongly on Jί^n. We intend to prove the existence of
<0| Qμι(Pι) . . &μk(Pκ) |0> by induction with respect to k. Here the Pi

are non- overlapping sets of variables {p\ , . . .,#4 ,̂ with w P* = { ĵ, . . .,pn}
The %-point Wightman function obtains as the special case k = n.

For Tc = 1 we have {0| Gμ |0) = <7μ, i.e. existence. We assume that the
vacuum expectation values of at most (k — 1) factors θμ exist and wish
to show their existence for Tc factors.

Let Θ(P) be a C°°-ί unction with θ(P)=l for Σ Pίo ^ ° Θ(P) = 0
p

for 27 fto ̂  ~ m> if P = fe} τhen

and

<0| [8Λ, δft . . . 5M] |0> + ̂ (Pt) <0| SΛ . . . 5W|0> . (87)

The second term in this expression exists according to assumption. For
the first term we have

<0| [8ft, 0A . . . 5M] |0> = Σ <0| δA . . . [«Λ, δw] . . . |0> . (88)

Let |̂ > be the basis of ̂ ίn defined in (76). Let |̂ > be another
orthogonal basis of $f ίn, all of whose elements are in jSPjf . Such a basis
exists because £P§ is dense in ̂ in. The individual terms in (88) can then
be defined as

(89)

All the matrix elements in this expression exist due to assumption c) of
the theorem. The matrix elements inside the curly bracket can be calcu-
lated from (86), which calculation yields of course the values (63) given



266 0. STEINMANN:

in Theorem 2. If we keep Nf^_v Njt, fixed and sum over N^t we find, as
in the proof of Theorem 5, that the resulting expression can be written as
a finite sum over terms, each of which is the r.h.s. of a suitable com-
pleteness equation, and therefore exists. In short, we obtain

Σ { . . . } = ί <#L \βμ(Pι> Pi) - #ΛΛ> P
Λ - i

where [@μι, Gμi] = i(Gμ — Gv) is one of the relations (23).
Hence

and this exists according to the inductive assumption. This completes
the existence proof of <0| Qμι . . . Gμk |0), and thus of the Wightman
functions.

It is easy to see that the Wightman functions have the correct
invariance, reality, and spectral properties. Locality we obtain from

<0| A (x,) ...[A (x,), A (xi+1)-\ ...A (xn) |0>

= ί<0| . . . B(xt, xi+1) . . . |0> - » <0| . - . S(xi+1, x,)... |0>

and the support properties of R (x, y) which follow from (86) and con-
dition b). It is also easily demonstrated that the R(XI) . . .,xn) defined
by (86) satisfy the conditions of Postulate 6. Any other solution R' of
these conditions mil give retarded functions which are physically equi-
valent to r. This is so because Postulate 6 fixes r(x1) . . ., xn) uniquely
up to terms with support on the manifolds xi = xj for some pair (i, j) of
indices. These terms, transformed into ^-space, vanish if all variables but
one are amputated and restricted to the mass shell.

7. Smooth Retarded Products

It is tempting to try to change Postulate 6 into a theorem by giving
the formal definition (15) a rigorous meaning with the help of a suitable
smoothing procedure. Unfortunately, the known methods of smoothing
do not work satisfactorily for various reasons. A common feature of all
these methods is that they require a relaxation of the support condition
(17) and the co variance condition (18). We have already remarked that
this would not necessarily be fatal to the formalism. More serious
difficulties do, however, exist.

1 st possibility. Instead of working directly with the field A (x) one
can introduce the regularized quasilocal fields

B(x) = fdyφ(x-y)A(y) , φ ζ $>



LSZ Field Theory 267

as auxiliary quantities and build up the formalism from this [6]. B(x)
is a continuous function of x9 and the expressions (15) are therefore well
defined. The drawback of this method is that the strong asymptotic
condition, formulated for B, is not true in the form (9): the wave func-
tions li on the right have to be multiplied by φ. This leads to serious
difficulties in the derivation of reduction formulae, and makes it im-
possible to prove completeness equations of the form given here.

2 nd possibility. HEPP [8] made (15) meaningful by regularizing the
functions θ with a function χ(sl — «sa, . . ., sn_1 — sn) £ Φ, whose prop-
erties we need not put down here explicitly. It is important that χ is
not a product of functions of the individual arguments. One bad conse-
quence of this fact is that the cluster expansion (25) does not hold.
Theorem 1 is then wrong, and reduction formulae cannot be deduced
from the strong asymptotic condition. They can, however, be deduced
from the LSZ asymptotic condition, provided that the latter is true. This
has as yet only been proved on non-overlapping states. The second bad
feature of this approach is that the identities (16) are not satisfied, i.e.
the completeness equations are not true.

3 rd possibility. The Eq. (15) have an exact meaning if we define

Θ(x1} . . ., xn) = χ(xl - a® . . . χ(x^ - x»),

with χa>C°° function which is equal to 1 for sufficiently large arguments,
and vanishes for sufficiently small arguments. The same objections as
in the 2nd possibility apply, even though for different reasons: the cluster
expansion (25) is not possible, and the identities (16) do not hold. Again
it is possible to derive reduction formulae in the cases where the LSZ
asymptotic condition holds.

Instead of using (15) we can define

E(XV . . ., Xn) = (- i)n-l Σ i (- !)"%« - <) - - *(*? - O

•*(*?- *Lι) - - *(*tι - O A (*ό - A to) A (*ϋ
This is (if χ is replaced by θ) formally equivalent to (15). The identities
(16) are true with this definition. Completeness equations can be derived
if the LSZ asymptotic condition holds on all of 2Sίn. If turns out, however,
that in this approach the retarded functions are not truncated, i.e. they
do not tend to zero if the variables separate in space-like directions. This
is too large a price to pay. It would for instance make it impossible to
derive any useful analyticity properties for r.

8. Conclusions

We have tried to find out what the assumptions are that go into the
LSZ formalism, and what exactly can be derived from them. Besides
the generally accepted axioms (Wightman axioms plus asymptotic com-
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pleteness) we were forced to introduce the postulate of the existence of
retarded products. This necessity is rather disagreeable because the said
postulate is very technical in nature and has no intuitive appeal what-
ever. It would be very satisfying if a way could be found to either
circumvent or prove this assumption. Chances for the latter seem to be
slim, judging from our experience with the related problem of defining
retarded functions within the linear program (see Ref. [16] for the
present state of this problem).

Another unpleasant aspect of the formalism is the cumbersome defini-
tion (65) of the mass shell restriction of g+ amp. Here the question remains
whether Hepp's continuity proof can or cannot be extended to the
overlapping case.

For these two reasons our formulation of LSZ cannot be regarded
to be final.
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