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Abstract. An 8-component spinor field carries with itself a large number of
4-vector currents and invariants, the relationships between which are analysed.
The vector densities can be grouped into a number of orthogonal frames, which
describe tetrad fields. Two of the tetrads, related to each other by charge conjuga-
tion, connect isospin transformations directly with local space-time rotations. The
main tetrad planes determine geometrical configurations of considerable symmetry.
The bilinear invariants define angles and hyperbolic angles which appear directly
in the rotations and Lorentz transformations connecting the tetrads.

Introduction

Recent interest in the algebra of currents has again drawn attention
to the possibility that the 4-vector densities which can be formed from
spinorial fields may play a basic role in the description of elementary
particles. These 4-vector densities are known to satisfy a number of
relationships which, mainly for c-number spinors of 4-components, have
been the subject of many investigations [1 — 17].

The interest of this paper will be in the relationships between 4-vec-
'tors and invariants carried by an 8-component spinor field which may
describe isospin. An extension of the results to a larger number of com-
ponents will be seen to be straightforward. Only c-number fields will be
considered, but the way in which the relationships are obtained will
indicate the existence of related relationships for operator fields.

These c-number fields may enter into a physical theory in many
other ways than the description of states of non-interacting particles.
Any matrix element of a spinor field operator of the Heisenberg represen-
tation is a c-number spinor field, and has all the characteristics investi-
gated in this paper. Such c-number fields or derived quantities can play
the part of sources or variables, functionals of which describe a quantised
theory. A classical or semi-classical theory of c-number fields has con-
cepts which are easier to visualise, and can be studied for its own sake.
One may try to find first a suitable new form of classical theory before
attempting quantisation. There may be other directions in which new
concepts appearing for c-number quantities may suggest ways of pro-
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For a 4-component Dirac wave function the relationships between
the bilinear covariants have been noted and investigated from the early
days of quantum mechanics, by DARWIN [1], FOCK [2], PATJLI [3],
Louis DE BEOGLIE and his school [4—9], and many others [10—14].
With an increase of the number of degrees of freedom, the number of
bilinear densities increases considerably and the field has been explored
relatively much less [15—17]. The relationships studied in the case of a
Dirac wave function are of two different types. There are those which
are of purely algebraic character, and those which always contain
derivatives and are obtained with the help of the Dirac equation.
Examples of the second type are the continuity equation of the electric
current, the decomposition of the vector current into a contribution of
the Klein-Gordon type and a divergence of the electromagnetic polari-
sation tensor, or an analogous axial current relationship due to PROCA
[5]. These relationships are very suggestive and some of them may be
of much more general validity than indicated by the special dynamical
origin of their derivation. The interest of the present paper will be,
however, exclusively in the purely algebraic and geometrical relation-
ships which are valid for any spinor fields irrespective of any dynamics.

The 16 real bilinear densities formed from a Dirac wave function
represent only 7 independent real data. An arbitrary phase factor of the
Dirac wave function can still be added at each point to obtain the 8
real data needed to replace the 4 complex components of the wave
function. If one restricts attention to quantities bilinear in ψ and ψ} one
has to include one of the densities defined with derivatives in order to
give a complete set of data. The alternative is to consider simultaneously
densities quadratic in ψ, or quadratic in ψ, or equivalently densities
bilinear in ipC9 ψ or ip, ψc. Instead of two 4-vectors, one finds in this way
four real 4-vectors which form an orthogonal frame and define a tetrad
field. This has been noticed and discussed by WHITTAKER [11], RUSE
[12], AYMARD [9], TAKABAYASI [14]. The inclusion of all the four
vectors of the tetrad is basic from the algebraic or geometrical point of
view, and indicates a possible role for 'anomalous' densities or expecta-
tion values, similar to that in the theory of superconductivity.

The structure and relationships of the vectors is especially simple
[9, 11, 12] in terms of the 2-component spinors of the Weyl representa-
tion. This will be consistently exploited and emphasised throughout the
paper. The symmetric role played by the 2-component spinors defining
ip and ijp may also be indicative when formulating a theory of spinor
fields.

The next section gives a short review of some of the relationships
between quantities connected with a 4-component Dirac spinor. Notation
and relationships are set up in a form in which they can be immediately
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applied and generalised to the larger number of quantities defined in the
presence of isospin, which are introduced in the following section. The
definition of 4-vectors and invariants of the more general case is spelt
out in some detail, so that their meaning and spinorial construction can
be easily referred to. The many similar relationships connecting these
quantities need not then be written out separately, as they can be
obtained from each other by an interchange of symbols which can be
simply indicated.

The basic null-vectors that can be formed from four 2-component
spinors determine in the general case six tetrads. An 8-component spinor
field describes in this way in general six tetrad fields. The six complex
invariants can be decomposed into amplitudes and phase factors. The
amplitudes describe positive densities and give the lengths of the current
vectors. The phase factors define angular variables which describe multi-
valued functions determined only up to integer multiples of 2π. The
line integrals of the gradients of the angle variables would give integer
numbers which are in correlation with the zeros of the amplitudes. In
analysing the relative orientation of the tetrads, differences of these
phase angles will appear as actual geometrical angles, whereas the
amplitudes define hyperbolic angles of Lorentz transformations.

4-Component Spinors

A 4-component Dirac spinor can be written in the Weyl representa-
tion [9, IS] in the form

V=(ξ,ή) (la)

where the 2- component spinors

and
ή : (ήv ή2) with ^ = - ηξ, ή2 = ηf (1 c)

transform in co variant and contra variant ways.
To have a definite representation in mind, 2 x 2 Pauli matrices

ίl °\ /° l\ /° - *\ ίl °\ /o x
Moi)' Mlθ)> σ*:(i θ)' σ* :lθ -I/ (2a)

can be chosen acting on the components of ξ or ή. Analogous matrices

l ° -» l °

can be introduced to act on the two spinor components of ψ. With the
choice

7o = σ ofti* Vt =
13*
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the matrices γQί γ5 are Hermitian, γ1} γ2, γ3 are anti-Hermitian and they
all anti-commute.

With
y* = (f *, ή*), y = y* γQ = (ή*} f *) , (3a)

the charge conjugation matrix (7 which defines ψc = (7^* can be chosen

to be (7 = (&σa) (ί ρ2) = ~ * ̂ 2? so ̂ na^

Vo=(η>i)> V?o=(f* ί^*) (3b)

A charge conjugation γ ̂  ψc corresponds in this way to an interchange
of ξ and ?y.

The Dirac spinor φ defines the basic null-vectors

τ-k ~. ^ it . \ r • — • * • / -i \

With

= (0, ή) ,

(4a)

(4b)

(5a)

these can be expressed in terms of 2-component spinors in the form

Rμ=ί*oμξ, Lμ = η*σμη (5b)

Z* = η*σμξ, (60)

where ή, j have been eliminated with the help of the relations ή*ή
= η*η, —ή*σjή = η*σ3 η, j = 1, 2, 3. Since the matrices σμ are Hermi-
tian, the form (5c) of Zμί Z* shows that the two vectors are complex
conjugate. One can introduce complex invariants

/"Ί — /I i \ fϊds — /I

which give

and for which, one finds

Ω =

-Ω* =

fl ft

η* η*
ξf Sί = η* x|*

(6a)

(βb)

(βo)

(βd)

The length and scalar products of vectors formed from 2-component
spinors can be expressed in terms of invariants of this form. If α, β, a', β'
are four 2-component spinors, and one forms the vectors

Uμ~aϊ*σμβ, (7a)



Isospin 183

with the Pauli matrices (2 a) one has

1 (Z7β + ̂ s) = «ί A, T (tfo - 17.) = o£A ,

1 1 (7b)

γ(Z7 1+iJ7 l) = α f A . f(^ι-^2) = 4A,

and similar expressions related to U'μ. If one writes the scalar product
of the two vectors in the form

'μ = y {(U0 + U3) (U'0 - ϋ's) + (U0 - U3) (U'0 - Uί) (7o)

the four terms exhibit explicitly the identity

(**f» (*'*aμβ') = 2 J 2Φ | |A A . (7d)

For the vectors (5b, c), the identity gives directly

BvRμ = Q, Lt*Lμ = Q, ZμZμ = Q, (8a)

2Br>Lμ = β*β, 2Z^ Z* = - Ω*Ω , (8b)

^^ = 0, l/ Zμ = 0. (80)

The two real null- vectors Eμ, Lμ and the complex null- vector Zμ define
four real vectors

(9 a)

(9b)

(9o)

(9d)

(The expressions vector and invariant are used throughout in the sense
of proper Lorentz transformations.) According to the relationships
(8 a, b, c), these vectors are orthogonal and the absolute value of their
length is equal. With an abbreviated notation for the scalar product,
γv Vμ = F2, one has

72 = - W* = -X2 = - Γ2 = |β|2 , (lOa)

V W=V X=V Y=W'X=W Y = X Y=Q. (lOb)

For \Ω\ φ 0, one can define unit vectors v, w, x, y by the equations

Vμ=\Ω\vμ, Wμ=\Ω\wμ, ^=1^1^, Tμ=\Ω\yμ. (11 a)

These form an orthonormal system, with

^2== -^2= -X2= - ι/ 2 =l, (lib)
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and define a tetrad, (Vierbein). As a function of the space-time co-
ordinates, one obtains a tetrad field. At a given point, the tetrads are
determined by 6 independent real numbers. If one defines the angle θ by

Ω= |β|exp(<0), (lid)

the two real data \Ω\ and θ can be added to obtain eight independent real
data which are equivalent to the four complex components of ψ. Alter-
natively, one could consider as basic quantities the four currents F, W,
X, Y and the invariant Ω, together with the relationships (10 a, b). The
6- vector densities formed with ψ, ψ can be expressed by means of the
vectors and invariants. For completeness, the relevant identities are
given in the Appendix.

Tetrads and Isospin

For an 8-component spinor, one can write

ψ=(ψί»ψn) (12a)

^ V, = (f P, %,), Ψn = (ί«, ήn) - (12b)

Defining 2 x 2 isospin matrices τ0, rl9 T2, τ3 in the same way as the
matrices (2 a), (2b), these act on the two components *ψv, ψn of ψ. For

^ = γ(l + τ3), r Λ =γ(l-τ 8 ), r± = Y (T! ± iτa) (12c)

the chosen matrices are

ίl °\ /° °\ /° l\
:(θ θ)> Mo l)' τ+ :\0 OJ '

Corresponding to the definition (4 a, b) of R, L, Z, Z*, one obtains four
times as many basic null- vectors,

(We)

(S+)μ = yy^ y (1 +

(AΛ* = v^r^ y ί1 - 75) t*v > (Ln)μ = ψyμ y (i - n) rn^ »
χ ! (18b)

(L+)μ = ψγμ Y (1 - y5) τ+^ , (L_)μ = ψγμ y (1 - yδ)
 τ-^ >

y O + yβ) ̂  Vo» (^*V = ̂ c y^ y (i + y5) T^^ ,

= ψγμ Y (i + yδ) τnyβ, ί̂ *)^ = v^cy^-o- (i + y6)
 T^^ ,

i (13c)

vo y^ y I1 + yδ)

(Z_)μ = -ψγμ-^(l + γ5)
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With these definitions, the vectors Z and Z* are complex conjugate.
Note that the role of τ+ and τ_ is interchanged in the definition of Z+

and Z_, but not in Z* , ZU.

Instead of the complex invariant Ω of a 4-component spinor, one finds
six invariants,

Y £0 = ̂ (1 + y 6)^V» γ^ = ̂ γ(l + n)^, (14a)

γβ+ = γ;γ(l + γ5)τ+ψ, yβ_ = ̂ γ(l + y5)τ_^, (14b)

γ Qjz = Vc-2-(l + 7δ)^+^ yAL = ί>γ(l + yδ)τ-Vo (14c)

One could write out similar explicit definitions for the complex con-

jugate -g- £?* — 5. In the definition (14c) of ΩR, ΩL) one could replace

τ± byiyίτa

In terms of the 2-component spinors ξ^ η^ ξn, ηn the null- vectors
(13 a— c) can be expressed as

(Rj>)μ = £*<*μ£ί» (Rn)μ = ^n^μ^n > „ „. .
(15a)

(ΛΛ=fXfn, (-»-)!,= ίί^f,,

(Ln)μ = tf ., R, .
(lob)

(L_)μ = η$σμηn) (L+)μ = η%

(loo)
(Z+)μ = ξ* σμ η99 (Z\ )μ = η* σμ ξn ,

(Z_)μ = ξ$σμηn, (Zΐ_)μ = η*σμξp .

With the identity (7d), one can immediately see that all these vectors
are indeed null- vectors. Their scalar products can be obtained with the
help of the invariants (14 a, b, c) and their complex conjugates. With

the notation (6c) of the determinants, the invariants -^-Ω can be ex-
Δ

pressed in the form

-2 Ω9 = η9xξ9, -^Ωn = ηnxξn) (16a)

yβ+ = %,xf«, γβ- = ι?«xf j,, (16b)

^ B = f i p X f n > -®L=VnXV»' (16θ)
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There are I -I = 6 ways to select a pair from the four 2-component

spinors ξv, ηv, ξn, ηn, and this leads to these 6 invariants. If one combines
4 null- vectors from (15a, b, c) which are built up from the same pair
of 2-component spinors, one obtains an orthogonal tetrad, and 6 such
tetrads can be constructed. In terms of 2-component spinors, both the
number of co variants, and their relationships reveal a strong combina-
torial background. The real null vectors R^ Rn, L^ Ln which depend
only on the components of a single spinor and their complex conjugate,
will each take part in the building up of three tetrads, the remaining
2 x 6 = 12 complex null vectors enter pairwise into one of the tetrads
only. One obtains in this way the 6 tetrads

(17a)

(17b)

(17c)

1 (17d)
L = Z_ + Z*, Γ_ = 4 (Z_ - Z*),

(17e)
JR__),

(17f)

The four current vectors entering into each tetrad are in the same
relationship to each other as the vectors (9 a— d), since they are con-
structed from two 2-component spinors in exactly the same way. The
length of the vectors within each tetrad is determined by the invariant
Ω with the same suffix, and the relationships (10 a, b) remain valid with
each of the six suffixes. If the invariants are non- vanishing, one can
introduce unit vectors according to the equations (11 a), and with the
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definition (lid) of the phase angles, one obtains the unit vectors and
scalars

v9, w9, %»> Vι» \Ωsλ>Oι» (18a)

vn, wn, xnί yn, \Ωn\, θn , (18b)

t?+, w+, x+, y+9 |β+|, θ+ , (18 c)

v_, w_, x_, y_, \Ω_\, θ_ , (18 d)

VR>u>E>*R>yR> \ΩR\>ΘR> (18e)

VL> WL> XL, VL> \ΩL\> ΘL- (18ί)

There are a great number of relationships connecting these quantities.
One possible way to select 16 independent real data would be to give
two tetrads of unit vectors with the related invariants, for instance the
data (18 e, f), or to give the 6 data of one tetrad of unit vectors together
with 10 independent real data determined by the complex invariants.
These would uniquely determine the 8-component spinor ψ.

According to the expressions (16 a— c) of the invariants, the non-
vanishing of all 6 invariants Ω means that the four 2-component spinors
are pairwise linearly independent. This is the general case, and there are
some important special cases. If the number of pairwise linearly inde-
pendent spinors is three, there are only three different tetrads. If this
number is two there is only one tetrad, and a single 2- component spinor
defines only a null- vector.

The connection between isospin transformations and the tetrads
(17e, f) is especially remarkable. From the definitions, one has

( VR)μ = y)γμ y (1 + yδ)

(19)

= Ψ7μ ~J (l ~ Vt)

= yy^ Y (1 - yβ)

A unitary isospin transformation (y^, ψn) -> (̂ , φ^) leaves the time-like
vector (Fjj)^ invariant, and transforms the vectors (XR)μ, (YR)P, (WR)μ

into three orthogonal vectors within the spacelike subspace orthogonal
to (VR)μ, in a way which corresponds to a 3-dimensional rotation. The
important point is that (XR)μ, (YR)μ> (WR)μ are orthogonal vectors of
equal length in space-time, and their transformation relates in this way
isospin transformations directly with actual space-time rotations. Similar
statements hold for the transformation of the vectors (VL)μ, (Kώμ,
(Yώμ, (W£)μ. A charge conjugation η ** ξ interchanges the two frames
VR) XR) YR) WR and VLί XL, YL) WL.
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Angles and Hyperbolic Angles Determined by the Invariants

The relative orientations of the tetrads at a given point are deter-
mined by the invariants. They are closely connected with the way in
which the tetrads are built up from 2-component spinors, and the sim-
plest way to establish the linear relationships between the tetrad 4-vec-
tors is with the help of the spinorial construction. The relationships will
be established under the assumption that the relevant invariants are
different from zero.

Three pairwise linearly independent spinors η99 ξV9 ξn determine
three tetrads {F,, W9, X» 7,}, {F+, W+, X+, Y+} and {VR, WR, XΛ, ΎR}.
The relationships between these will be studied in some detail. There are
four different ways to select three 2-component spinors from η^ ηn, ξv, ξn

and to form a 'triplet* of tetrads. The relationships between the tetrads
of any other triplet will follow from the first investigated case by simple
substitutions.

One can choose only two linearly independent 2-component spinors
at a given point, and for instance ηv) ηn can be expressed as linear
combinations

% =«»,,£,+ α,mfn> (20a)

ηn = (Xn pξp + OCnnξn , (20b)

of ξy, ξn The complex coefficients α can be determined by taking the
exterior product of these two equations with ξn or ξV9 and comparing the
result with the expressions (16 a—c) of Ω. One obtains

_ Ω+ ^ _ Ωp

<»-0 «»- a. (20c)

-^ΩIί= ηn xηp) the exterior product of the two equations (20a, b)

gives
ΩRΩL = Ω+Ω_ - ΩpΩn . (21)

This relationship reduces the number of complex invariants Ω which can
be chosen independently, from 6 to 5.

If one defines hyperbolic angles χ by means of

|β| = exp(χ), (22 a)
so that

β = exp(χ)exp(iθ), (22 b)

the ratios (20 c) depend only on the differences

I** = X9-XR> t*n = X n - X R , μ+ = X+ - XR, μ~ = X- - XR , (23 a)
uv=e»-eR, ΰn=θn-θR) &+==θ+-θR, 0 _ = θ _ - f l Λ , (23b)
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of the hyperbolic angles and angles, and one can write

Ω+ , x , α x Ω» . x / α x^— = exp (μ+) exp (^^+), -̂ - = exp (μv) exp (ΐ^),

Ω Ω (23°)
-j£ = exp (μn) exp (i#n), -̂  = exp (μ_) exp (ί #_) .

In order to express the vectors F ,̂ WP, XV9 Y$ in terms of VR, WR)

R) YR, one can use the equations

^(V9+W,) = B9=ξ*σξ9 (24a)

(24b)

(24o)

and express ηp by means of (20 a, c). This leads to identities of the form

ΩRZO = Ω+RV-ΩVR+, (25a)
Ω&ΩΛL, = Q*+Q+RV + Ω ΩiR* - fl^β,Λ+ - Ω*Ω+R_ . (25b)

The relative orientation of the two tetrads can be expressed more
immediately in terms of the unit vectors vv, wV9 xp) yv and VR, WR, XR} yR.
With these, and the notation (23 c), the equations (24 a— c), (25 a, b) give

exp (μ+) y (Vj, + W9) - exp (μ+ - μ9) y (VR + WR) , (26 a)

= jexp (μ+ - ^) y (VR + WΛ) + exp (μ9 - μ+) y (VΛ - wΛ)J (26 b)

- jexp [- i (*+ - *,)] y (a?Λ + i^) + exp [ί (<&+ - ^)] y (α;Λ - i

exp (- <*+) y (̂  + i^) = exp (̂ + - Λ) y (VΛ + WΛ)
1 (2βo)

- exp [-<(#+ - ̂ )] y (a?Λ + ίyΛ) .

In introducing unit vectors v(μ), w(μ) related to v, w by means of
a Lorentz transformation

v(μ) = t; coshμ -f w sinh^, v(0) = v -,

w(μ) = v sinh// + w cosh^w, w(0) = tϋ

in the (v, w) plane, and similarly unit vectors x ($), τ/($) related to x, y
through a rotation

x(&) — x cos$ + sin^, α:(0) = α; ,
(27 b)

= y
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in the dual (x, y) plane, the corresponding real and complex null- vectors
transform according to the equations

y (υ (μ) + w (μ)) = exp (μ) y (v + w) , (27 c)

y (v (μ) - w (μ)) = exp (- μ) — (v-w), (27 d)

Y (x ± iy) - (27 e)

In terms of such rotated unit vectors, the equations (26 a, b, c) can be
written in the form

(28 a)

y K(μ+) - w9(μ+)} = vR(μ+ - μ9) - xR(&+ - &9) , (28 b)

μj + WΛ(^+ - μ9)} - XR(U+ - *„) , (28 c)

-*p). (28d)
These equations give v99 w9, x^ yv in function of VR, WR) XR) y% with the
intermediary of the equations (27 c, d, e). Very little algebra is needed
to invert the equations and express VR) WR) XR, yR in terms of v99 wv) x^, yv.
The angles (23 a, b) can be seen to appear directly as angles and hyper-
bolic angles of rotations and Lorentz transformations in the (x9 y) and
(v, w) planes.

In order to express the vectors F+, W+, X+9 Y+ in terms of VR, WR,
XR) YR) one can start from the equations

^-(V++W+) = βn = ξ*σξn, (29a)

(29b)

(29 c)

Proceeding as before, and using (20 a, c), equation (25 a) is replaced by

ΩR Z+ = Ω+R_- ΩvRn (29 d)

which can be used together with (25 b). Introducing unit vectors and the
notation (23 c), the three equations (29 a, b, c) lead to

y K(Λ) + w+(μ*)} = ~2 K(μ+ - /**) - w&(μ+ - μ*)} » (30a)

y K (μ») - w+ (μ*)} = VR (μ+ - μ»] - XR (*+ - )̂ , (30 b)

9) = - {vR(μ+ - μ9) - wR(μ+ - μ9)} + XR(&+ - #9) , (30 c)

-^)- (30d)
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The relationship between the tetrads {vv, wV9 x^ y^} and {v+, w+, x+, y+}
results from (29 a— d) and (30 a— d) in the form

Ύ K (μ+) - wp (μ+)} = y {v+ (μ,) - w+ (μp)} , (31 a)

Y K (μ+) + w* (μ+)} = v+ (A») + x+ (#») >

a?, (0+) = {v+ (μ9) - w+ (μ,)} + x+ (0P) , (31 c)

(31 d)

Symmetry of the Main Tetrad Planes

With the abbreviated notation

-+ v+, w'+, »'+> y+ (32)
- )̂, wR(μ+ - μ9), xR(ft+ - #*), 2/^(^4- - *») -> v'R, w'R> x'R> y'R

the relationships (28 a— d), (30 a— d), (3 la — d) between the dashed
tetrads can be seen to be independent of the arguments μ} Φ which
describe Lorentz transformations and rotations in the (v, w) and (x, y)
planes. The same relationships could be derived by taking the special
symmetric case Ω+ = Ω^ = ΩR, that is μ+ = μv = μ+ — μp = 0, Φ+ = &p
= ϋ>+ — ftp = 0, and substituting accordingly η^ = ξp — ξn into the
equations (24 a, b, c) and (29 a, b, c). As it will be seen, the dashed
tetrads are determined apart from signs of the vectors, by the three
main tetrad planes (v, w).

The (v'9 w') planes are the same as the (v, w) planes and the lines of
intersection of the planes (v^9 wΐ>)ί (v+9 w+)9 (vR9 WR) are given by the
three null- vectors

= v'R-x'R, (33b)

Y (v+ + w'+) = -£ (VR- w'R) = v'p-x'p. (33 o)

The three dual planes (x^9 yp), (x+) y+), (XR) yR)9 which are the same as
the corresponding (x'9 y') planes, have a common line of intersection
defined by

i£ = !4 = -!&. (33d)

The relationships (28 a— c), (30 a— c), (31 a— c) between the vectors of the
dashed tetrads involve only a 3-dimensional subspace of space-time,
which is orthogonal to this direction (33d) and has two space-like and
one time-like dimensions.
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From the equations (33a—c), the three space-like vectors w'p, w'+ίwR

can be expressed by the relationships

-y^i, (34a)

\ w'R, (34 b)

VR - ~ (γ< - 4) + 4X = (y«'+ + *'+) ~y < (34o)

These show that the three vectors are in the same plane,

w'p = w'+ + w'R (34 d)

and, since they are unit vectors, they form with each other an angle of
60° or 120°.

Fig. 1. Hexagonal symmetry of the lines of w'+9 w'P and w'R which are in a common
plane. The lines indicated by ++, pp, RR are the lines of intersection of the
planes (v+, x+), (vp, x^), (vβ, xβ) with the plane of the vectors w'. The three planes
intersect in a common line, are orthogonal to the plane of the vectors w'9 and halve

the angle between two neighbouring lines w'

The vector w'p is orthogonal to the plane (v'p) xp) and to its line of
intersection with this common (wp, w'+) plane of the three vectors.

According to (34b), this line of intersection is given by -%vp — xp. With

similar statements concerning w\ and w'R, one can see that the three
planes (vp, xp), (ι/+,#'+), (v'R) x'R) intersect the plane (wpίw'+) in lines
which halve the angles between the lines given by wp, w'+)w'R. (See
Fig. 1.) The three planes (vp, x'p), (v'+, x'+), (v'R) XR) intersect each other
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in a common line given by

VP - ~2XP = v'+ + -2X'+=2VR- ~2χlR (35)

which is orthogonal to the plane (w'p, w'+).

Each of the three planes contains one of the null vectors (33 a, b, c).

After normalisation, the orthogonal vectors v'p —-*%$ and — I "o"^ — xp],

are related to the unit vectors vp9 xp by a Lorentz transformation, and
similar statements hold in the other two planes. One could bring the
three dashed tetrads into coincidence by transforming vp9 v'+) v'R into
the direction (35) through such Lorentz transformations, with hyper-

bolic angles μ given by exp(±μ) = ]/3, and then performing further
rotations of 60° in the orthogonal (wp> w'+) plane.

The plane (vp9 wp) intersects (v'+9 x'+) in the null-line (33a), and
(v'R, XR) in the null-line (33b). Its line of intersection with (vp9 x'p) is of
course vp9 and with (wp9 w'+} it is wp. Similarly, the line of intersection of
(v'+9 w'+) with (vp9 xp) and with (v'R9 x'R) is one of the three null-lines, and
so is that of (VR, WR) with (vp9 xp) and with (v'+9 w'+). The plane connecting
wp with the third of the null-lines, (34c), contains, on the other hand,
both x'+ and x'R. The plane (x'+, XR) contains according to (30 c) the null-

line (33c), and the linear combination wp = ιr#+ + -*r (v'+ + w'+) is m

the same plane. Similarly, w\, x'p, XR and the null-line (33 a) are in one
plane, and also w'R, x'+) x'p and (33b).

That the main tetrad planes (v^, w^), (v+9 w+)9 (VR> WR) determine the
dashed tetrads apart from signs, can now be seen. The common line of
intersection of the dual planes (xv, yv)9 (x+9 y+)9 (XR, yR) gives the line
of yp = y'+ = — y'R) and the orthogonal directions in these planes give
xp, x'+, x'R. The lines of intersection of (x'+9 XR) with (vφ9 w^), of (xp9 XR)
with (v+9 w+) and of (xpί x'+) with (vR9 WR) give wp9 w'+9 WR. The planes
(xp9 x+) and (xp9 XR) contain each one of the three null-vectors. Connecting
xp with the third null-vector gives the plane which cuts (v^, wv) at the
Hne of vp. The analogous plane through x'+ gives v'+9 and through x'R, v'R.

Three pair wise linearly independent 2-component spinors determine
three real null-vectors and the related null-lines. The inverse construction
of three spinors from three null-lines is by no means unique, but there
are always many ways to find three pairwise linearly independent
spinors which give the three null-lines and for which the previous
constructions follow. By explicit construction, and so not in the simplest
possible way, some simple geometrical theorems in space-time are there-
fore also established. These can be summarised as follows. Given any
three null-lines through a point 0 in space-time, they determine pairwise
three 'main' planes. The three dual planes to these at 0 have a common
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space-like line of intersection, y. There exists a time-like direction t at
0, orthogonal to y, and a space-like plane 8 going through 0, orthogonal
both to t and to y, in such a way that the lines of intersection w of 8
with the three main planes are in the symmetric hexagonal position, inter-
secting under an angle 2π/3 or 2π/6. The three planes through t and one
of the three null-lines halve the angle between two neighbouring lines
w, and are perpendicular to the third w, to 8, and to y. (See Fig. 1.)

Substitutions and Charge Conjugation

The relative position of the three tetrads {F_, FL, X_, Γ_},
{Fn, Wn, Xn, Yn} and {VR, W& YR, YR} which are given by ηn, £„, ξn>

follows from the previous considerations in replacing ηp by ηn. From the
definitions, an interchange of η9 and ηn means

Fp, W9, X99 ΎV * F_, JF_, JΓ_, 7_, Ω9*Ω_9 (3βa)

F+, ΪΓ+, Z+, 7+ * FΛ, ΪΓΛ, JTn, ΓΛ, Ω+^Ωn, (36b)

FΛ ΪΓΛ> -Γ* ΓE * FΛ, TΓΛ *Λ, ΓΛ> ΩR * ΩR . (36c)

The relationships (28a—d), (30a—d), (31 a—d) give, therefore, similar
relationships for the new triplet of tetrads by a simple interchange of
symbols:

V9 (μ+), wυ (μ+), xv (#+), y» (#+) ̂  v_ (μn), w_ (μn), x_ (^n), y_ (#n) (37a)

vn (μ_), wn (μ_), xn (#_), yn (#_) , (37b)

*-)

The relationships between the elements of the other two triplets of
tetrads, determined by ξV9 ηV9 ηn and by ξnί ηyf ηn, can be obtained by
means of charge conjugation, ξp ^ η^ ξn ̂  ηn. With this interchange
one has

Ry^Ly, En^Ln) E+^L_} (38 a)

Z,*Z*. Zn^Z*, Z+*tZ*, (38 b)
and

F,, W,, Zf, Yv ̂  V,, - W9, Z,, - Yv, Ω,*-Ω,, (38o)

Vn, Wn, Xn, Yn * Vn, - Wn, Xn, - Yn, Ωn^-Ωn, (38d)

V+, W+, X+> Y+ * F_, - TΓ_ Z_ - Γ_ β+ * - β_ , (38e)

FΛ WR, XR, YR * VL, WL, XL, YL, ΩR^-ΩL. (38f)

The definition of ΩL was chosen in such a way that ΩR <t — ΩL, and
accordingly ΩJΩΛ * ί?,/̂  0,/βjι ̂  β»/β£, β±/βΛ * Ω^Ω^. For the



Isospin 195

angles and hyperbolic angles defined by Ω = exp(χ) exp(^θ), this means

XP- XR^Xv- XL, Xn~ XR^Xn- XL, X± - XR ̂  Xτ - XL , (39 a)

θP-θR^θv-θL, θn-θR^θn-θL, Θ±-ΘR-^Θ^-ΘL. (39b)

The Lorentz transformations and rotations (27 a, b) in the (v, w) and
(x, y) planes can be seen to be invariant with respect to a simultaneous
change of the sign of w and μ or of y and $. If one defines rotated unit
vectors with the angles

β*>=- (X* ~ XL), βn=~ (Xn ~ XL) ,
(40 a)

μ+=- (χ+ - XL), β-= ~ (X- ~ XL) ,

U*=-(Θ*~ΘL), $n=-(θn-θL),

$+ = -(θ+-θL), $_ = -(θ_-θL) ( )

the relative minus sign in comparison with the definitions (23 a, b)
compensates for the changes in sign of W and Y in the transitions
(38 c, d, e). The connection between the three tetrads {v^, w^ xp, y^},
{v_, w_, x_, y_} and {VL, WL, XL, yL} is obtained therefore from the
relationships (28a— d), (30a— d), (31 a— d) by the interchange

v» (μ+), WP (μ+), %v (#+), y* (#+) ̂  Vp (μ_), wv (μ_), x^ (&_), yv (^_) , (41 a)

v+ (μp), w+ (μp)9 x+ (φv), y+ (̂ ) ̂  v_ (μJ9 w_ (μv), x_ (^), y_ (^) , (41 b)

VR (μ+ - μp), WR (μ+ - μv), XR (φ+ - )̂, yR (*+ - ^)
> (41 c)

^ VL(P>* ~ β~), WL(JUV ~ β-)> XL($V - *-), ̂ (^ - #-)

There is a different sign in the argument of the vectors of the two sides
of (41c), in accordance with the definition of the angles and with the
transformation (38 f).

Similarly, the equations connecting the tetrads {v+, w+, x+) y+}}

{vn, wn, %n> Vn} and {VL, WL, XL, VL} can be obtained from

v__ (μn), w_ (μn), x_ (#n), y_ (ftn) ^ v+ (βn), w+ (μn), x+ ($n), y+ (&n) (42 a)

, Wn (μ-), %n (*-), yn (#-) ̂  vn (β+), Wn (β+), %n (*+), Vn

n - μ-), wn(μn - μ~), %R(ΰn - *-), yκ(&n -ί*-)
_ \ _ _ (42 c)

^ VL(&+ - βn), U>L(β+ ~ βn), XL

combined with the substitutions (37 a, b, c). The angles β, & in the
arguments of the rotated unit vectors are of course not independent from
the angles μ, $, since from the definitions (23 a, b), (40 a, b), one has

μp + μ» = μn + βn = μ+ + β+ = μ~ + β- = XL - XR , (43 a)

0* + 0, = 0Λ + 0* = 0+ + 0+ = *- + &- = ΘL - 0Λ (43b)
14 Commun.math.Phys.,Vol.lO
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Both μ, $ and μ, $ are abbreviations for differences of angles, in a more
symmetric way one could express the arguments of the vectors of each
rotated tetrad within a triplet by means of the difference of the two
angles θ or two hyperbolic angles χ defined by the two invariants Ω
related to the other two tetrads.

The main planes (v, w) of the 6 tetrads are determined by 4 real null-
lines. The four different ways of selecting three of these gives the four
tetrad triplets. In the general case, the (x, y) planes determine a different
common line of intersection for each triplet, and each triplet has its
symmetry plane discussed in the previous section. If one wants to express
directly the relationship between the vectors of two tetrads which are
not members of a common triplet, for instance {yvί w^ x^ y^} and
{vn) wn, xn, yn}, or {VR, WR) XR) yR} and {vL, WL, XL, yL}, this can be done
in two different ways with the intermediary of a third tetrad which
forms a triplet with both of them.

If one considered quarks, one would have to take a 12- component
spinor

ψ = (%»» Ψn, ΨA)

instead of an 8-component ψ. The related six 2-component spinors would

= 15 complex invariants Ω and 15 tetrads. The relationships

between the quantities determined for instance by yv and ψA would
be formally the same as between those determined by ψ^ ψn. The tetrad
triplet determined by ξ ̂  ξn, ξΛ would have one tetrad, given by ξ^ ξn,
which relates isospin transformations to rotations of its space-like axes,
one tetrad, given by ξpy ξΛ, which relates ϊ7-spin transformations with
space-like rotations, and one, given by ξn, ξΛ which does the same for
F-spin transformations. Similar statements would hold for the tetrad
triplet determined by ηV9 ηn, ηΛ. Under unitary S t73 transformations
of ξv, ξn, ξA, the sum of the 3 real null- vectors RP, Rn, EA would remain
invariant, and the 3 real null- vectors and 2 x 3 complex null- vectors
of the tetrad triplet would transform as an 8 £73 singlet and octet.

Through the spinorial construction and the transformation of its
null-vectors, a tetrad triplet connects the basic SU3 octet transforma-
tions to local space-tune transformations. In the course of these a tetrad
triplet transforms into a tetrad triplet through rotations and Lorentz
transformations of the tetrads, together with a dilatation of the common
length \Ω\* of the four vectors of a tetrad, the sum of the three jί?|2-s
remaining invariant.

If one considered a 16-component spinor
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= 28 complex invariants

and 28 tetrads. These could be grouped into I « ) = 56 tetrad triplets. The

relationships within each tetrad triplet would be exactly the same as
discussed previously. The 4-vectors of any of the tetrads could be ex-
pressed in terms of the 4-vectors of any other tetrad either within a
triplet, or with the intermediary of another tetrad which shares a triplet
with both of them.

Appendix. Relationships with 6-Vector Densities

The 6-vector densities related to a 4-component spinor are given by
the real and imaginary parts of the complex self-dual tensor

z(i + n)v> (A la)

(A.lb)

where j, k, I is one of the three cyclic permutations of 1, 2, 3. In terms
of the spinor components of ψ = ( ξ , ή ) one has

M?Jc=-ξ*σlή. (A. Id)

In terms of the arbitrary 2-component spinors α, /?, α', β' which
enter into the definition (7a, b) of the null-vectors Uμ = Uμ(oc*, β),
U'μ = Uμ(oc'*, β'), one can write

.Mιa(α, α') = -α*σ3α' = α^ + αaα(, (A. 2 a)

Jfa3(α, α') = — a*^a' = — o^aί + oc2a2 , (A. 2b)

Jf31(a, a7) = — a^σaa7 = -r- (ajaί + a2a£) , (A. 2c)

and similar definitions for Mjk(β, β'). Whereas the invariants

(A. 2d)—-Ω( Ί — αι α2

2 αί α^

are antisymmetric products of the two spinors α, α', the tensor Mjk

represents their symmetric product, Mi7c(oc, α') = Mίk(<x?9 α).
With very little algebra, one finds the identities

= US(X'*, β') Uk(X*, β) - J7fc(α'*, β') U^ofi, β ) ,

oc, «') Mik(β, β') + Ω(β, β') Mfk (α, α')}

= Z70(α'*, ί') Z7,(α*, /9) - Z7,(α'*, /S') C70(«*, ^).
14*
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With the expressions (A. 2a—d), and similar ones for Uμ, through
cancellations each side of the two equations reduces to only two terms.

For the tensor components (A. la— d), one obtains with α = β = ξ ,

- (Ω*Mjk - ΩM?k) = L}Rk - LkR, = (V,Wk- VkW,) , (A. 4a)

4 (Ω*Mjk + ΩMft) = L.E, - L.E. = ̂ (V0Wl - 7,TΓ0) . (A. 4b)

For Ω =f= 0, the equations give Mίk in terms of Vμ> Wμ and Ω.
For an 8-component spinor, the identities (A. 3 a, b) give the ten-

sorial densities in terms of the corresponding larger number of vectors
and invariants.
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