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Abstract. The reduced density matrices of the anisotropic Heisenberg model are
studied by means of a functional integral representation based on a generalized
Poisson process. Integral equations, which are analogous to the classical Kirkwood-
Salzburg equations, are then used to prove the existence of the infinite volume limit
of the reduced density matrices, analyticity properties with respect to the fugacity
(or magnetic field) and the potentials, and a cluster property, in the low fugacity
(high magnetic field) region.

Introduction

The correlation functions of classical gases and their quantum analo-
gues have been studied recently by a method due to RUELLE [1]. This
method rests on the well known Kirkwood-Salzburg equations [2] and
various generalizations thereof, and has been used to prove the existence
of the infinite volume limit, some analyticity properties, and a cluster
property of the correlation functions for sufficiently small fugacities. The
method has been applied to classical continuous systems [1], to classical
lattice systems [3], and to continuous quantum systems [4]. In the latter
case, in order to obtain and exploit appropriate generalizations of the
Kirkwood-Salzburg equations, one uses an integral representation of the
quantum analogues of the correlation functions, namely the reduced
density matrices (R.D.M.), based on the Wiener integral.

In the present paper, we want to point out that the same method
also applies to a variety of quantum lattice systems. (For general pro-
perties of such systems, see ref. [5,6,7].) In fact, one can use a functional
integral representation of the RDM based on a discrete analogue of the
Wiener process, which turns out to be a generalized Poisson process.
Various models can be studied, some of which are listed in the last
section of this paper. Meanwhile, we concentrate on one of them, namely
the anisotropic Heisenberg model, which is both of current interest and
typical of the scope of the method.

In Section 1, we define the model, describe the associated stochastic
process, and give some estimates which are needed in subsequent proofs.
In Section 2, we give the definition and integral representation of the
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RDM, and the appropriate generalizations of the Kirkwood-Salzburg
equations, as well as upper bounds and analyticity properties of their
kernels. We then state the results that can be obtained from them in
Section 3. Most of the proofs are identical with those of the continuous
quantum case [4] or of the classical lattice case [3] and are omitted.
Finally, we compare the results for quantum lattices with those obtained
in the other cases, and discuss briefly some related models that can be
treated by the same method.

1. The Model and the Associated Stochastic Process

The anisotropic Heisenberg model can be thought of either as a spin
system or as a lattice gas [8]. We shall use the latter formulation, which
is more convenient for our purpose. The configuration space is a v-dimen-
sional cubic lattice. At each lattice site r, there are defined boson field
operators ar, a^ with the canonical commutation relation [ar, a^"\ = δrs)

all other commutators being zero. We first consider a system enclosed in
a finite box A of volume (= number of sites) V, which eventually will
become infinite. The system is described in the grand canonical formalism.
The hamiltonian is chosen as:

H = - -i- Σ («r+ ~ «.+) K - α.) ψ±(r - *) - μΣ «+«,
r,8 r

+ -^Σ afa^ara8 φ\\ (r - s) .

The transverse potential φ± is supposed to be symmetric (φ± (r) = φ±(—r))
and to satisfy:

Σ |0>±(r)| = 2 J f < o o . (1.2)
rΦO

We define also M0 by
Σ φ±(r) = 2M0. (1.3)

rΦO

The longitudinal potential is supposed to have a hard core (φ\\ (0) = + oo),

to be symmetric (φ\\(r) = ψ\\(—r)) an(i to satisfy:

Σ \φ\\(r)\ = Φ«». (1-4)
rΦO

If 99|| is real, we define φ+ and φ_ by

#±= Σ Max(±<pπ(r),0). (1.5)
rΦO

We shall be also interested in complex potentials. They form a Banach
space SS with the norm:

IHI= Σ \Ψ(')\ (l β)
10 Commun.math.Plιys.,Vol.lO r=ί=0
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The hard core condition reduces the Fock space of the system to the
subspace of functions that vanish whenever two arguments coincide. One
can- therefore replace the α, α+ on each site by PAULI matrices

α+ -> σ+ = (0 o) > α->cr~ = L 0) with modified commutations relations

which take the hard core condition into account automatically. This
gives immediately the hamiltonian in the usual spin system formulation :

H = ~ Σ {(o?σ? + ofσf) <p± (r - a) + σ oξφn (r - s)}

(1.7)

where the magnetic field is related to the chemical potential by :

(r)-ψ\\(r)}. (1-8)

C is a constant proportional to the volume :

C = ~ Ύ V (r + ̂ Σ (ψj. (r) - I Ψ\\ M)) (l β)

and we have omitted surface terms which are easily dealt with. We shall
not make use of the magnetic formulation in the sequel.

We now concentrate on the first sum in (1.1), which we call T, and
which is meant to represent the kinetic energy. This interpretation is
borne out by the following argument. Let ψ(rl9 . . ., rn) be a ^-particle
wave function. One then sees easily that :

ϊ, . . , rj = Σ Σ , , , , π ιm* s ?' = 1 (1.10)

γ(rl9 . . ., Tj - s, . . ., rn) - 2ψ(rv . . ., rΛ)} φ± (s) .

The double differences are the natural analogues of the Laplace operator.
It is essential for this interpretation of T and the following considerations
that the hard core condition be absent from T, or in other words, that
the α,α+ be true boson operators and not Pauli matrices.

In the continuous case, the statistical operator W — exp(— βH) can
be represented by means of the Wiener integral [9], which is associated

in a natural way with the heat equation d ψ/dt = γAψ. We shall obtain

a similar representation here, starting from the corresponding one par-
ticle equation :

8v(r) -dt 2

or:

- y W)

= -~Σ yj. W (*>•*- D ψ(θ) (1.12)
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where ψ(θ) is the Fourier transform of γ:

Σψ(r)e-ir θ (1-13)
r

The solution of (1.11) that reduces to δ0tr for t = 0 is then:

Ψt(r) = (2π)~vfdvθ ψt(θ) e*r θ (1.14)
o

where :

= exp Jlί Σ 9>j» (1 - eίβ e)j (1.16)

<φt(θ) = exp{*/ (eίaj θ - 1) dM(x)} (1.16)
where:

dM(x) = — — Σ ΨA.(s) δ(x — s) . (1 17)
2 sΦo

d M is a discrete measure in the underlying ^-dimensional euclidean space,
with total variation M. We then define a stochastic process ω (t) in Rv

with stationary independent increments as follows.
We first consider the case where φ ± (r) ^ 0 for all r. If T is interpreted

as a kinetic energy, this condition means that the "mass of the particle"
is positive. The measure d M is then positive. We define the process
ω(t) by taking the distribution of the increment ω(t') — ω(t) to be:

r

(1.16) is then the Levy-Khinchine representation of the associated charac-
teristic function [10], and shows that the process is a generalized Poisson
process [10]. It can be described as follows: ω(t) is constant except for
jumps. The number n of jumps in any finite time interval of length t is
finite almost everywhere, with a Poisson distribution:

(1.19)

M is the average number of jumps per unit time. The probability dis-
tribution of the jumps is given by the measure d M. The possible values
of the jumps are the vectors in the support of d M. They have therefore
integral valued components (so that ω(t) remains on the lattice!), the
conditional probability of jumping by r being — (2M)~lφ^_(r). The pro-
cess will be normalized to have a fixed starting point: ω (0) = r with pro-
bability one. We shall always use finite time intervals. We call P£β((Zω)
the measure on the set of paths starting from r at time zero and ending
at s at time t. It is normalized by:

27/P£s(dω) = 1. (1.20)
10* s
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We now turn to the general case where φ± is not necessarily negative,
and possibly complex, but still satisfies (1.2). To such a potential we
associate a (non positive) measure Pt

rs(dω) as follows: Let Pt

+rs(dω) be
the positive measure associated with the potential — 1 99 ± (r)|, as described
above. We then define the measure Pt

rs(dω) on the same sets of paths
by the conditions :

(1) Pt

rs(dω) is absolutely continuous with respect to Pt

+rs(dω).
(2) Its Radon-Nikodym derivative ft(ω) is defined almost everywhere

by:

(ω) = exp [t(M + Jfφ)] Π ~ (1-21)

if the path ω has n jumps of magnitude r1? . . ., rn in the time interval
(0, t). Here MQ is defined by (1.3).
The function ft(ω) is identically equal to one if φ±(r) is real negative.
It is bounded for all ω. More precisely :

|Mω)| = expp(Λf + Re Jf0)] . (1.22)

We shall often make use of the relation :

|P*ff (ίω)| = exp[t(M + Re Jfβ)] J*+f.(dω) . (1.23)

The measure Pt

rs(dω) thus defined bears the same relation to the Eq.
(1.11) and its solution (1.14) as before; more precisely:

/ P'0r(dω) = Ψt(r) . (1.24)
In fact, consider :

-θr(<*ω) ft(a>) e"

(L26)

= exp Ji-ί^1 ^(r) (1 - β*'.*)J= v)t(θ) .

We shall need later on an upper bound for the function :

)) (1.27)

where r is any real number, and n(ω) is the number of jumps of ω in
the time interval (0, t). It is easily seen that:

/(τ) = βxp(ίRθJf,)2
« "! (1.28)
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We shall also make use of the following upper bound :

Sup/|Pf,r(dω)|exp[τn(a>)]

<: JJtoM. Σ ern Sup Σ Π

n n' r f f l f . . . f r n i 2M

\Σn = r

^ α exp [ί(Jf eτ + Re M0)] + (1 - α) exp(ί Re M0) , (1.29)

^ exp [t (Meτ + Re Jf0)] (1.30)
where :

α = (2Jtf)-ι Sup |(pχ(r)| (g 1/2) . (1.31)
r

We are now able to represent the statistical operator W = exp(— βH)
as an integral in the space of the paths of the previous process. The result
is a transcription in the lattice case of the Wiener integral representation
[9, 4] which holds in the continuous case. The proof will be omitted.
H commutes with the particle number operator. In the m particle space,
W is represented by an integral kernel W(rm, sm) where rm = r1} . . ., rm

and sm = slf . . ., sm are two families of m points of the lattice. Then:

W(ι™, sm) = f PξmiSm(dωm} zm exp [- ϋ (ωm)] . (1.32)
Λ

Here ωm is a set of m paths: ωm = ωl9 . . ., ωm, going from rm to sm.
z = exp(βμ) is the fugacity, and the interaction is given by:

17 (ω«) = fβdtίΣφ\\(<»i(t) ~ ω,(*))l . (1-33)
0 [i<j }

The fact that the system is enclosed in the box Λ appears through the
restriction that all paths are contained in Λ.

2. The RDM and the KS Equations

In this section, we give the definition and integral representation of
the RDM, write down the KS equations and derive upper bounds and
analyticity properties for their kernels, as an illustration of the method
of proof of the subsequent results.

We consider first a finite system. Let ZΛ = TrW and {Ay
= ZΛI Tΐ(AW). The RDM are then defined by:

ρΛ(r™, s™) = <α+(θw) a(r™)y (2.1)
where :

α(r«)= Π arι (2.2)
i = l

and similarly for α+. The hard core implies that QΛ = 0 whenever for
some (ί, j), ri = r$ or 8i = s3-. In the spin language, one would replace α+
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and a by σ+ and cr, and express the products σ+a~ for those points
common to rm and sm in terms of σz. The RDM can be represented as
follows. We call length of a path the length of its time interval. We shall
need elementary paths of length β, and composite paths of length an
integer multiple of β, obtained by piecing several elementary paths
together. Then:

m \
f ^(*ω<)U(Z) (2.3)

l J

where £f means sum over all permutations of the variables r (or s).
X = ωl9 . . ., ωm is a family of m composite paths of respective lengths
jίβ QΛ (X) is a function of these m paths, defined as follows :

ρΛZ) = Z;ί1/dΓ*«H-«exp[- U(X + 7) \*A(Σ + Γ) (2.4)

with the following notations: Y = ωv . . ., ωn is a family of n composite
closed paths, p and q are the total number of elementary paths that
build the composite paths in X and Y respectively. The integration
symbol is defined as :

f dY= £ fa!)-1 / dω! . . . dωn (2.5)
n = 0

where :

fdω = Σ ΣjfPlβr(dω). (2.6)
7 = 1 r 1

U(X-\- Y) is defined as in (1.33), the sum now running over all the
elementary paths that build X and Y. Finally, OCΛ is 1 if all the paths are
contained in Λ and zero otherwise. X -j- Y represents the union of X
and 7.

The proof is the same as in the continuous case [4]. The ρΛ(X) are
easily seen to satisfy the following generalizations of the K.S. equations:

ρΛ(X + ω) = α^(Z + ω) z exp [- F(ω, X)]fdYK(ω, Y)
<2 7)

where ω is an elementary path, and where :

F(ω, X) = fdtΣ ψ\\(a>(t) ~ o>{ (*)) - (2.8)
0 ΐ = l

The sum runs over all elementary paths that build X.

K(ω,Y)= Π K(ωίωi) (2.9)
i = l

where :

Γ β j J
#(ω,ω) = exp \-fdt Σ ψ\\(ω(t) - ω(t + (k - 1)/S)) - 1 (2.10)

L o &=ι J
if ω is a composite path of length jβ.
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The proof is the same as in the continuous case [4]. The K.S. equa-
tions can be considered as a linear equation in the space $ of sequences
of complex functions of families of an increasing number of elementary
or composite paths (a composite path can always be regarded as a family
of elementary paths) that vanish whenever two of these elementary
paths have overlapping hard cores, or more precisely spend a common
finite time interval on the same lattice site. The family of the ρA(X)
define a vector ρΛ in $ and the Eq. (2.7) is then of the form :

QΛ = AΛ(ζ+ztfQΛ) (2.11)

where AΛ is multiplication by OCΛ) i.e. restriction of the functions to the
set of paths that stay in A £ is the vector in $ defined by ζ(ω) = z if ω
is an elementary path, and ζ (X) — 0 otherwise. This inhomogeneous
term comes from the 7 = 0 term in the X = 0 component equation.
Cfc is the remaining linear operator.

The main step in RUELLE'S method [1] is to define a Banach space
topology in an appropriate subspace of <f , such that Jf be a bounded
operator in this subspace. Eq. (2.11) then has a unique solution in that
space, defined by iteration, for \z\ || JΓ|| < 1. We now show how this can
be done in the present case. Let Δ (ω) be a strictly positive translation
invariant function of one elementary path, to be chosen later. Let Δ (X)
be the product of the A (ω) for all elementary paths that constitute X.
Then, the subspace of those measurable h £ $ for which :

Sup Δ (Z)-1 \h(X)\ = \\h\\ < oo (2.12)
x

is a Banach space $ Δ C ̂ , with (2.12) as the definition of the norm. We
now give bounds on JΓ. We first consider the case of real potentials φL

and 9?u and define φ+9 ψ_, M, and M0 by (1.2, 3, 5). Let h ζ £Δ. From
(1.5) and the definitions, we obtain:

μTλ(Z + ω)\ ^ A (X)\\h\\ exp(βφj exp{/ \dω\ \K(ω,ω)\Δ(ω)} . (2.13)

By the same method as in the continuous case, one shows easily [4c, d]
that:

\dω\ \K(ω, ώ)\ Δ(ω)^ Σ I \P*&(A®)\ Δ (ω)

<2'14>

where v (ω, ω) is the number of lattice sites that are of the form ω (t)
- ω(t + (k - l)β) for some t ζ (0, β) and some k(l ^ k ^ j). The pre-
vious description of the Poisson process makes it clear that for almost
all ω and ω :

v(ω, ω) ̂  j(n(ω) + 1) + n(ω) (2.15)
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where n(ω) is the number of jumps of the path ω. This suggest to look
for A (ω) in the form :

(2.16)

where ξ > 0, τ > 0. From (2.15) and (1.30), we obtain:

f\dω\\K(ω,ω)\Δ(ω)£ Σ P exp[jβ(Meτ + M0)]
**1 (2.17)

• (n(ω) + βMeτ + βφ+ + e^~} .

Therefore, if ξ, τ and <p± satisfy the inequality:

r>Σ(S exP WW* + MQ)]y (2.18)
i

or equivalently :

+ Jfβ)] (2.19)

(2.20)

Elimination of f in the exponent with the help of (2.19) gives the simpler
bound :

then Jf is a bounded operator in (f ̂  and satisfies :

^ f-1 exp ^_ + 27 f exp[?£(Me* + Jf0)]

* + βφ_ + τ(β<f>+ + exp(βφ_))] . (2.21)

Similar bounds are obtained for complex φ^9 φ\\ ζ&t. One has to replace

Φ+> Φ- an(i -̂ o ^y 0» ^ an(^ -̂ e ^o respectively. More precisely :
Lemma 1. Let $ Δ be defined by (2.12, 16), for fixed ξ and τ, with τ > 0

and 0 < I < 1. Let &0(ξ9 r)C& be the (open connected) subset of those
for which

ξ < - Y exp [- β (M & + Ee M 0)] . (2.22)

Then 3f is a bounded operator in <ί Δ for all (φ±9 φ\\) ζ^0(|, τ) x ,̂
and satisfies || Jf| ^ jR"1, where;

K=ξexp{- [βMτeτ+ βφ + r exp(βφ)]} . (2.23)

In the same conditions, Jf is not only bounded, but even analytic [11].
Lemma 2. Let $ Δ and £&0(ξ, τ) be defined as in lemma 1. Then Jf is

norm analytic in (ψL, ψ\\) for (φ±) φ\\) ζ^0(ξ} τ) x &.
Sketch of the Proof. From (2.7, 11), Jf can be decomposed as the

product of two operators. The first one is multiplication by functions of
the form exp [— F(ω, X)~\. It is independent of φ± and norm analytic in
99 1 1 ζ £%. The second one is the operator L defined by

, Y)h(X+ Y) . (2.24)
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By the same methods as above, one can then prove that L, as a function
of φ± and <p||, has the following properties:

(1) L is Frechet-differentiable [11] with respect to φ\\.
(2) L is Frechet-differentiable with respect to φ^. This is proved most

easily by expressing the measures Pt(dω) associated with two transverse
potentials φ j_ and φ'± ζ& in terms of the positive measure associated
with the potential — M.a,x(\φ±(r)\, |9?j_(f)|)> with respect to which the
former are absolutely continuous.

(3) From bounds used in the proof of (1) and (2), it follows that L
is jointly continuous in φ^_ and φ\\.

Lemmas 1 and 2 are the starting point for the proof of the results
in Section 3. In the previous estimates, and therefore in all subsequent
results, we have used the simple bound (1.30). Slightly better results can
be obtained if one uses instead the better bound (1.29).

3. Results

In this section, we state without proof the results relative to the
previous quantum lattice. The proofs are identical to or simpler than
those of the continuous case [4c]. The new ingredients are essentially
contained in Section 2.

Theorem 1. Define £Δ by (2.12, 16) for fixed ξ} τ. Let @Ξ==@(ξ,τ)
C € x 3% x gβ be the set of those (z, φ±, φ\\) for which φ± ζ ®Q(ξ, τ) and
\z\ < E, as defined in lemma 1. Then, for (z, φ j_, φ^) ζ&:

(i) The Eq. (2.11) has a unique solution ρΛ in d>Δί obtained by iteration.
The solution is norm analytic in (z, φ±, φ\\) for (z, φ^ φ\\) ζ&. The
solution coincides with (2.4) within £&,. and satisfies;

(ii) The infinite volume equation;

ρ = ζ + z tfρ (3.2)

has a unique solution in $Δ, which is norm analytic in (z, φ±, φ\\) within
& and satisfies the same inequality (3.1) as QΛ ρ is translation invariant.

(iϋ) Let Λ be fixed. We say that Λ' ^ A becomes infinite if the distance
D of Λ to the complement of Λ' tends to infinity. Then, when D tends to
infinity, \AΛρΛ> — AΛρ\\ tends to zero. The convergence is uniform with
respect to Λ for fixed (z, φ±, φ\\) ζ &, and uniform in z for \z\ ̂  E' < E,
for fixed (φ±,.φ\\).

Analyticity in φ implies that if φ = φQ + Σ zίψi ^th φQ) . . . , φnζ&,
i=l

then ρΛ (and ρ) is norm analytic in zl9 . . ., zn. In particular, this implies
analyticity with respect to the components φ (r) of φ. Uniformity of the
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convergence in (iϋ) with respect to φ^ and φ\\ could also be included.
This would require that φL stays away from the boundary of S0(f, τ)
and that both φ± and φ\\ satisfy uniform restrictions on their decrease
at infinity.

Theorem 2. For (z, φ±) φ\\) ζ U 3(ξ9 τ) = S9 the density matrices (2.3)

tend to well defined limits in the sense that;

Sup \QA, (r™, s™) - ρ(r™, s™)\ -> 0 (3.4)

when Λ' becomes infinite in the previous sense. Both ρΛ and ρ are analytic
functions of (z, φ^ φ\\) in & (either for fixed arguments or in the Sup.
norm). For (z, φ±9 φ\\) ζ Sf(ξ9 τ), they satisfy the inequality;

m (3.5)

with E given by (2.23). ρ is invariant by the group of discrete translations
that leave the lattice invariant.

The definition of ρ and the bound (3.5) follow from (2.3) and its
infinite volume analogue. Notice that the analyticity of ρΛ and ρ is
defined in a way independent of (ξ, τ) and holds therefore in 3ί, whereas
the analyticity of ρΛ and ρ in Theorem 1 was defined within $Δ and
therefore held in the corresponding &(ξ,τ).

We now consider the pressure.

Theorem 3. The function β'1 F"1 Log ZΛ is an analytic function of
(z} φ±, 9?||) within &. When Λ becomes infinite, it converges to a function
p(z, φ±, 9?||) which is analytic in @f. For fixed φ± ζ@Q(ξ, τ), φ\\ ζ&, the
convergence is uniform in z for z ̂  E1 < R, where E is given by (2.23). For
real potentials and real positive z, p(z, φ±, φ\\) coincides with the usual
grand canonical pressure. For (z, φ±9 φ\\) ££&, ψ ζ&, p(z, φ±, φ\\)
satisfies;

βz^=ρ(Q,0) (3.6)

-ϊϊP(*, ψ±> ψ\\ + Ay)|λ β 0 = ~ -%Σ ψ(r) g(0, r; 0, r) , (3.7)

) - ρ(0, 0)] . (3.8)

This implies in particular the convergence of the Mayer expansion of
p as a power series in z for \z\ < E. One can also expand p as a convergent
functional power series in φ± and φ\\ (cf. [3]).

We now define cluster matrices χ(rm, sm) by the relation [4b]:

= Σ ΣΠx&i St) (3.9)
{Ri} {Si} ί
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where E = rm, 8 = sm, and the sums run over all possible partitions of
E and S into families of subsets {E^ and {$t }. The RDM satisfy a cluster
property in the following sense :

Theorem 4. For (z, φ±, φ\\) ζ&f, the junctions χ(E, 8) are absolutely
summable functions of the differences of their arguments. More precisely, let
99 _,_ £ &0(ξ, τ). Let γ be positive; define η, η(γ) and E(γ) by;

η=ξexp [β(Mer + Re Jf0)] , (3.10)

=
-ι (3.12)

so that 0 < η (γ) < η < — ηjy , E (γ) < E, and E (γ) increases to E when γ

decreases to zero. E is defined as previously by (2.23). Then, for any γ > 0
and any z such that \z\ < E(γ), the following holds;

k -1
(3.13)

All previous results have been stated with E defined by (2.23). This
definition, as well as that of @0(ξ, τ) through (2.22) was appropriate to
describe the joint analyticity properties in (z, φ±, φ\\). For fixed physical,
i.e. real, φ± and φ\\, the analyticity domain in z is improved if one uses
(2.21) with (2.19) replaced by an equality. On then obtains:

E, = -^-j-expί- [β(M(τ + 1) e* + M0) + βφ__ +

One can then take the maximum of this quantity for τ > 0. All the results
in theorems 1 to 4 that do not involve analyticity in φ±9 φ\\, hold for
\z\ < Bv

Let now the (7* -algebra 21 of the observables of the system be defined
as in ref. [5]. From the previous results, we deduce the following.

Theorem 5. ρ defines an extremal translation invariant state on 21 for
φ 1 1 and φ^ real in 3$, z real positive, and z < El for some τ, where E± is
given by (3.14).
The extremality of the state follows from the weak clustering property
[12, 13] expressed by theorem 4. The system is then in a single thermo-
dynamic phase.

Theorem 6. All previous results (theorems 1 to 5) hold with z replaced

everyvtereby ,-exp

This follows from the symmetry between empty sites and occupied sites,
and can be seen most easily in the spin language, where it corresponds to
changing the sign of the magnetic field.
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4. Conclusion

We first compare the results for the quantum lattice with other
cases.

1. Comparison with the Continuous Quantum Case [4]. The lattice case
turns out to be substantially simpler. The discreteness of the configura-
tion space considerably reduces the topological difficulties of the problem,
while the greater simplicity of the Poisson process enables us to give ex-
plicit lower bounds on the radius of convergence of the z expansions,
whereas in the corresponding continuous case (Bose statistics with hard
cores), similar bounds were defined implicitly by complicated integral
equations.

The most interesting simplification in the lattice case comes from the
boundedness of the kinetic energy operator T. It is straightforward to
extend the functional integral representation of the statistical operator
to the case where T is non positive and even non hermitian, and to
obtain analyticity properties with respect to the transverse, as well as
the longitudinal potential, and the fugacity. These properties imply
analyticity with respect to the temperature, so that the integral represen-
tation also applies to the time evolution operator eiiπ. This method will
be used elsewhere to study the Green functions of the system. This
situation is in sharp contrast with that in the continuous case, where the
corresponding problem of going from the Wiener to the Feymann integral
is much more difficult.

2. Comparison with the Classical Lattice Case. A new phenomenon
occurs in the latter. Because of the discreteness of the integration space,
one can improve the K.S. equations by subtracting out part of the con-
tribution of the hard core, thereby obtaining a domain of convergence
of the z expansion which includes a neighborhood of the positive real
z axis for β sufficiently small. Here, however, we have again a con-
tinuous integration space, in the sense that each point has measure zero,
so that the analogous improvement does not occur in an obvious way.
We are therefore unable to prove that the domain of analyticity covers
the positive real z axis for β sufficiently small, thereby excluding the
occurrence of phase transitions at sufficiently high temperature [14]1.

We next list some other models which can be treated by the same
method.

(1) We have considered Bose statistics. One can as well consider the
simpler cases of particles obeying Boltzmann or Fermi statistics, with
the same kinetic energy operator, as defined in (1.10), and the same
interactions. In the former case, only the term / = 1 survives in the path

1 This further result has been obtained subsequently by G. GALLAVOTTI,
S. MIRACLE-SOLE and D. ROBINSON (Private communication).
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integration (2.6), as well as in (2.3). One obtains the same results as in
the Bose case, but now the lower bound on the radius of convergence is
given, for real φ^ and φ\\9 by:

E1 = r exp {- \β(M(τ + 1) & +

where :

H (f) . (4.2)

In the Fermi case, the hard core in φ\\ plays no role, the presence of
more than one particle on a given site being already excluded by the
Pauli principle. Therefore in (2.14) the term v(ω, ω) drops out and one
can take Δ (ω) = ξ. One then gets the following expression for the lower
bound on the radius of convergence of the z expansion :

- [β(M + M0) + βφ. + r(βφ+ + e™- - 1)]} (4.3)

where ξ and τ are now related by :

ξ = -—^ exp [-β(M+ Jf β)] . (4.4)

(2) We have considered interactions with point hard cores. One can
also take a potential without hard core : <p\\ (0) < oo. A sufficient condition
for stability is then :

(4.5)
rφO

The same results hold, with again the additional simplification that one
can take Δ (ω) = ξ. The analyticity properties in φ \\ hold only with
respect to the components φ\\(r) for r Φ 0, for fixed φ\\(Q) and
Σ \Ψ\\(r)\ = φ\\(ty The lower bound on the radius of convergence of

rφO
the z expansion for real φ± and φ\\ becomes in the Bose case:

where c is defined by (4.2) τ and ξ are related by (4.4), with the additional
restriction that 1 + τ(l — e&c) > 0. Furthermore, φ+ now contains
9?l|(0). In the Fermi case, one can use either (4.3) or (4.6), with φ\\(Q)
absent from φ+.

(3) Conversely, one can consider interactions with extended hard
cores. This brings back some of the difficulties associated with hard cores
in the continuous case. The same results hold, but the bounds on the
radius of convergence become more complicated.
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In the models listed under (2) and (3) one loses the symmetry between
empty and occupied sites, and therefore the extension of the results to
the high z region.
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