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Abstraet. All inequivalent continuous unitary irreducible representations of
SU(N, 1) (N = 2) have been determined and classified. The matrix elements of
the infinitesimal generators realized on a certain Hilbert space have been derived.
Representations of the groups SU(N, 1), SU(N, 1)/Zy4+,, U(N,1) and U(N, 1)
are classified in a similar manner.

Introduction

Besides the identity representation all continuous unitary irreducible
representations (CUIR) of SU (N, 1) are infinite-dimensional. In this
paper we shall explicitly classify all the infinite-dimensional CUIR for
N = 2, and we shall further calculate the matrix elements of the corre-
sponding infinitesimal operators, which are realized on a certain Hilbert
space. The representations of SU (1, 1) have previously been derived by
BareMANN [1]. The method emploid here is the same as the one pre-
viously used in [2] to calculate the CUIR of SO, (V, 1). The method is
based on the following facts:

(i) In the decomposition of a UIR of SU (N, 1) with regard to the
maximal compact subgroup U (N) each UIR of U(N) occurs at most
once [3, 4].

(ii) All UIR of U (N) are known and they have been classified [5, 6].

(iii) There is a one to one correspondence between algebraically irre-

ducible unitary representations of s« (XN, 1) and CUIR of SU (N, 1), the
universal covering group of SU (N, 1) [7, 4].

(iv) A CUIR of SU (N, 1) satisfies locally the commutation relation
of su(N, 1) and the conditions for unitarity.

(v) A representation of SU (N, 1) satisfies global conditions so that
the unit element is represented by the unit operator on a Hilbert space.

Some authors [8] have discussed problems similar to those considered
here, but for various reasons no complete and explicit classification of
the CUIR of SU (N, 1) has previously been given.
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The Algebras u (N), (N, 1) and su (N, 1)

An element g(e) of U(XN) in the neighbourhood of the unit element
can be written

g(e) =1+ ebiw; ; + eily,; + ehz; + 0(e?) . (1)

A summation is performed over ¢ from 1 to j — 1 and over j from 1 to

N, &, &7 and &} are real numbers and @;,;, ¥;,; and 2; are matrices of

the form :
( 1/2)

X5 = :
e =12l

where all matrix elements of 2;,; and y,, ; except those in the places (s, §)
and (§, ¢) are zero and only the matrix element in the place (j,7) is
different from zero in z;.

From these generators we construct

L, = %5 — Y15 » 1<j
Liy=—m,;—iys,;, i<j
L= —iz
which span a basis for the algebra u(XN) and satisfy the commutation
relations
Ui, 55 Le,1] = 6,13, — 64,01, 5 - @)
The operator N
2 L
i=1

forms an ideal corresponding to the invariant subalgebra (1). The com-
plement of this operator corresponds to the su (V) subalgebra.

An element in the neighbourhood of the unit in U(N, 1) can be
written in the same fashion as above (1) except that the summation over

j goes from 1 to N + 1 and .
1/2
S V5

Yi,v+1 =( 1/2)
S 7/, TR

zN+1=(“_é) .

Ti,N+1 =
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‘We also form the linear combinations

Iiiniyi =%, 541~ 1Y, 50
Invi,i  =%54+ Y5841 (3)
Iy i1, 541=— 12541

which together with the previously defined operators satisfy the com-
mutation relations (2).

The operator
N+1

2 L
i=1
spans a one dimensional ideal. The complement of this ideal is the
su (N, 1) subalgebra.
As the basis operators of the algebra su (N, 1) we may choose

I,,q when p + ¢

J — 1 N+1 4
»a Lyo— FFT k§1lk'k when p=gq. @

These operators fulfill the same commutation relations as I, , and
furthermore they satisfy the equation

2 Jp,pzo' (5)
p=1

The Representations of U (N)

We will now state some wellknown results [5] on the representations
of U(NV). Since the complex Lie algebra « (XN) is isomorphic to the com-
plex Lie algebra gl(XN, R) the UIR of U(N) may be classified similarly
to the way in which the finite dimensional irreducible representations
of GL(N, R) were classified by GELFAND and TsErrLin [6].

Therefore, every UIR of the group U (N) is specified by N integers
My, y = Mo,y = *** = My_y, 5y = My, y- Consider all possible arrays of
integers of the form

M, w Mo, N Mgy .- My—1,§ My,N
My, -1 My, N1 coe My—sN—1 My—1,8-1
My, N—1 oo My—9,N—2
“ =
my,3 My, 3 Mms,3
my,» Mg, 2
My,

where the integers m,, , satisfy the conditions

My, g1 = My, q = Mpyy,q41 -
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To each array o we assign a vector &(c). The irreducible representations
of the Lie algebra u(N), which are related to representations of the
group U (N), act on the finite dimensional vector space R spanned by
the vectors &(«). Let the infinitesimal generator I, , be represented by
the operator D;, ; acting on R. To specify the matrix form of D;, ; in the
basis {&(a)} it is sufficient to give the form of the operators Dy, z, Dy,
and Dy, ., as the others may be obtained from them by means of the
commutation relations.

Let ajf® denote the array which is obtained from the array « by
changing m;, ;, to m; ; + 1 and let o ¢ denote the array which is obtained
from the array « by changing m;, , to m; , — 1. Then we have

Dy, 541 () = 2 “k () &( “k Y

=1
k k—1
Dy, E(0) = (i§1 My — i§1 mz‘,k—l) &(a)

k
Dyiyor & § Ic(“) & (o f)

where the numbers af,(x) and b («) are given by the formulae

1/2
H Cop+r — ljk) H (luc— —Le—1)
. | i=
aj (o) = b;“(a"’ )= H Tz — lj.k - 1) (e — biz)
%]
where the notation
li, i= mi, i ‘i
has been introduced.

To get all the Hilbert space representations of « (IV) we must generalize
the scheme above and let m,, , also take on non-integral values with the
restriction that m, ; — m,, , must always be integers. Hence the numbers
m;, ; shall have the same integer remainder.

The Hilbert Space of the Representations

When we derive the representations of SU (N, 1) we will introduce
the requirement (5) last. In this way we obtain the representations of
U (N, 1) as an intermediate result.

The maximal compact subgroup of SU(N, 1) is U(N). An infini-
tesimal generator of the invariant U (1) subgroup is

N
K=—-N+1)Jdyi,y1= 21-[7,1‘ = NIy, n41-
r=
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And we find
exp(itK)=1 for ¢t=...,0,2m;, 4m,.

The maximal compact subgroup of U(N, 1) is U(N) x U(1). As the
infinitesimal generators of the two invariant U (1) subgroups we may

choose
N+1
ITy r a'nd 2 Ir, T

r=1

M=

I
-

r

When an irreducible representation of SU (N, 1) is restricted to the
maximal subgroup U (&) the irreducible parts have the multiplicity zero
or one [3, 4]. The corresponding statement holds for U (N, 1), since
U (N, 1) is the direct product of two groups U (N, 1) ~ SU(N, 1)/Zy 1
x U (1), where the U (1) group enters in the maximal compact subgroup.
This U (1) subgroup is represented by one fixed representation in a repre-
sentation of U (XN, 1). In the construction below we may therefore ignore
this subgroup.

As the Hilbert space H for representations of U (N, 1) (and SU (N, 1))
we choose
H= } @HU, wlbyy . ...)=2 @& &)

(o, o,y e JET

where H (I, y, s, , . . .) is the Hilbert space of the representation of
U (N) which is labelled by (%, x, %, », - - .). I" indicates which representa-
tions of U (N) that appear in the representation of U (I, 1), and & (o) is
a vector in the Hilbert space of such a representation.

Without much extra labour we can generalize the above scheme and
get Hilbert space representations of the algebras « (N, 1) and su (N, 1).
This can be done by summing over representations to « () instead of
representations to U (NV), which means that we let the numbers 7,
take also non-integral values.

We are now going to find the possible form of the matrix elements
of the representations Dy, .y, Dy 41,5 and Dy q, x4y of the operators

Iy, wor Inqa,vand Iy oy, vog.

Restrictions on the Matrix Elements from the Commutation Relations

We now exploit the full content of the commutation relations. This
can be done in much the same way as in [2]. In the present case it is
somewhat simpler as we here can use commutation relations of the first
order more often. We will not repeat this derivation here but just state
the appropriate order in which the commutation relations should be
exploited to get hold of all conditions with-a minimum of calculations.
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We also summarize these conditions. The relations
[Iw, w10 J55] =0, ifiandj< N
Uyt v+ Ji] =0, ifiandj< N
Uy, vivJdwn]l =—Jyryn
[JN,N+1’ JN,N-l] =0
[y xie [y yi1 Iy-1,n]] =0
[JN+1,N, [y, JN,N—l]] =0
[J.N,N+1a [JN+1.Na JN,N—l]] =Jy, 5
[JN+1,N, [JN,N+1’ JN-—I,N]] = JN-1.N
Uyt v Iy, vl =—JIynn

[y, v Iv+nv] =Iny—INninvu
imply that

N
Dy,niw &)= 2 @i(e) & (o)
Dyy,v  &(0) = 2 v; () &(ay?)

Dy 1,541 §(x) = (XN+1 2 L, ) ()

where yy., is a constant, and where the matrix elements ¢;(«x) and
w; (o) satisfy the equation

N
2 [ (oax) pi() — @s(e0) p ()]
j=1
N N—1 (6)
== XN+t 2j2;lj,N —52; by1+ N

The relations further imply that a set of functions f;(I;, ), which only
depend on the respective /;, y, can be defined for all j through the relations

-1
171 b, w1 — bx — 1| fi (s, »)
i=

= (o) w(ef) IT Uiy — U, w) Gy — by — 1)

]
whenl,_, v+l y+1landl_; y_y%+4 xy+1,and
filli,w) =0

when l;_y, y =15+ 1.

Before we proceed it is conveneant to define some notations. Let
Ui, ¥, min @04 I, i, max denote the minimal and the maximal values respec-
tively of /; i in a representation. In the calculations the I, y: s take their
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maximal values for certain values of ¢ and their minimal values for other
i:s. We let a number i, determine the conditions for each particular
l;, v Let I, v, exir denote I, x, min for ¢ less than or equal to ¢y, and I, x, max
for ¢ greater than ¢,. We further define:

V. ={r|l, ymin=* b, ¥ max}
T (i) = {r|ly, &, extr + b1, ¥,extr + 1 and r < N}
T (i) = T (i) U {N}
Q) =TGNV
R(iy) = {r|r € Vand, I, x extr = lp—1, ¥,extr — 1 OF 7= N}
Ul(ig) = {r|r € T'(i,) and r € V}
Y (i) = {r|r€Vandl, yextr =lr—1, mextr — 1}
W(ig) = {r|r € Vand r ¢ T (o)}
J@y) ={rlreVandr<igorl, v+l nextr a0d L_y,y+=1 5+ 1}
K(ig) ={r|r€Vandr < iy orl, y=+l, 5extr ad b, y=+14, 5+ 1}
L ={r|l, y*+l,,y+ 1andr <N}
M ={r|l,y*lg,y+lorr=N}.
When a set S or S(¢,) is defined we let
8 (ig, +) = {r|r € 8 and r > io}
8 (ig, —) = {r|r € S and r < 44}
FGy) = Uiy —) U T (i +)
Gy = Uiy +) VT (i —) .

Finally let % (y) and 4 be the number of elements in 7'(¢,) and L respec-
tively.

We proceede to find all solutions f; and yy., of the Eq. (6). The
details in the calculations will vary from case to case. One may distinguish
between a large number of different subcases. The large number of sets
was defined to compensate for this difficulty. The main feature in the
calculation is the same in all these cases, and the sets enable a rather
unified derivation. The strategy we follow is first to show that the f;:s
are polynomials, then that they are the same polynomial for different
values of ¢ and then find its properties and finally to calculate yy.,.
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The Eq. (6) can be written on the standard form

I Gy —ly—1+ 1) f:(Liw)
reL

2 (1)
€T (o) r.g;{ (Liw — by + l)riji (Liy — Uew)
r+1
IT (iw — Low—1) fi(liy — 1) (7)
€K (io) ré}lf! (li.N - lT'N)'r{l:]:i (li.N - lr,N - 1)
r=F1

N
=—qvaa+ 2 byt X lby— 2 lLya+ 1N
r=1 reM reL

Identifying terms with the same dependence on the 7, y_, yields

Ly + DA ()
2 =V Tox =T+ 1) 1T G =

TE€J (%) reMG
r¥41
; Byfilin—1) (8)
- 2 (=1 - p Sp—
€K (i) reé](:io)(li,lv lr.N)r{z;: (li.N lr.N 1)
rF1

N
==y + 2 boy+ X lLy+ N,
r=1 7€M (i)
: (i + D filliw)
D A 1 Y /oy D 1T G = L)
(]

1€J (10) .
rErligLo) (9)
i B3 filiw — 1)
. . —ly+1 ly—ly—1
1EK (%) rEIZIIF{io)( e of )r{l:];, (o ¥ )
r4q

ifiz=z1
and

iy + 1) f:(lw)

! i, 7). 1 li, - l,.
i€ (i) rEMﬂ(?n)( oy~ by + )r{zi (U )

r+1 (10)
B fs(lin)
S Gt Yy ey vy 7 A Ay g |
€K (i) ?'Gﬂg@:o)( N r.h)ri]:i ( iN N )
r+i

fory=0,...,A—-2if1=2.

We next choose 7, and further we let all the I; y:s for ¢ different from
j take their extremal values I; y extr -
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By starting with the extremal value on /; ; and then shifting it by
one unit at the time we get a series of equations from which we can
calculate f;(};, 5). Thus for n(iy) = 2,7 €Q (g, —) and ki y max = U, »
< Zy, N, max- We find

(_ l)j_H_ fﬂ(lJN)
H (liN - er extr + 1) H (l:lN — N, extr)
1€ 1" (%)
r#j
/R4 1
= — 1) fi (s, min)
l=l§ min 1€ V%:—) =D I Ghwmn = byyexte + 1) IT (Lgomin — by, exte)
(o ig 7 €TV (%) rd
r+1 7]
rj
1
Gz — T+ 1) Giyymin — 1)

N R AT fellmax — 1)

I=Uzmn €V Got) IT (b, max — by, extr) g; (liNm&x — bemoexte — 1)

i — 1 —
TET*(I%) ri ( iNmax_ l 1)
r+j 4,N,max
— 2 (__ 1)7’ fi(ll.N.mln) (lj,N - lI.N.mln +1)
1€V (io—) reilI'I'( : )(lf.N.min = b wyextr + l)rlg (liw,min — b, exte) (b rmin — U,5)
L0 v
L rHi ri
i i\Y%4,N, max 5.¥  Y%,N,min
B 1 AU 1) oy — by -+ 1)

€V (0 +) rélaz.(%(liﬂ max — 'nN, extr) H ltN mx—er extr — 1) (lleax_l N T 1)

r41 r =9=.’i
so that

(=1 f;(4, %)
= H (li, - r,Nextr 1) H (lj,N_lr,N,extr)

1€ 1" (i) 7€V’ (o, —)
fi (ll.N.min) H (li N = r,N min)
7€ V,(;"-’
(_ 1);‘ r41
iEV%.:,—) Il Gymin — byexte + 1) II (lmmin — U z,exte)
r €71 (i0) i
71
N
- Eg) (la',N - lr,N,extr ) ]]1 (lf, - r,N,extr) (11)
r€Q (1o =
fi(ll.N,ma,x - 1) .II (liN — Yy, N,max + l)
1€V (i, +)
(_ l)i r+1
1€V (io+) II (ll.N.max - r,N.extr)r{Zi (l(.N.max — Yr,N,extr — 1)

7€ 1" (d0)
741

= 9}1) &, w) -
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Sim‘ﬂa’rly when n(@o) = 2:7. E V(im +) and li,N,min < lf, = lJ,N,max

N
(=Y f;(Gw) = IT Gw = by wyexte + 1) IT (U, 5 — b, 3, extz)

7 €F (o) r=1
fi (li.N.mln)Te IT Uy = byon +1)
Yoy —.
. (_ l)i r41
L€V (G0 —) reﬁ io)(li.N.max — by, exte + )r{Zt (U, max — o, exte)
1
- E%]( )(la',N — b Nyexte + 1) QV](Y +)(la',N — b, N, extr) (12)
€T (4o, r (™
fi(ll,N,ma.x - l) H (llﬂ - r.N,max)
re Vi’ro: +)
2 (=) L
TEV (G +) el (io)(l"N' max — ‘rA, extr)T{#];: (l‘.N.ma.x = YN, extr 1)
r41
2 (1, ) -

When 7 (¢y) = 1,5 € @ (3,) and when n(ig) = 1,9 € W (i,) we can derive the
same expression as befor on f;(l;, y) with similar calculations.

‘When 7 (z,) = 0 there are three possibilities for the set V; it can be
{1}, {I} or {1, N}. We find when 1 € W (3,) for some 4,

i, v) = 97 (, ) .
+ (h,x — ly, ¥ max + l)rl=]1 (b, 5 — b, ,extr) (13)
and when NV € Y (¢,) for some %,
fx (U, ) = 9% (U, ) .
+ Uy, v — Iy, ¥, max + 1) .1=]1 Uy, v — by, v, extr) - (14)

The Egs. (11)—(14) show that f; are polynomials. We want to show
that it is the same polynomial independently of j. All f; where j lies on
the same side of 7, must, according to the equations, have the same form.
By taking 4, on the both sides of an element in ¥ we can show that the
form is the same on both sides of ¢,. This is possible except in the case
when V = {1, N} and neither I, 5, oy DO Ly, 5, min exists. This case will
be handled separately. By the Eq. (9) we can determine the degree of
the polynominal. As (9) holds for an infinite set of arguments the overall
degree of the fraction in the left member is one. The degree in the
denominator is V 4+ 4 — 1. So the degree of f is NV + 1. It also follows
immediately from the Eq. (9) that the coefficient in front of the term of
the higest power is (— 1)/. Therefore we can write

N+1

— 1Y f;(l,m) = 17 (5 = box)

r=
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when § € V (¢, —) and 4, y,min — 1 < I, &, max and when § € V (49, +) and
b, ¥ymin = U, 5 = Uj, 5, max- BY the construction f;(J;, ) has to be zero for
i, ¥ymax a4 I v, in — 1 for § € V. By inspection of the Eqgs. (11)—(14)
we find that f;(l;, ) is zero for all 7,y when V does not contain r and
by, 5, min — 1 When r € T"(i5) for some ¢, This puts restrictions on the
number I, x max and .y min — 1 as at most N 4 1 of these can be
different.

In the case when V = {1, N} and neither !, y, max DOT Iy, x, min €Xists
we can establish that f, and fy have the same form in the following way.
That they are polynomials of degree N + 1, that they have N — 1 roots
in common and that the coefficient in front of the term with the degree
N + lis — 1 and (— 1)¥ respectively follows as before. Let the remaining
roots be u, v and z, y respectively. From Eq. (10) with both /,, 5 and
Iy, v free follows then that

Gyv+lyy—1(w+v—2—y)—2uv+ 22y =0

shall hold identically in 7, y and Iy, y. Therefore the remaining roots
must be the same, so that f, and fy have the same form even in this case.

From Eq. (8) we can easily evaluate yy., by putting a very large
by, v (orif I, i, max eXists, a negative Iy, y with a very large absolute value)
into Eq. (8). This yields

N+1
AN+1= TZI byvii+ N+ 1.

Conditions for Unitarity, Irreducibility and Inequivalence

The unitarity of the representations and the Eq. (3) requires that
A +1 is real and

pi(@) = — @;(ax’) -
We can change the phases of the vectors &(«) by multiplying them by

N
a factor JJ w,(l,, 5) of modulus one so that ¢; become positive or zero
r=1
on I'. We have, therefore,

N
Dy, y116(0) = _21 @;(a) 5(“1—(\-77')
7=

. N
Dy i1, 5&(x) = .21 p; (o) & (o)
7 =

N+1 N
Dy i1, 8118(0) = (2 L, N1 — _21 li,vn+ N+ 1) &(w)
j=

j=1
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where
N+1 N—1 1/2
IT Gy~ lwsd) IT Gym — b1 + 1)‘
@i(e) = [1=1 r=1
‘ II (i — lw + 1) by — Lew) 1
r+i
and

Pi(0) = — @;(on’) -

For conveneance the expression for ¢;(«) has been extended. Owing to
this the denominator may become zero for certain choice of «. When
this occur g;(«) is zero.

That the representations obtained in this way are irreducible follows
immediately from the fact that the representations of % (V) occur at most
once, and that we can not devide /" into two parts so that all matrix
elements between vectors in the different parts are zero.

To determine equivalence conditions it is suitable to establish the
conditions which must be satisfied by a unitary operator that transforms
one Gelfand-Tseitlin base into another Gelfand-Tseitlin base and is con-
sistent with the phase convention. Clearly it must not mix the irreducible
spaces of the u (IV)-subalgebra since they correspond to inequivalent re-
presentations. This then implies that the unitary transformation irre-
spective of an irrelevant scalar phase-factor, reduces to a direct sum of
unitary transformations in the irreducible spaces of % (N). We can now
proceed to u (N — 1), u (N — 2), . .. and repeat the argument. So we find
that irrespective of an irrelevant scalar phase factor the unit operator is
the only unitary transformation that transfers one Gelfand-Tseitlin base
into another Gelfand-Tseitlin base. Therefore two representations are
equivalent if and only if all the matrix elements are the same in the
two representations.

The Representations of u (N, 1)

Let us now summarize the results for the representations of u (XN, 1).
We distinguish between nine kinds of representations distributed on
three classes. For each class we give the requirements on all representa-
tion in the class, and thereafter we list the different cases. In each case
we first write the notation of the representations D(j, %; 0,y 1, - - -
Iy 41, v4+1) Where the integer j indicates the class and together with the
letter x the kind of the representation. The numbersZ x4, .. -, Iyi1, y41
then indicate the particular representation. The notation is followed by
a prescription for the numbers /; y,, which ends with a period. There-
after follows a prescription for the range of the numbers/; y. To clearify
the conditions we show in a diagram for a typical representation of the
particular kind the values of /; x, and the range of the values ;, y.
9 Commun. math. Phys., Vol. 10
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For every different choice of the numbers /; y,, that satisfies the
conditions below «(IN,1) has an inequivalent unitary irreducible
representation.

Class 1. ly, y bounded from below

The numbers I, y,, are ordered so that I, y.,,>1lyyi1> "
>y vy and b vy — U x4, are integer for ¢ =2,..., N

D(1,8; b, N1 - o Iysa, 541), Where b, yoy — lyiq, 44 is integer,
lyyer <lys,ve <b,yyand by yiq = by, yoq + N — ¢ when b v,
<Iyi,v+1

by 2 by + L by = liyven + 1 when Iy iy < Iy, e
by, w1 Z by 2 by yiaea When by, oy > Uy, naae

b= 5 4 3 6 2 1
I I | | | iyt
l
j= 5 4 3 2 1
P B | CT 1T 171 [T T 7 L.y
l

Fig. 1, 8. The representations of «(5) in the representation D(1,s;7 + 13, I + 8,
14+2,14+1,1,1+ 3)of u(5,1)

D(,e; bL,y41s - Uyss,v41), Where lyyy yvyy is real, Iy, yvi1
<bLwyu+ Lliyy=Ilyyy+ N—iwhenNz=i=N+lyxn
= Iy 41, w410

hyZ by + by 2y 2ly + 1ori=2,.., N

1= 5 463 2 1
L 111 | | Liyer
!

j= 5 4 3 2 1
1 T T T T 11 1T Lx
l

Fig. 1, e. The representations of (5) in the representation D(1,e;? + 11,17 4 8,
1+2,1+1,11+ 14) of u(5,1)

Class 2. 1, i bounded from above

The numbers /;, 5.1, are ordered sothat &, y ;1 >l 11> . - > Uy, ¥ 41>
and Iy, — l;, y4q is integer for s = 2,..., N.

D(2, s; b,y41s - - s Iyy1,541), Where by, vy — lyyq,v4q I8 integer,
v <lysywea <lhyyand iy =l,ye + 1 — i when J; 5,
> Iy i1, ¥4
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v,y € w15 liyyar 2 by Z b,y + 1 When by oy <lyig, w3
v =1lyyyawhenly vy > lyig, v

i= 5 4 6 3 21
L 1 — lbiwsa
1
j= 5 4 3 21
T 11 T T 11 11 -
l

Fig. 2, s. The representations of «(5) in the representation D (2, s; 1 + 13, I + 12,
1+ 11,1+ 5,1,1 + 10) of u(5, 1)

D@2, e; b,ys1 - via,x41), Where lyoy y,y is real, Iy
>y, ve1 > lywen — L lywpn =lypa+1—4¢ when 1 i1

+h, 41— v, v )
lN,N = lN,N+1; li,N+1 = li,N = li+1,N+1 + 1 for s = 1, .o .,N - 1.

i= 5 4 362 1
L l 111 1 Lwss
1
j= 5 4 3 2 1
11 1T 1 11T 17717111 le
1

Fig. 2, e. The representations of % (5) in the representation D (2, e; I + 11, 7 + 10,
1+9,1+3,21+9.6) of u(5,1)

Class 3. Neither is Iy, bounded from above nor ly, y from below

The numbers I; y,, are ordered so that
bhover > by, ye1 >0 > Iy g, w41 80d b, yyq — b, vy is inbeger for
1=2,..,N—1

D@3, 85 by, x41> -+ Iys1,541), Where by vy — ly,yyq and by,
— w1, 34 are integral, Iy g, v41 < Iysq, w41 < Iy, wa1 < by, 341 and
li, w41 =1 — idor some ! when Iy 1,y 11 <l yi1 < Iy, N41-

1= 4 3 6 2 5 1

I ] L1 1
> LN+

l

j= & 4 3 2 1

—T—T1 1 [T1T-11 L1 o — ——
N

l

Fig. 3, s. The representations of «(5) in the representation D(3,s; I + 13, I + 8,
U+4,0,14+9,1+7) of u(5,1)

hy2lbya+t Ll yyauZlyz by + 1 whenl x>0 vy,
> Iy, n41 OF Ivg, N1 > by N > Iy, Ny
9‘
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by = Lyyyn + Land Ly v = Uvyq When Iy g nvp < Uyna
<lyy+13ly,y = Wy, 540

D@3, e; L,yi1 - o Iyis, we1) Where Iy o, and Iy, x,., are real,
v — 1 <lyymen S v < lbwir + 1, lyypa =1 — 4 for

some [ when Iy, 541 < lyys1 = Wy, ven [lver — by,wa| < 1 and
[l w1 — Iy y1, 41| < 1forsomej < N —landsomek < N — 1.

hyzbyn+tbLlgvuzlyzlya+1lfori=2.. ,N-1;
ly,v = Iy, ¥4

1= 4 6 352 1
| [ 1 li,N-l—l
l
j= 5 4 3 2 1
1 1 1 11 11 1 | | - ) I | 1 1 1 1 | | I B le
l

Fig. 3, e. The representations of % (5) in the representation D(3,e; ! + 13, I + 5,
1+4,1,1+46,1+3.2) odu(5,1)

D@3, m;l, i1y o vy, ye1), Where Iy, — ly,y4q is integral,
bver >, §a1 Wy, v 38 Tal, 4y + 1>y, 5y > — 14 min
{v-1, 5415l w1} b,y =1~ ¢ for some I when Iy i 51 = U, yiq
<ly,yt1 o Wy vy <lwi1 < Wi, wiv [lver — Wi, wal <1 for
gome j < N or there is no I;, y,, such that Iy 1 v <l vi1 <ly,v41

or by, vo1 < li,y41 <lyi1, 541

hyzbhya+t Ll vz lby =y +1whenl, x>y vy
orli s,y <lyyivlyyuZly=l,y+1whenl,_; 1>y v
>y g1 by, y <min {ly 3, 541 Iy, y 1)

1= 4 5 3 26 1
1 1111 ! liwss
l
j= 5 4 3 2 1
T T | | T 11— Ly

Fig. 3, m. The representations of «(5) in the representation D(3, m;! + 13, I + 9,
148,51 +17,1+ 9.6) of u(5,1)

D@3, d; ll,N+1’ cee l.N+1,N+1): where lN,N+1 and lN+1,N+1 are real,
Iy, 5 +12 Iy 41, v41, therelationly, y 1y = b,y 41 +7 Z lyeq, 541 is 10t ful-
filled for any integer j; |ly, y+1 — Ui, y+1| >1fori=1,...,N—-1.
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hyzbhya+tbLil ayp2lhy2ly+1lfori=2.. ,N-1;
ly,y = ly1, 511

1= 4 3 2 1 65

li.N+1

= 5 4 3 2 1
T T 1 T 1T 1 T T 7T 1 T T 1 T T T Ly
l

Fig. 3, d. The representations of % (5) in the representation D(3,d; I + 13, I + 9,
14+ 4,1,1 4+ 15.6,1 + 15.2) of %(5, 1)

j

D@3, ¢; b, nt1s - - > Iys1,541), Where Iy, y,; and ly,q, x4 are con-
jugated complex, the imaginary part of Iy, y_, is positive.
hyzhyntlLiligypzlhyzlyn+Liri=2.. ,N-1;

v S Wy, w41

5
+
= 4 3 2 1
. : : : ly+1
! 6
+
j= & 4 3 2 1
I 1T 1T 1 17 7171 11T 71T 1 1T 1T 1 I T°1T 1 le

Fig. 3, c. The representations of #(5) in the representation D(3,¢; I + 13,1 + 9,
1+4,1,1+26+4+:18,1+2.6—1¢1.8)of u(51)

The Representations of su (N, 1)

N+1

The generator 3 I, that appear in the connection (4) between
=1

generators of #(IV, 1) and s« (XN, 1) is represented by the scalar operator

N+1
2oyt w So the infinitesimal generator
=1

! 1 N+1

S, o= In,x — mré'l I,

is represented as
1 N+1

(Dk,k ~NIT §1 Dm) (o)

k 1 N+1 N
= ( Dle— 2l — 3T 2 vt 7) &(a) .
r=1 r=1
The eigenvalue is invariant under the transformation
ly,a=>lp,q + 4
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where A is a real number. The same applies to the matrix elements of
the representation of the generators

Jroor1 = Ir, k41
and

Jk+1,k = Ik+1,k
Transformations with different values on A therefore give rise to the
same representation of su (I, 1). A way to fix the niveaue on the numbers
l,, ¢ in a representation of su (V, 1) could be to require that

lN—l,N +1=0.

For every representation of « (IV, 1) that satisfies this requirement there
is a representation of su (V, 1).

The Representations of SU (N, 1)

From results by GArDING, HARISH-CHANDRA, NELSON and DixMIER
[7], it is known [4], that there is a one-to-one correspondence between
continuous unitary irreducible representations of SU (XN, 1) and the
algebraically irreducible unitary representations of sw (XN, 1). The pre-
vious classification is therefore applicable both to the group SU (X, 1)
and to the algebra su(,1). Among these representations those are
representations also of the group SU (N, 1) that satisfy the global con-
ditions of this group. One such condition is that the unit element of the
group is represented by the unit operator, which means that

N+1
exP( ((N+1 2D,,,))=1 for t=0,2z7,...
r=1
and for all k. This involves that
k=t ¥+1 NN +1) . .
(N +1) (2 byw — 2 lr,k—1) - 2 beyyi1— '—(‘2+—l 1s integer.
r=1 r=1

Another condition is that U (V) forms the maximal compact subgroup,

which implies that 7, 5 are integers. These two conditions imply that
N+1

2 U, w41 1s integral. This means that we have to require that Iy, 41
r=1
is integral for representations of the classes 1 and 2, and that Iy, v,
+ Iy 41,541 18 integral for representations of the class 3. We must also

fix the niveaue on the integers I;, ; which is done by requiring that

N+1

0< X lyns=N. (1)

r=1
For every representation of (XN, 1) that satisfies these requirements
there is a representation of SU (V, 1) and besides the trivial one these
are all the representations of SU (N, 1). We do not once again list the
requirements for the different representations as they are almost the
same as in the u (&, 1)-case. Let us just notice that the set of representa-
tions of class 1 and 2 is discrete and that there is one continuous para-
meter that classifies the representations only for the D(3,e;...),
D@3,d;...)and D(3,c¢;...) cases.
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The Representations of SU(N, 1)/Zy .4

Representations of SU (I, 1) that represents the center Zy,, trivi-
ally are also representations of the factor group SU (N, 1)/Zy . This
occurs if we replace the requirement (15) for the representations of
SU(N, 1) by

N+1
2 My, y41=0.

r=1

In this way we get all the representations of SU (N, 1)/Zy ., besides the
trivial one.

The Representations of U (N, 1)

Representations of « (XN, 1) that fulfill global conditions analogous to
those of the representation of SU(N, 1) are also representations of
U (N, 1). The nivaue on the integers I, ; is now essential. Thus, we get
all the representations of U (IV, 1) besides the trivial one by applying all
the restrictions of the SU(V, 1) case except (15) to representations of
u (N, 1).

I would like to thank Dr. A. KreLBERG and Professor J. Nirsson for helpful
discussions.
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