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Abstract. A proof is given of a theorem on the integrability of Pfaffian forms
which is used in Caratheodory's approach to thermodynamics. It is pointed out
that Caratheodory's original proof of the existence of entropy and of absolute
temperature is incomplete, since it fails to take into account the local nature of this
theorem. By combining the theorem with the results of BTJCHDAHL and GBEVE on
the existence of continuous empirical entropy functions, it is shown that the First
and Second Laws of Thermodynamics imply the existence of a globally defined
differentiable empirical entropy function for every simple thermodynamic system.
This result supplies the missing step in Caratheodory's argument and makes a
separate proof of the principle of increase of entropy unnecessary.

1. Introduction

It has been pointed out by BERNSTEIN [1] that Caratheodory's

proof [2] of the existence of entropy and of absolute temperature is

incomplete, since the local nature of a certain theorem on the integrability

of Pfaffians is not fully taken into account. The theorem in question

[3,4] runs as follows:

Theorem. Let M beaC00 differentiable manifold [5] (finite-dimensional

and without boundary), ψ an everywhere non-vanishing C°° differential

I-form on M. Then the following three conditions are equivalent:

(i) Given x in M, there exists an open neighbourhood V of x in M

such that each neighbourhood W of x in V contains a point y which cannot

be connected to x by a piece-wise C°° path γ in V which satisfies ψ{γ (t)} = 0

whenever γ (t) is defined.

(ii) γ Λ dip = 0.
(iii) Given x in M, there exists an open neighbourhood V of x in M such

that the restriction ψ\V of ψ to V is of the form ψ \ V — f d g , where f and g

are C°° functions on V.

For the sake of completeness, a proof of this theorem is given in the

appendix.

Caratheodory's form of the Second Law of Thermodynamics (Cara-

theodory's Principle) implies that a certain everywhere non-vanishing

differential 1-form γ on the thermodynamic configuration space M of a
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simple [2] thermodynamic system satisfies condition (i) above. It
therefore satisfies condition (iii). However, in the absence of further
information, there is no reason to suppose that it will satisfy the stronger
condition:

(iii)' There exist C°° functions / and g on M such that ψ = f d g .
Thus, although ψ has a local integrating factor in the neighbourhood of
each point of M, it need not have a global integrating factor.

It might be thought that (i) would imply (iii)' if the manifold M
were topologically sufficiently simple, e. g. simply-connected or con-
tractible. That this is not the case is made evident by the following
simple example, in which M is contractible.

Let M be the plane R2, and let y> be the differential 1-form

ψ = 7/3(l — y)* dx + {y3 — 2(1 — y)2} dy .

Then ψ is everywhere non-zero and satisfies (i). However (iii)' cannot
hold. For suppose ψ = f d g , where / and g are C°° functions on the plane.
Then, on the infinite strip 0 < y < I, g must be of the form

x T / 1 , 1g(χ,y) = h\χ + -ϊ + -γ^:

where h is a C°° function of a single real variable. The function / is
therefore given on this strip by

f ( x , y )

Since / is continuous and everywhere non-zero, we have

/ (%, y) -> 1 (%, 0) φ 0 as y -> 0 from above
and

f(x9 y) -> f ( x , 1) 4= 0 as y -> 1 from below .

Consequently ί3/2 h' (t) and t2 hf (t) must both tend to (finite) non-zero
limits as t -> + °°j and this is impossible.

BERNSTEIN shows [1] that the existence of a global integrating factor
is not in fact essential to Carathόodory's argument the above-mentioned
local theorem is sufficient by itself. Assuming the First and Second
Laws of Thermodynamics and the existence of an empirical temperature
scale (Zeroth Law), he obtains an everywhere non-vanishing function L
of temperature only, determined to within a non-zero multiplicative
constant, such that L~λ ψ is a closed differential 1-form on M for each
simple system. When suitably normalized, this function L is the absolute
temperature. The systems considered by BERNSTEIN have thermo-
dynamic configuration spaces M of a very simple kind. In particular,
they satisfy the condition

W(M\ 1R) = 0
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where Hl(M\ 1R) is the first cohomology group [5] of M with real
coefficients. For such systems L~l ψ = dS, where the diίferentiable
function S on M , determined to within an additive constant, is the
entropy of the system.

We wish to consider a more general situation, in which M is an
arbitrary (paracompact) connected, finite -dimensional C°° diίferentiable
manifold without boundary [5], not necessarily satisfying the condition

1R) = 0.

In justification of this greater degree of generality, we remark that
mechanical systems are known whose configuration spaces do not satisfy
the above condition. A simple example of such a system is that of a
rigid body constrained to rotate about a fixed axis. Mechanical systems
of this kind would be expected to have thermodynamic analogues whose
configuration spaces M would also fail to satisfy the condition

m(M\ 1R) = 0.

For such systems, BERNSTEIN'S argument would not demonstrate the
existence of an entropy function, since the closed form L~1 ψ need not
be exact. A different kind of argument is therefore necessary in such
cases.

A completely different approach to the problem is that of BUCHDAHL
and GKEVE [6], who show under rather general conditions that the Second
Law of Thermodynamics implies the existence of a continuous empirical
entropy function on M , i. e. a continuous real-valued function on M
which satisfies the principle of increase of entropy for adiabatic transi-
tions. Actually it is not even necessary to assume the full content of the
Second Law to obtain such a function, as LANDSBERG [7] has pointed
out. The difficulty with this approach is that the continuous empirical
entropy function obtained is not necessarily diίferentiable, nor is there
any obvious way of modifying it to make it so. Indeed, its level surfaces
need not be submanifolds of M . It cannot therefore be used directly
in the search for a global integrating factor for γ.

We shall show that the existence of a continuous empirical entropy
and the existence of local integrating factors for ψ together imply
the existence of a global integrating factor converting ψ into the dif-
ferential of a (differentiable) empirical entropy on M . Our argument
makes no use of the concept of temperature. However, if an empirical
temperature scale is assumed to exist, our result provides the necessary
starting point for the usual arguments leading to the existence of entropy
proper and of the absolute temperature scale. Since these arguments are
quite standard [2, 3, 4], they will not be repeated here. An advantage of
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this approach is that no separate proof of the principle of increase of
entropy is required [3], since the true entropy is a strictly increasing
function of the empirical entropy obtained here.

In section 2 we demonstrate the existence of a continuous (global)
empirical entropy σ by methods similar to those of BUCHDAHL and
GKEVE [6], but without assuming the Second Law of Thermodynamics.
The First and Second Laws are introduced in section 3 together with
certain supplementary smoothness assumptions, and it is shown that a
differentiable local empirical entropy can be defined in the neighbourhood
of each point of M. The construction of a differentiable global empirical
entropy s is finally accomplished in section 4.

2. The Construction of a Continuous Global Empirical Entropy

Throughout this paper we shall focus our attention on a single
thermodynamic system K, which we shall suppose to contain no internal
adiabatic partitions and to be free from hysteresis. This is slightly more
general than a simple system in the sense of CARATHEODORY [2] or a
standard system in the sende of BUCHDAHL [3].

In this section we shall suppose that the possible (equilibrium)
states of K may be represented by the points of a connected separable
topological space [8] M.

By an adiabatic transition of K we shall mean a (not necessarily
reversible or quasi-static) transition of K in which the interaction
between K and its surroundings is purely mechanical, in the wide sense
in which (for example) electromagnetic and gravitational interactions are
counted as being mechanical.

A preorder [9] relation ^ on M may now be defined as follows.
We write x <£ y (or y ^ x) and say the state y is accessible from the
state x, when the system K is capable of undergoing an adiabatic transi-
tion from the state x to the state y. When this is not the case, we write
x > y (or y < x) and say that y is inaccessible from x. It is clear from its
mode of definition that the relation ^ is a preorder relation, i. e. that
it is reflexive

x ^ x
and transitive

x ^ y and y ^ z =Φ x ̂  z .

The preorder relation fg induces an equivalence relation ~ on M
defined by

x ~ y if and only if x ̂  y and y ̂  x .

When x ~ y, we shall say that the states x and y are mutually accessible.
The equivalence classes of points of M under ~ will be called mutual
accessibility classes. Let Σ be the set of all mutual accessibility classes
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and let n: M -> Σ be the natural projection which associates with a
point x of M the unique mutual accessibility class π(x) to which it
belongs. Then < passes to the quotient to induce an order [9] relation
on Σ, which we shall, by abuse of language, also denote by ^. This order
relation may be unambiguously defined by

π (x) ^ n (y) if and only if x ^ y .

We shall suppose that the preorder relation ^ on M satisfies the
following four conditions:

(A) Given x and y in M9 then either x ^ y or y ^ x.
(B) If x, y ζ M and x < y, then there is a neighbourhood F of x

and a neighbourhood W of y such that

x' ζ V and y' ζ W => x' < y' .

(C) Given x in M, there exists a y in M such that x < y.
(D) Given ce in Jf, there exists a y in M such that y < x.
Condition (A), which is physically reasonable for systems of the type

under consideration, ensures that Σ is totally ordered under ^. Condition
(B) is a continuity assumption linking the preorder relation 5j with the
topology of M. It states that the preorder relation ^ is closed [9],
i. e. that its graph

{(x,y)£Mx M x^y}

is a closed subset of the topological product M x M. Condition (C) states
that M has no maximal element under 5; and implies that the totally
ordered set Σ has no greatest element. Similarly, condition (D) states
that M has no minimal element and implies that Σ has no smallest
element. In particular, we see that Σ must be an infinite set. Conditions
(C) and (D) have the physical consequence that K has no state of maxi-
mum entropy and no state of minimum entropy. We remark that,
although the Third Law of Thermodynamics imposes a lower bound on
the possible values of the entropy of K, this lower bound is never at-
tained, since the absolute zero of temperature can never be reached.

By a global empirical entropy a on M we shall mean a real-valued
function a on M such that

x ^ y if and only if a(x) ^ a(y) .

By a local empirical entropy ay on a subset F of M we shall mean a
real-valued function <yv on F such that, for states x and y in F,

x ^ y if and only if av(x) ^ βγ(y)

We shall now show from postulates (A), (B), (C) and (D) that there exists
a continuous global empirical entropy σ on M.
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Let τ be the order topology [8] on Σ, i. e. the weakest topology
on Σ for which the order relation ^ is closed, and let τ' be the quotient
topology on 27, i. e. the strongest topology on Σ for which the natural
projection n : M -> Σ is continuous. It follows at once from (B) that r
is weaker than τ' (in the wide sense), i. e. that the identity map

is continuous. Thus (27, τ) is the image of a connected separable space
M under a continuous map i o π. It follows that (Σ, τ) is itself connected
and separable. Since Σ is an infinite totally ordered set with no greatest
element and no smallest element, and since τ is its order topology, it
follows [see Ref. (8), p. 118] that there exists an order-preserving homeo-
morphism h of (Σ, τ) onto an open interval of the real line, which we
may take to be the semi-infinite open interval (0, σo). Defining

a = h o i o π : M -> (0, oo)

we see that σ is a continuous global empirical entropy on M.

3. The Existence of Differentiable Local Empirical Entropies

From now on we shall assume that the connected separable space M
is a finite -dimensional C°° differentiable manifold without boundary [5].
In this section we shall deduce from the First and Second Laws of
Thermodynamics and certain auxiliary assumptions that there is an open
covering i^ of M. on each set V of which a C°° local empirical entropy sv

is defined whose differential never vanishes. In particular, the mutual
accessibility classes are C°° submanifolds of M of codimension 1.

A transition of the system K will be said to be quasi- static if it
proceeds so slowly that K can be considered to be in thermodynamic
equilibrium at each stage of the process. The transition can then be
represented by the motion of a point in M . In fact we shall suppose
that every quasi-static transition of K may be represented by a piece-
wise C°° path γ : [0, 1] -> M.

Instead of assuming the First Law of Thermodynamics directly, we
shall suppose that the following consequence of it holds :

(E) There exists an everywhere non- vanishing C°° differential 1-form
ψ on M with the property that a piece-wise C°° path γ in M represents
a possible quasi-static adiabatic transition of K if and only if ψ{γ (t)} = 0
whenever the tangent vector γ ( t ) to the path exists.

Before proceeding any further, we shall indicate briefly how (E)
might be deduced from the First Law.

It is an immediate consequence [3, 4] of the First Law and postulate
(A) of section 2 that there exists a real-valued function U on M with
the property that the work done by K on its surroundings in the course
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of any adiabatic transition (quasi-static or otherwise) is equal to the
amount by which U decreases in the transition. The function U on M is
determined to within an additive constant and is called the internal energy
of the system K. Assuming that U is a C°° function on M and that there
exists a C°° differential 1-form ω on M with the property that the work
done by K on its surroundings in the course of any quasi-static transition
(adiabatic or otherwise) is given by

fω = fω{γ(t)}dt)

γ 0

we see that every quasi-static adiabatic transition γ must satisfy the
condition

ψ{γ(t)} = 0 whenever γ(t) exists,
where

Ψ = a) -f dU .

Assuming that ψ never vanishes and that every piece-wise (7°° path γ
in M satisfying the above condition represents a possible quasi-static
transition of K, we recover condition (E).

The Second Law of Thermodynamics will be assumed in the form of
Caratheodory's Principle:

(D') Given a point x of M and a neighbourhood F of x in M, there
exists a point y in F such that y < x.

Since (D') implies (D), postulate (D) is now redundant. It follows from
(D') that every point x of M must satisfy one or other of the following
two mutually exclusive conditions :

(i) Every neighbourhood of x contains points y such that y < x and
points z such that z > x.

(ii) x has a neighbourhood consisting entirely of points y satisfying

y^χ.
If (i) holds, the point x will be said to be of type (i) if (ii) holds, x

will be said to be of type (ii).
For technical reasons we shall need one further assumption:
(F) The mutual accessibility classes are connected subsets of M.
We note first, as an immediate consequence of (D') and (E), that the

everywhere non-vanishing 0°° differential 1-form ip on M satisfies con-
dition (i) of the theorem on Pfaffians quoted in section 1. It therefore
satisfies condition (ϋi). Thus, given x in M, there exists an open neigh-

bourhood V of x in M such that

ψ\ V = λydSγ

where λv and sv are C°° functions on V and sv(x) — 0.
Since dsv is everywhere non-zero on F, we may assume without loss

of generality (by making F smaller and altering sv by a constant scale
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factor if necessary) that a local coordinate system (x^ . . ., xn) for M is
defined on F, that xn = sV) and that the points of F are represented in
this local coordinate system by the points of the open ball

x\ + χ\ + - + xl < 1

whose centre corresponds to the point x.

If y and z are points of F such that sv(y] ~ sv(z), then clearly y
and z may be connected by a (7°° path y in F on which sv is constant,
so that *ψ(γ] vanishes identically on γ. It follows from (E) that this path
and its reverse both correspond to possible quasi-static adiabatic transi-
tions of K. Hence y~ z and so σ(y) = a(z}. Thus a(y] = f{sγ(y}} for y
in F, where / is a continuous real- valued function on the open interval

(-1,1).
Now it follows from (D') that the function / can have no local

minimum, i.e. there exists no point s0 in (— 1, 1) such that f(s) Ξ> f(sQ)
for all s in some neighbourhood (s0 — δ, s0 + δ) of s0 in (—1,1). For
suppose that such an s0 exists, and let x0 be any point of F for which
SV(XQ) = sQ. Then every point of the neighbourhood sγl (SQ — δ, SQ + δ)
of x0 is accessible from x0, contradicting (D').

Since / has no local minimum, it follows that either

(a) / i s strictly monotonic
or

(b) / has a maximum at a point ξ of (— 1, 1), increases strictly in
(— 1, ξ ] and decreases strictly in [ξ, 1).

For suppose (a) does not hold. Let Δ be the open triangle

Δ = {(s, t) ζ R2; - 1 < s < t < 1}

in the real plane. Consider the real- valued continuous function F on
Δ defined by

J(M) = / ( 0 - / W

Since / is not strictly monotonic, the function F takes both non-negative
and non-positive values. It therefore takes the value zero somewhere
in the connected space A, i. e. there exist s1 and s2 such that

Since / has no local minimum in the open interval (sl9 s2), it follows
that / attains its least upper bound in the closed interval [sl9 <s2] at an
interior point ξ of the interval. Clearly / has a local maximum at ξ.
Moreover / increases strictly in (— 1, ξ]. For otherwise we could find s'
and s" such that
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The greatest lower bound of / in [s'} ξ] would then be attained at an
interior point, at which / would have a local minimum. Similarly /
decreases strictly in [|, 1), so that condition (b) holds.

Thus we have an open covering i^ of M and for each F in i^ a C°°
function sv on F which has no critical points and is such that

or I F = fo sv

where / is a continuous function satisfying either condition (a) or
condition (b) above. We remark that if condition (a) holds all points
of F are of type (i), while, if condition (b) holds, those points y of F
for which a(y) = ξ are of type (ii) and the remaining points of F are of
type (i).

It is now clear that our goal will be achieved if we can prove that
there are no type (ii) points. For then condition (a) must hold for each F
in y. By changing the sign of sv if necessary, we can ensure that / is a
strictly increasing function and hence that sv is a C°° local empirical
entropy on F. The remainder of this section is therefore devoted to
proving that there can be no type (ii) points.

Let x be an arbitrary point of M, Nx the mutual accessibility class
to which x belongs. We shall show that the points of Nx are either all
of type (i) or all of type (ii). Let JVjjP be the set of all type (i) points of Nx

and N^ the set of all type (ii) points of Nx. Then Nx is the disjoint
union of N$ and N^. But N$ and N^ are both open subsets of Nx.
For the family Nx n ̂  of all sets of the form Nx r\ V for F ζ i^ is an
open covering of NX9 and each set of Nx r\ i^ consists either entirely
of type (i) points or entirely of type (ii) points. Since Nx is connected,
by assumption (F), it follows that one or other of the sets N$ and JVjjp
must be empty.

Suppose now that x is a point of type (ii). Then, as we have just
seen, every point of Nx is of type (ii). Consider the non-empty subset Mx

of M consisting of those points y such that y ^ x. It follows at once
from (B) that Mx is a closed subset of M. But it is also an open subset
of M. For suppose y belongs to Mx. Then either y < x, in which case it
follows from (B) that y has a neighbourhood consisting entirely of points
inaccessible from x, or y ~ x, in which case y is of type (ii) and therefore
has a neighbourhood consisting entirely of points from which y and
hence x is accessible. Since M is connected, it follows that My, = M,
i. e. that y ^ x for all y in M. But this contradicts assumption (C).
There are therefore no type (ii) points, and our proof is complete.

4. The Construction of a Differentiable Global Empirical Entropy

In this section we shall first show that there exists on (0, oo) a C°°
differentiable structure 2', differing in general from the usual one ̂ ,
such that σ is a C°° submersion of M onto the C°° difFerentiable manifold
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{(0, oo), 2'}. Since any two C°° structures on (0, oo) are equivalent, we
shall then be able to construct a C™ global empirical entropy s on M
which has no critical points.

For any set V in i^', the set σ ( V ) is an open interval /. For it is the
image of the open interval (—1,1) under the strictly increasing continuous
function / associated with V. Since i^ is an open covering of M, it follows
that the set ./ of all such intervals / is an open covering of (0, oo). For
each / of J> we pick a V of i^ such that σ ( V ) — I and define Sj to be
the unique local empirical entropy on σ~1(I) such that sz V = sv.
By definition, Sj is C°° on V. In fact <§/ is C°° on the whole of cr~1(/)J

as we now proceed to show.

Let t be any point of /, and let E be the set of all points x of σ"1 (t)
such that sj is C°° in some neighbourhood of x in σ-1 (/). Since V r\ σ~l (t)
=f= 0, E is non-empty, and E is an open subset of σ~1(ί) by definition.
It is also a closed subset of σ~1(ί).

For suppose x ζ E, and let W be a neighbourhood of x in Ί^. Then,
since Sj and sw are both local empirical entropies on W Γ\a~~l(I)9 it
follows that sI(y) = F{sw(y}} for y in W r\ σ~1(/), where F is a strictly
increasing function on the open interval sw{W r\ a~1(I)}. But xζE,
so that TF contains a point ?/ of .£/. Thus <$j is (7°° in some neighbourhood
of y in W r\ σ"1 (/). It follows that F is 0°° on an open interval J contain-
ing sw(x) = sw(y). Hence sτ is <7°° on the open neighbourhood Sψl(J)
of x in σ~1(/), so that x ζE. Thus E is a non-empty open and closed
subset of the subspace a~I(t) of M. But cr~1(ί) is a mutual accessibility
class and is therefore connected, by assumption (F). Consequently
E = σ~l(t), i. e. Sj is C°° in the neighbourhood of each point of σ-1(ί).
Since t was an arbitrary point of /, it follows that <§/ is a C°° function on

σ-M/).
Since Sj is a C°° local empirical entropy on σ~1(I), it follows that

<$/(#) = ψι{<j(χ}} f°r # m β~l(I)> where φz is a strictly increasing conti-
nuous function on /. If / and J belong to «/ and / r\ J φ 0, then ^

and 5j are both C°° on σ~1(I r\ J). Consequently ψjθ (^ji/^j)"1 is a
strictly increasing (7°° function on ψj(I r\ J). It follows that the family
of local charts {/, φj}ις.j constitutes an atlas for a C°° diίFerentiable
structure Q)' on (0, oo), and clearly σ is a C°° map of M onto the C°°
differentiate manifold {(0, oo), ̂ '}.

Next we construct an order preserving diffeomorphism g of {(0, oo),
2'} onto {(0, oo), 3i}. Let {/α}α6^ be a C°° partition of unity [5] on the
(paracompact) <7°° differentiate manifold {(0, oo), £&'} which is sub-
ordinated to the open covering </" of (0, oo). For each α in A we choose
an interval /α of ,/ containing the support of /α and write φ 1<χ = φΛ.
Now (0, oo) is a 1-dimensional manifold, so that every C°° differential
1-form on {(0, oo), ̂ '} is closed. Furthermore, (0, oo) is contractible, so



62 J. B. BOYLING:

that every closed 1-form on {(0, oo), ̂ '} is exact. Thus every (7°° 1-form
on {(0, oo), 2') is exact. In particular, there exists a 0°° function g0 on
{(0, oo), &'} such that

Σ f«dφx = dg0.
otζA

Since each φκ is a strictly increasing function, it follows that gQ is a
strictly increasing function, and clearly gQ is a diίfeomorphism of
{(0, oo), &} onto an open interval (possibly infinite) of the real line with
its ordinary C°° structure. Composing gQ with any order-preserving
diffeomorphism of the latter onto {(0, oo), @t}9 we obtain a stritly
increasing function g, which is a (G°°) diίfeomorphism of {(0, oo), <&'}
onto {(0, oo), 2}.

Since g is a strictly increasing function it follows that the C°° map s
= go a of M onto {(0, oo), <$} is a C°° global empirical entropy on M.
Moreover s has no critical points, i. e. ds never vanishes. For s may be
expressed on each set V of the open covering i^ of M as a strictly
increasing C°° function of the corresponding C°° local empirical entropy
sv, and dsyis everywhere non-zero on V. It follows from (E) that ψ = λds,
where λ is an everywhere non-vanishing C°° function on M whose reci-
procal is thus a global integrating factor for ψ.
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Appendix

We shall here prove the theorem quoted in the introduction. Since
it is obvious that (iii) => (i), it will be sufficient to prove that (i) =Φ (ϋ)
and that (ii) =Φ (iii).

Proof of (i) =Φ (ii)
It will be more convenient to prove the equivalent result,

not (ii) => not (i) .

Suppose then that (ii) does not hold, and let XQ be a point at which
ψ Λ dψ φ 0. Let V be any open neighbourhood of x0 in M. We shall
show that x0 has a neighbourhood W contained in V such that each
point of W can be connected to x0 by a piece-wise <7°° path γ in V which
satisfies the condition

ψ{γ(t)} = Q whenever γ ( t ) is defined. (1)

Since φ never vanishes, we may suppose without loss of generality
that a local coordinate system (xv . . ., xn) is defined on V in which XQ

is represented by the origin (0, . . ., 0) of IRW and ψ takes the form

n

ψ= Σ ai(xV ' ' >Xn)dXi



Caratheodory's Principle 63

on F where
α<(0, . . . , 0) = 0 for i<n

θ f c ( 0 , . . . , 0 ) = l

and an(xly . . ., #n) is (strictly) positive throughout its domain of defini-
tion, so that we can define (7°° functions bi(xlί . . .,xn) for i < n by

bi(xl9 . . ., α?n) = -αffo, . . ., a?n) {αn(ffι» •> ^n)}"1 (2)

The above local coordinate system on F will be adhered to throughout
this part of the proof, and we shall not always be completely scrupulous
in distinguishing between points of F and their representatives in 1RW

with respect to this coordinate system.
Let φ1(t)> . . ., <pn-ι(t) be arbitrary C°° real- valued functions on the

closed unit interval 0 ̂  t ̂  1 such that

φi(0)=φi(l) = 0 ( » = 1 > . . . , » - 1 ) . (3)

Then we can find positive quantities η, δ and C satisfying η C ^ δ
such that the G'°° function

/(A, t,u) = Σ M* <Pl(*)> ••"* Ψn-lW, U} Ψi(t) W
ί< n

of the three real variables A, t and u is well-defined and bounded above
in absolute value by C when \λ\ ̂  η, 0 ̂  t ̂  1 and |̂ | ^ (3. Since / is
differ entiable, there exists a positive constant K such that / satisfies the
Lipschitz condition

|/ (A, *, %) - /(λ, ί, u2)\ ^ K \HI - u2\ (5)
for

\λ\£η, O^t^I, \Ul\ £ δ , \u,\ ^ δ .

Let Y be the (real) Banach space [10] of all continuous real- valued
functions y on the compact space [— η, η] x [0, 1] under the supremum
norm

and let Bδ be the closed ball of radius δ centre 0 in F. Then Bδ is a
complete metric space with respect to the metric

d(yι,y*) = bi-Vzl

Let T be the (generally non-linear) mapping of BQ into itself defined by

(Ty)(λ,t) = λ f f { λ , τ , y ( λ , τ ) } d τ .
0

Then, since / satisfies the Lipschitz condition (5), it follows that for any
two functions y^ and y% in Bδ we have

\(Tyι) (λ, t) - (Tyύ (λ, t)\ g η Kt\\yί - yj
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for \λ\ ̂  η, 0 ̂  t ̂  1. Arguing inductively, we find that

I I Tm η, __ φm », II <IK Vι -i Vn =

Thus, if m is large enough to make

ml

then Tm is a contraction mapping [10] of the complete metric space
Bδ into itself. It follows [10] that T has a unique fixed point y in Bδ.
The function y satisfies the integral equation

o

It therefore depends differentiably on t and satisfies the differential
equation

with initial condition

y(A,0) = 0.

Recalling the definitions (2) and (4), we see that the C°° path γ in F
which is represented in the given local coordinate system by the n C°°
functions

*>ι(t) = λ <Pι(t)

xn-ι(t) = λφn-ι(t)

on the closed unit interval satisfies condition (1). Its initial point y(0)

is x0 and its final point γ(l) has coordinates {0, . . ., 0, y(λ, 1)}. Our
next step will be to show that by appropriate choice of the arbitrary
functions <pi and the real parameter λ we can give y(λ,l) any desired
real value in a certain neighbourhood of zero.

It follows at once from (6) that y (0, t) = 0 and that

uniformly in t for 0 ̂  t ̂  1. Substituting the definition (4) into (6)
and noting that the functions δ^ are differentiable, we find that

i,# < n
where
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Partial integration and use of (3) allow us to rewrite this in the form

]imλ-*y(λ,l)= Σ {bt,t(0,...,0)-bitt(Q,...,Q)}fφi(t)φi(t)dt.
Λ->0 l^ί<j^n-l 0

(Ό
Now at the point XQ we have

<ψ /\ d<ψ = dxn /\ Σ bitj(0, . . ., 0) dxt Λ dx^ Φ 0 .
ί,j < n

Therefore at least one of the quantities bitj(0, . . ., 0) — b j t i ( Q , . . ., 0)
for I ^ i <j ^ n — 1 must be non-zero. By suitable choice of the
arbitrary functions <pt we can therefore arrange to make the right hand
side of equation (7) (strictly) positive. When this is the case, the function
y(λ, 1) must take a positive value ε1 for some positive value λ± of λ.
By continuity, the values attained by this function for λ in the range
0 ^ λ ̂  λλ must include all real numbers between 0 and εr Similarly,
by a different choice of the functions φit we can make the right hand
side of (7) negative. In this case we can find a positive number ε2 such
that y(λ, 1) can take every value between — ε2 and 0 for suitable λ.
Thus, for each value of xn in the closed interval [— ε2, εj, the point
(0, . . ., 0, xn) can be connected to XQ by a C°° path in F satisfying (1).

Now it follows from the existence and uniqueness theorem for solu-
tions of ordinary differential equations [11] that there exist positive
numbers μ and σ such that, for all values of the real constants xl9 . . ., xn

satisfying #?+•'• + #!< μ2, the differential equation

4τ- = Σ xi bί(s %ι> - •> s*n-ι, y) (8)
ds i<n

has a unique solution in the range 0 ̂  s ^ σ satisfying the initial
condition

y = χn when s = 0 . (9)

Moreover this solution y(s, xl3 . . ., xn) is a C°° function of s and of the n
real parameters xl9 . . ., xn.

Consider the C°° map / of the open ball x\ + h x\ < μ2 in Rn

into F defined by

f ( x l 9 . . ., xn) = {σ xv . . ., σ xn-l9 y(a, xv . . ., xn)} .

Since y(σ>0) . . .,0, xn) = xn, we see that the Jacobian of / has the
positive value σw~1 at the origin. Hence there exists a number ρ satisfying

0 < ρ ̂  mm(εv ε2) (10)

such that / maps the open ball x{ -f -+- x^ < ρ2 in lRn diffeomorphi-
cally onto an open neighbourhood W of XQ in F.
5 Commun. math. Phys., Vol. 10
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Consider now an arbitrary point f ( x 1 , . . ., xn) of W. Then the (7°°
path in F defined by

t -> {t a xv . . ., t σ xn_l9 y(t a, x1} . . ., xn)}

for 0 ̂  t ^ 1 has f ( x l 9 . . ., xn) as its final point. Since the function y
is a solution of the differential equation (8) with initial condition (9),
it follows that this path satisfies condition (1) and has initial point
(0, . . ., 0, xn). But \xn\ < ρ, and therefore in view of (10) this initial
point may be connected to x0 by a C°° path in F satisfying (1). Thus
each point of W may be connected to XQ by a piece-wise C°° path in F
satisfying (1).

Proof of (ϋ) Φ (iϋ)
The proof will be by induction on the dimension n of the manifold

M. The result holds trivially for 1- dimensional manifolds. We shall
suppose that it holds for (n — 1) -dimensional manifolds, where n > 1.

Let M be ^-dimensional, suppose that ψ satisfies (ϋ), and let XQ be an
arbitrary point of M . Then we can define a local coordinate system
(xv . . ., xn) in the neighbourhood of XQ such that xϋ is represented by the
origin of Rn and ψ takes the form

where αw_1(0, . . ., 0) =j= 0. By continuity αn_x is non-zero in a neigh-
bourhood of the origin, and, for all sufficiently small values of the real
constants yl9 . . ., yn-1} the differential equation

dx -
£~* = -<*n(yι> - >yn-*>χn-ι>yn){an-ι(yι> - - ^yn-^^n-^yn}}~1

with initial condition

xn-ι = yn-ι when yn = 0

has a unique solution (11)

T . Tip ( II II I / I/ \xn-l — £ \yi> •> Un — ty 2/n-l? Vn)

for yn in a certain neighbourhood of zero. Moreover F(y1} . . ., yn) is a C°°
function on the neighbourhood of the origin in Rn on which it is defined.
Consider the C°° map

(*/ι> - •> yn) -> {y^ - - , yn-z> F(yl9 . . ., yn), yn}

of this neighbourhood into ΪRW. It maps the origin onto itself, and
its Jacobian has the value 1 at the origin. It therefore maps an open
neighbourhood Uy of the origin in lRn diffeomorphically onto another
open neighbourhood Ux of the origin in lRn. On the open neighbourhood
U of x0 represented in the coordinate system (xl9 . . ., xn) by Ux, we
can therefore define a new coordinate system (yl9 . . ., yn) taking values
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in Uy by
xi = yi for ί Φ n — 1

In terms of these coordinates on U, ψ takes the form

n-l

ψ= Σ

Now y satisfies condition (ϋ) by hypothesis. In the new coordinate
system on £7, this condition takes the form

ψf\d<ψ=- Σ (bidbi - Mδ*) Λ dyt Λ dys - 0 . (11)

It follows immediately from (11) that

6<^L_ δ !?<_(>. (12)
* dyn ' ̂  V '

Since at least one of the δ^ is non-zero at the origin and hence in a
neighbourhood of the origin, we infer from (12) that these functions
must be of the form

. , yn) ct(yl9 . . ., yn-ι) (13)

for all sufficiently small values of ylf . . .,yn, where the function h never
vanishes. Substituting (13) into (11), we find that the differential 1-form

n~ 1

ω = Σ ci(yι> - '>Vn-ι)dyi
ΐ = l

on an open subset of 1Rn-1 satisfies

ω Λ dω = 0 .

Since co never vanishes it follows by the induction hypothesis that ω
is of the form

ω - λ dg (14)

in some open neighbourhood of the origin in R7*"1. Hence

ψ = f d g

in some open neighbourhood F of XQ in M , where g is the function of the
local coordinates ylt . . ., yn-ι that appears in (14), and

ί(yι> - - -> yn] = A (2/1, - - , yn) λ(y» - - , yn-ι) -
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