
Commun. math. Phys. 9, 267—278 (1968)

Statistical Mechanics
of a One-Dimensional Lattice Gas

D. RUELLE

I.H.E.S., 91. Bures-sur-Yvette

Received April 30, 1968

Abstract. We study the statistical mechanics of an infinite one-dimensional
classical lattice gas. Extending a result of VAN HOVE we show that, for a large class
of interactions, such a system has no phase transition. The equilibrium state of the
system is represented by a measure which is invariant under the effect of lattice
translations. The dynamical system defined by this invariant measure is shown to
be a iΓ-system.

1. Introduction and Statement of Results

Let Z be the set of all integers ^ 0. We think of the elements of Z
as the sites of a one-dimensional lattice, each site may be occupied by 0
or 1 particle. If n particles are present on the lattice, at positions
*!<•••< ini we associate to them a "potential energy"

h > . ••>*»})= Σ Σ

The "&-body potential" Φk is a real function of its arguments^
and is assumed to be translationally invariant i.e., if I ζ Z,

*,•••» h + i) = ΦHh, • • •, h) • (1-2)

Let /ScZ and Ks be the product of one copy of the set K = {0, 1} for
each point of 8 Ks is the space of all configurations of occupied and
empty sites in 8 Ks is compact for the product of the discrete topologies
of the sets {0, 1}. Let ^(Ks) be the Banach space of real continuous
functions on Ks with the uniform norm and *Jf(Ks) its dual, i.e. the
space of real measures on JK"̂ .

If 8 C T C Z we may write

Kτ = KS x Z*V (1.3)

and there is a canonical mapping α^s: ^{Ks) ->"&(KT) such that

ocτsφ (xs, xτ\s) = φ (xs) . (1.4)

We denote by u%τ the adjoint of ocτs:

**τμ(φ) = μ(<χτs<p) ( L 5 )
19 Commun. math. Phys., Vol. 9
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It will be convenient to use a functional notation for measures, writing
μ(x) dx instead of dμ. We have then

<** T f* (xs) = / d%τ\s μ {%s> xτ\s) ( L 6 )

Let (α, b] = {iζ Z : α < i ^ 6} be a finite interval of Z . The Gί&fe
measure γab ζ~#(i£<α»δJ) associates t o each point x = (%a+i> •> #&) °f
./£>,&] the mass

y«δ(*) = β-^<*)> (1.7)
where 1

S(x) = {iζ(a,b]:zt=l}. (1.8)

The measure yα 6 is positive, has total mass

z>-a = fyat>(χ)dχ= Σ --ΣyMx) (i.9)

and the corresponding normalized measure is

y.» = 3»-i.yβ» (l.io)

Theorem 1. Zeί # be the space of sequences Φ = (Φk)jc^i such that

1,...,iι)\< + °o (l.ii)

ifφ ^S, then
(i) the following limit exists and is finite

= lim -t—\ogZh_a (1.12)
b—a-^oo 0 — a

it is continuously differentiate on any finite dimensional subspace of <£.
(ii) for every finite &C7L there exists ρs ζ Jί(K8) such that

l™ <*ha,b]Yab = Qs. (1.13)

is a measure ρ £ <Jί(KΈ) such that

for all finite Sc'Z , and Q depends continuously on Φ on any finite dimen-
sional subspace of $ for the vague topology of measures*.

This theorem expresses that a thermodynamic limit (infinite system
limit) exists for the statistical mechanics of a one-dimensional lattice
system if the condition (1.11) is satisfied. Furthermore the state of the
infinite system, described by the measure ρ, depends continuously on the
temperature and chemical potential, which means that no phase transi-

1 I t is customary to write in (1.7) instead of U (8) the expression β( — nμ + U'(8))
where β-1 is the temperature, μ is the chemical potential and TJ' is computed by
replacing Σ by Σ in (1.1). For notational convenience we absorb here — μ

k^l Je>l
as Φ1 and β as multiplicative constant in the definition of ϋ.

3 I.e. the w*-topology or the weak topology of ̂ (K^) in duality wit
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can occur3; the system remains a "gas". If φι+ι — 0 for I > 1, then
(1.11) becomes

Σ i | Φ a ( 0 , < ) | < + «>• (i.iβ)

This condition ensures that the energy of interaction of all particles at
the left of a point of Z with all the particles at the right is bounded4.

Given SC^ , the translation Tι:i-> i + ί defines a homeomorphism
oίKsontoKs+ι:

Tι(. . ., a^ , a?0, #!, . . . ) = (..., »_,_!, a ^ , #_ι + 1 , . . .) (1.16)

and if / ζίf (J5?), μζ<Jί(Ks) we define5 Γ*/ £ίf (J5?+*), T* μ ζ^{Ks+ι):

Tιf($) = /(Γ- ιa;) , 5Γ*/φ) = μ(T~ιx) (1.17)
so that

μ(T'/) = fdxμ(z)f(T~*x) = f dx μ(T*x) f(x) - Γ-^(/) (1.18)

Since the measure ρ is visibly T-invariant i n ^ (KΈ), the triple (Kx, ρ, T)
is a dynamical system6.

Theorem 2 TAe dynamical system (KΈ, ρ, T) iβ α K-system.
This implies th&t the measure ρ is ergodic and satisfies a "cluster

property" (see Sec. 2) as one expects for a gas.

2. Proof of Theorems 1 and 2

Let IN* = {< £ X : ί > 0} and JΓ+ = JL^*. For every integer m ̂  0
we may write

iΓ+ = Jfco.m] x T w i Γ + . (2.1)

In particular if # £ K+; then (0, #) £ K+, (l9x) ζ K+.
We let Fφ ζ<£(K+) be given by

Fφ(x) = exp [ - 2 : i : ^ ^Φ ϊ + 1 (0, h, - Ί)] (2.2)
I ̂  0 0 < ΐi < < i|

where a? = (a ,̂ . . ., x^ . . .) ζ ̂ Γ+, α;έ = 0 or 1 for each i > 0. The con-
tinuity of Fφ on JK"̂ . is ensured by (1.11). A mapping S£φ of &(K+) into
itself is defined by

XΦf{x) = /(0, a?) + ̂ Φ ( ^ ) /(I, x) (2.3)
3 This result was known when Φ has finite range, i.e. when there exists L < + oo

such that Φι+1(0, il9. %., iι) = 0 for t | > X (hence for l> L), In that case P(Φ) is
real analytic on finite dimensional subspaces of $ (is this true also here ?). A gener-
alization of this result exists to continuous systems with a "hard core", see
VAN HOVE [5].

4 If Φa ̂  0 and (1.15) is violated, the existence oί a phase transition has been
conjectured by M. FISHER [2] and M. KAC (private communications). I am indebted
to M. FISHER for correspondence on this point.

6 We let formally d(Tιx) = dx.
6 The notions of dynamical systems and of JΓ-system are discussed in ARNOLD

and AVEZ [1] and JACOBS [3].

19*
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its adjoint j£?J: J£(K+) ~> Λί(K+) is given by

) = μ(x)

) = Fμ(z) ( ' }

Theorem 3. (i) For every Φζδ there exist λφ>0, hφ

vφ ζ^(K+) such that hφ > 0, vφ ^ 0, vφ(l) = vφ(hφ) = 1 and7

= λφhφ (2.5)

= λφVφ. (2.6)

(ii) If f ^ (K+) the following limit

lim \\λΦ

n^%f-vφ(f)hφ\\ = O (2.7)
n-+oo

holds uniformly for Φ in a bounded subset of a finite dimensional subspace
of δ.

(iii) If μ ζ^<Jί (K+) the following limit

Urn λΦ

n&%nμ = μ(hφ)vφ (2.8)
ft—>OO

holds for the vague topology of
(iv) On any finite dimensional subspace of δ, λφ is continuously

differentiable, hφ is continuous for the uniform topology of ^(K^), vφ is
continuous for the vague topology of ^£(K+).

This theorem will be proved in Sec. 3., here we use it to establish the
results announced in Sec. 1. For notational simplicity we shall often drop
the index Φ from F, &, &*, λ, h, v.

Lemma. Let us write

(i) // μ ζ<^(K+), then

1 1

Σ ••• Σ L*ιμ(n1} . . . , % , x) = Lιl(x) μ(x) . (2.10)

(ii) Iffi^(K+),then

v*N.9N.+ιT*f = L"(v f). (2.11)
7 For every finite 8 C IN* let

One can show that vφ defined by Theorem 3 (i) is such that

VS = α * N * V *

The measure vΦ describes thus the state of a system occupying the semi-infinite
interval (0, + oo) = IN*.
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We prove (i) by induction on I:

Σ ••• Σ
nx nι+1

Lιl(nι+1,x) - L*μ(nι+1,x)

= # 1 (0, x) L*μ(0, x) + #1(1, x) L*μ(l, x) (2.12)

- #1(0, a?) λ-VΦ) + # 1 ( 1 , a:) λ^Ffr) / φ )

To prove (ii) it suffices to apply repeatedly the following identity

[v OC^*,N*+ l ^V] (nv x) = v(ni^ x) " fix) " L*v(nv x) f(x)

Letδ^^(K+

checked that

By (1.6), (1.9)

and using (2.7),

lim

) be the unit mass at x0

we have

--f&*™δ(x)dx=£>*™

"-* n->oo λn *"

= (0, . .

δ(l) =

i) δ(h)
) \ )

.,o,.

— h(x

..). It

1)

• ) > 0
'0/ ***̂

is readily

(2.14)

(2.15)

(2.16)

which implies8 (1.12) with P(Φ) = logAφ and Theorem 1 (i) follows from
Theorem 3 (iv).

We study now the limit (1.13) with 8= (0, m] (this is sufficient
because we may by translation of Z map S into (0, m] for some m). Let
/ ζ<V(Kl°>ml)9 using (2.14), (2.16), part (i) of the Lemma and parts (ϋ),
(iii) of Theorem 3 we get

lim ocfOtm]Λa)b]γab(f)
a>—* — oo,o—>oo

= lim αf0> m]t (-i,m + n]Ϋ-hm+n (/)
I, 71—>OO

= ι'^-oo

 α(I,l + m],(0,ί + m + n] Vo,.l+m+n{Tlf)

= lira ZΓ+im + n a J t + w]iN.J2? I+« +»ί(2«/) (2.17)
l

1 1

Urn Σ " m Σ fdxL*ι+m+nd(nl9...,nι,x)
n+oo

= A^o)-! Mm fdx Vl(x) X*^+- ό(ar) aN*j(

= ft^o)-1 / da; v(l) h(x) - δ{h) v{x) - aN* j (0>w] f(x)

= fdxh(x) v(x) aN*)(0>w] /(») .
8 Actually (2.16) is a much stronger statement than (1.12).
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This establishes the existence of the limit (1.13) and shows that the
measure ρ defined by (1.14) satisfies

αft z ? = *•"• ( 2 1 8 )
In view of Theorem 3 (iv), the r.h.s. of (2.17) is a continuous function
of Φ on finite dimensional subspaces of <o. Because of the invariance of
ρ under T} the same is true of ρ{ccχsί) ^ o r ©very finite Sc"%- and

Part (ii) of Theorem 1 follows then from the density of

in ^(KΈ) for the uniform topology.
We come now to the study of the dynamical system (ϋΓz, ρ, T). Let

SSX be the algebra of all ρ-measurable subsets of K1- (mod. 0) and £$Q be
the subalgebra consisting of the sets of measure 0 or 1 (i.e. 0 and
KΈ (mod. 0)). The system {KΈ, ρ, T) is a JϋΓ-system if there exists a sub-
algebra si of &&! such that

(i) J / C ^ - W .

(ii) The union of the T~ιsi generates @lx.
(iii) The intersection of the Tιsi is « 0̂.
We write

KΈ = K8 x Kχ\s (2.19)

and define si to be the subalgebra of S9X generated by all the sets
X x KΈ\S where XcKs and 8 is a finite subset of N*. The properties
(i) and (ii) are then clearly satisfied. Let now A ζ Π Tι si and B be of

the form X x KΈ\S with XcKs,S finite C N*. For all Z ̂  0 the charac-
teristic function of A may be written as αN*? N* + 1 Tιfh let also fβ ζ ̂  (K+)
be the characteristic function of B. Using part (ii) of the Lemma, we get

ρ(A r\B) = fdx h{x) v(x) <%N*JN*-H Tιfι{x) /Λ(α)

= / dx [X* i (V . /,)] (a.) . A ( a . ) . f3{X) (2.20)

Given ε > 0, (2.7) shows that, for sufficiently large Z,

\\V{h ίB)-v(h fB)h\\<ε. (2.21)

From (2.20) and (2.21) we find

\ρ(A r\B)- ρ(A) ρ(B)\ = | / dx v{x) • /,(*) [£»(A fB) (x)

-v(h fB)h(x)]\<ε (2.22)
and therefore

fi(in5) = f(4)f(i). (2.23)

By translation, (2.23) remains true for any B of the form X x KΈ\S with
S, 8 finite c Z , and therefore for any 5 £ ^ r In particular for
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B = A, we obtain ρ{A) = ρ(^t)2 hence ρ(^4) = 0 or 1, proving the pro-
perty (iϋ) of i£-systems and therefore Theorem 2.

Let 8 be a finite subset of Z and define f8 ζ^(Kx) by fs(x) = 1 if
i £ S =Φ xi — 1, /#(#) = 0 otherwise. The correlation function ρ associated
to ρ is a function of finite subsets of Έ. defined by

ρ(S) = ρ(fs). (2.24)

Notice that by Theorem 1, ρφ(8) is a continuous function of Φ on finite
dimensional subspaces of $. We have also

Hm ρ{8x w T'fl,) = ρ{Sx) ρ(S2) (2.25)

a property known as cluster property and which should be possessed by
the correlation function of a gas. The cluster property (2.25) is a conse-
quence of strong mixing, which is a property of all jfiΓ-systems9. The
entropy of a ^-system is > 010, this entropy is identical to the mean
entropy in the sense of statistical mechanics (see [4]). The ϋΓ-system
property (iϋ) has here a simple physical interpretation: it is not possible
to make the system look different "at finite distances" by imposing
restrictions "infinitely far away" on the configurations of the system
(absence of long-range order).

3. Proof of Theorem 3

In this section we establish a series of propositions which will result
in a proof of Theorem 3.

For m ^ O w e let c€m = α N * j ( 0 ) W ] &(K(°>m]), i.e. Ήm is the subspace
of (&(K+) consisting of those / such that f(x) = /(a/) if α̂  = x\ for i ^ m.

Proposition 1. Let f ζVm, / ̂  0 and xt = x\ for i = 1, . . ., k. If
n ^ 0, n ^ m — h, then

S^gSΛ (3-D
where

A* = exp Γ Σ Σ (H ~
U>0 0<iι<- <iι>Je

If lc ̂  m, then f{x') = /(a;) and (3.1) holds thus for n = 0. If w- > 0,
(2.3) yields

Jg»/(aQ Jg'"-1 /(0, â ) + -F(^) -g*-1 /(I, ̂ ) .« «.
Jδf« f(x) £e*-ι /(0, a?) + .F(a ) oδf""1 /(I, a;) * { ό)

Using induction on ^ we may assume that for ̂  = 0, 1, we have

9 See [1] 11.4.
1 0 See [1] 12.31.
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and

expϊ-Σ Σ |ΦZ + 1(O, %!,...,%
L ι>o o< f c <..-<*>* , ( 8 Λ )

0<ii< <iϊ>Λ

Therefore

* -
and (3.1) follows.

Notice that if we write

Σ |Φ I + 1(0,h, •••Λ)ί| (3-8)
J

^ F(x) ̂  ^ .
Proposition 2. There exist v ζ^ {K+) and λ real such that r ^ O ,

HI = 1 and
λv. (3.9)

Furthermore 1 + i?™1 ^ λ ̂  1 + B where B is given by (3.8).
The set {μ £ Jί(K^) : μ ^ 0 and μ(l) = 1} is convex, vaguely com-

pact and mapped continuously into itself by

μ-+\2*μ{\)γi£e*μ. (3.10)

By the theorem of SCHAUDER-TYCHONOV this mapping has a fixed point
v: (3.9) holds with λ = &*v(l) = v(& 1). Since & 1 (x) = 1 + F(x) and
B-1 ^ JP(«) ^ B, we have 1 + B'1 ^ A ̂  1 + B.

Proposition 3. (i) The closed hyperplane H = {/ £ if (JE+): y(/) = 1} is
mapped into itself by L= λ-ι£P.

(ii) Let f ζ ̂ m , / ̂  0,n^ m, then

sup L"f(x) ^ Aov(f) (3.11)

inf ^/W^^1^/). (3.12)

(iii) // / ζif (Jf+), ίΛe sequence \\Lnf\\ is bounded by A0\\
(iv) ^ Tiorm | | | | | | on ^(K+) is defined by

(v) \\\Lf\\\<Z\\\f\\\fσrάafζV(K+).
(vi) // / ζ ̂ w , v(/) = 0, α?ιd w ̂  m, then

(3.14)
(i) follows from

(3.15)
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(ii) follows from (3.1) with k = 0:

v(f) = v(Lnf) ^ sup Lnf{xf)

(3.16)
^ Ao inf L"f(x) ^ Aov(L"f) = Aov(f) .

Using (3.11) with m = 0we have

\\L»f\\ si ||L«|/||| <: 1/1 sup &l(x) < A0\\f\\ (3-17)

which proves (iii).
It is clear that 111 111 is a semi-norm and that 111/| 11 ^ ||/||. We conclude

the proof of (iv) by showing that if / ̂  0, / #= 0 then | | |/ | | | > 0. We may
indeed choose m and /' ξ ̂ m such that 0 ̂  /' 5g / and /' φ 0, then
Lmf Φ 0 and (3.11) yields

v(/)Sy(//)^^1|iw/ΊI>0 (3 1 8 )

To prove (v) we notice that

| | | £ / | | | = v(\Lf\) = λ-*v(\J?f\) H λ-*v(J?\f\) = λ-*Sr*v(\f\)

= H\t\) = Ill/Ill- (3 i 9 )
To prove (vi) let / ± = 1/2 (|/| ± /), we have

| | |/+ | | | = v(/+) = v(/_) = | | | /_ | | | . (3.20)

On the other hand by (3.12)

mf L"f±{x)^A^\\\f±\\\. (3.21)

Therefore

= v(\L«f+ - A o 1 III/+HI) - (£»/_ - Λ " 1 III/-I
^ r ( | i « / + - ̂ I I I / J I I I + \L«f_ - ̂ I I I Z - I I I I)

+ f_) - AoH\\\f+\\\ + |||/_|||) (3.22)

which proves (3.14).
Proposition 4. Define

and

J^-i g ^ - ̂  J j , if asί = xt for » = ! , . . . , * } . (3.23)
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(i) LΣcΣ.
(ii) If f ζΣ, then \\f\\ ^ Ao and if x{ = x\ for i = 1, . . ., h, then

\f(x')-f(x)\^A0(Ak-l). (3.24)

(iii) The set Σ is convex and compact in (£(K+).
(iv) Iff,f'ζΣ,then

HI/ - fill ^ £ - * ( ! + Z)-kQ\f - /'II - 2 Λ ( Λ - 1)) (3.25)
/or αZZ A;.

(i) follows from Prop. 3 (i) and the same argument as in the
proof of Prop. 1.

If / £ Σ} then v(f) = 1 hence v(f — 1) == 0 and one can choose x such
that f(x) ^ 1 hence /(#) ̂  -40/(#) ̂  A> proving ||/|| ^ Ao. If ^ = ̂ ' for
i = 1, . . ., & we get

/(*') - /(a) ̂  /(») (Ah - 1) ^ 4 0 ( Λ - 1) (3.26)

and (3.24) follows by exchanging the roles of x and x'.
The set 27 is clearly convex and closed, since it is bounded and equi-

continuous by (ii) the theorem of ASCOLI shows that it is compact,
proving (iii).

Let /, f ζΣ. We can choose x such that \f(x) - f (x)\ = ||/ - f\\.
Denote by g the characteristic function of the set {x ζ K+ : #e = â  for
i = 1, . . ., &}, using (ii) we obtain

in/ - /'in = "(1/ - r\) ̂  (ii/ - r\\ - 2 Λ ( Λ - υ) v® 0.27)
and (iv) follows from

v(g) = v (L*g) = ̂ Ά ^ {1ζ*B)h , (3.28)

where we have used F(x) ^ B*1, λ ^ 1 + B (see Prop. 2.).
Proposition 5. (i) There existshζHsuchthatLh = h (i.e. ££h — λh),

v(h) = 1.
(ii) If f ζH, then lim | | I > / - h\ = 0, more generally if fζ<g(K.)9

n-+oo

then
lim Lnf = v(f)h (3.29)

tt->oo

in the uniform topology.
(iii) If μ ζ ^(K+) the following limit exists in the vague topology

lim λ~n(&*)nμ = μ(h) v. (3.30)
n—>oo

By Prop. 4 (i), (iii) the convex compact set Σ is mapped into itself
by L which has therefore a fixed point h by the theorem of SCHAUDER-
TYCHONOV, proving (i).

Let / ζ Σ} in view of Prop. 4. (i), (ii), we can for each integer n > 0
choose m(n) independent of N such that

fh)-g\\<±- (3.31)
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for some g ζ #TO(n) with v(g) = 0. Then by Prop. 3. (v), (vi),

2 ( 3 3 2 )
λ||| ^

If we put M(n) = 27 mW> w e ge"k
ι = l

lim |||2^+*<»>/-A||| = 0 (3.33)
n—>oo

uniformly in N, using then Prop. 4. (iv), we have thus

Urn | |£ n /-All = 0 (3.34)
n-+oo

when / ζ Σ. This remains true iϊ f ζH and / is a linear combination of
elements of Σ, these linear combinations include the elements of (€m for
all m and are thus dense in H. By Prop. 3 (iii), \\Lnf\\ is bounded for all

+), hence the theorem of BANACH-STEINHAUS shows that

lim | |L»/-1'(/) * | | =O (3.35)
Ίfl—>oo

proving (ii).
If μ 6 *Jf(K+), then for every / ζ if (JE+)

Km λ-Λ(J2?*Γ /ι(/) = Km ̂ ( ^ / ) = /«(f (/) *) = ̂ W H/) (3.36)

proving (iii).
Proposition 6. Let 3F be a finite dimensional subspace of $ and B

a bounded subset of IF.
(i) The limit lim \\L%f — vφ(f) hφ\\ = 0 holds uniformly in Φ ζB.

(ii) hφ is a continuous function of Φ ζ^ for the uniform topology

(iii) vφ is a continuous function ofφζ^ for the vague topology of Jί (K+).
(iv) Let Φ,Ψ ξ J^, Φ(t) = Φ + tΨ, t ζ R, then the function t -+ λφ{t)

has a derivative

λ {&"t),w hφ(t)) (3.37)

where &"Φt Ψ is the bounded operator on ̂ {K+) defined by

&Φ.ψf(χ) == ί- Σ Σ ^ «ft ^ + 1 ( o , h , . . . ,
L 1^0 0<i!<"'<ii

•Fφ(x)f(l,x) (3.38)

and -TΓ λφ (t) is a continuous function of Φ ζ ^,

Let / > 0 satisfy, for all h and all Φ ζ B

At if x\ = Xi for • = ! , . . . , * . (3.39)
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Then, VφQ)-1] ζΣ. Since Ak, B depend continuously on Φ ζ^, the
estimates in the proof of Prop. 5 (ii) can be made uniformly in Φ ζ B,
hence

ϋm Wvφtf)-1 Llf - hφ\\ = 0 (3.40)
n->oo

uniformly in Φ ζ B. Since vφ(f) < ||/||, (i) holds for / = / > 0 satisfying
(3.39).

In particular L% 1 tends to hφ uniformly in Φ ζ B, and ||X^1||—XJL^1
= || J2PJ11| - 1 SS% 1, which is continuous in Φ ζ B, tends uniformly in Φ ζ B
towards H ^ Φ I " 1 ^ which is therefore continuous in Φ ζ<F.

We have the identity

{ ^ ^ ) (3.41)

and, in the norm of operators on

Jim \1ri{&φ+iΨ - &φ) - &'Φt Ψ\ = 0 . (3.42)

Therefore
l i m t-1 (λφ+ t Ψ - λ φ ) = vφ(£e'Φ Ψhφ) (3.43)

which proves (3.37) λφ is a continuous function of Φ ζ ϊF because of the
boundedness of \vφ(£PΦιΨhφ)\ for Φ £ B (use h £27).

We may consider Ln: f -> Z^/ as a bounded operator from ^(jfiΓ+) to
x 5). For each f(z

(£(K+) the sequence Z^/ is bounded in

+ x B) by Prop. 3 (iii). We have seen that (i) is satisfied for linear
combinations of / ;> 0 satisfying (3.39) for all k and all Φ ζB, these
include again the elements of ^m for all m and are thus dense in ^(K+).
Applying the theorem of BANACH-STEINHATJS to the sequence Ln proves
then (i).

Applying (i) to / = 1 yields (ii). More generally (i) shows that vφ(f)hφ

is continuous in Φ ζ ̂ , using then (ii) we see that vφ (/) is continuous
in Φ for each / £ K+, proving (iii). Finally the continuity of the derivative
(3.37) follows from the continuity in Φ £ ϊF of vφ (by (ii)), hφ (by (iii))
and j£?φ9 Ψ.
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