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Abstract. This contribution continues the series of papers on the same subject
which has been treated by LUDWIG in [1—3]. Using the system of axioms as given
in [3], we shall succeed in constructing an orthomodular lattice of linear operators
on the real vector space generated by the physical decision effects. There results
an isomorphism between the orthomodular lattice of all physical decision effects
and the lattice to be constructed.

I. Preliminaries

As shown by FOTJLIS ([7—11]), any orthomodular lattice can be co-
ordinatized by a Baer-*-semigroup (i.e. a *-semigroup where the annihi-
lator of each element is a principal left (right) ideal generated by a self-
adjoint idempotent). At this point the theory developed becomes relevant
for physics: On the one hand, POOL [17, 18]1 has given the concept of a
Baer-*-semigroup a direct physical meaning by including the ideal
measuring process in an axiomatic lattice approach to quantum theories.
On the other hand, the multiplicative semigroup in the ring of all
bounded linear operators on Hilbert-space is such a semigroup. But
looking for structures for physics like Hilbert-space, we notice that the
mathematical situation is still more complicated: As it has generally
turned out by LTJDWIG'S system of axioms, the lattice to be co-ordi-
natized is embedded in a topological vector space. MILES [12] has given
the problem the most general form: Let $0 be a £*-algebra. Its self-
adjoint elements form a real partially ordered vector space H(stf) with
a positive cone of elements x* x for all x £ s/. Required is the knowledge
in how far j / is already determined by H(s/). Ideally we should have
to find the class of all 2?*-algebras stf for which for a given real partially

* This paper is a modified version of the author's thesis ,,Zur Koordinatisierung
des orthomodularen Verbandes physikalischer Entscheidungseffekte", written at
Marburg University under the direction of Prof. G. LUDWIG. It was supported in
part by the Deutsche Forschungsgemeinschaft.

1 I am indebted to Prof. R. HAAG for having directed my attention to these
papers.
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ordered vector space H the space H (&/) is isomorphic to H with respect
to order and vector space structure. So general the problem has not yet
been solved up to now.

In this paper we shall try to tackle the problem in question by
imposing finite dimension on H. But this will lead us only to the partial
result that the orthomodular lattice 0 of the physical decision effects in
H can be isomorphically mapped on an orthomodular lattice in the
algebra &(H). I t could not yet be decided whether this algebra is
a B*-algebra.

Since here we concern ourselves only with purely mathematical inves-
tigations, we omit any physical motivation of the concepts and axioms
established by LTTDWIG.

Detailed physical discussions can be found in [4—6]. Yet to make this
exposition more readable, we will briefly quote the most important defini-
tions and the system of axioms given by LUDWIG. Although it is possible
to formulate them mathematically more weakly, we do not so because,
as shown in [1—3], the here given formulation can be derived from
LTTDWIG'S original one. Our formulation will be most adapt to our
purposes.

As a conceptual frame we have a dual pair (B, B') of real topological
vector spaces which we shall, throughout this paper, suppose to be
finite-dimensional. Henceforth this supposition shall tacitly be included
in all those theorems and statements which only hold by argumentation
using finite dimension of B (and hence of B').

B is spanned by the closed convex hull K of the set K of all physical
ensembles F. The elements of K are denoted by V. B' is spanned by the
weak closure L of the set L of all physical effects F. The elements of L
are denoted by F. It is mathematically necessary to introduce the
weakly closed convex hull L of L. The elements of L, too, are denoted
by F, since they can be interpreted physically ([4—6]). The topologies
adverted to will be denned after axiom 1. The sets K and L are put in
duality by

Axiom 1. There exists a mapping // on K x L, JU: K x L->R+ so
that

(a) o ^ /JL(V9F) g 1 for all (F,F) ^K x L

(0) for all V1,Vi€K:p{V1,F) = fji(V2,F) for all F £L implies

(y) for all Fv F2 £ L: p (F, Fx) - {JL (F, Fz) for all F $ K implies
F2

(<5) there existsFo £ L (denoted by O)so that p(V,O) = o for all F g K

(e) for each F £ K there exists F £ £ so that
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JU can be so extended to B x B' that it coincides with the canonical
bilinear functional <•, •) over B x B'. In B we define a norm by

||X||: - sup{|/x(X, F)\ \F £ L} for a l l l ^ B .

Thus any V £ K satisfies || V\\ = 1. With respect to this norm B becomes
a Banach-space and the closures in B are taken in the pertaining norm
topology. The space of all continuous linear functionals over B is B'.
It is also a Banach-space by

|| Y\\: = supfl^X, 7)| \X e B, \\X\\ = 1} for all Y £B'.

Thus any F (~L (and hence any F £L) satisfies ||.F|| ^ 1. Besides, we can
define the so-called weak topology in B'. The sets L and L are defined
with respect to this topology. But because of our dimension hypothesis
we need not distinguish between norm and weak topology in B'. By the
definition:

"for all Yv Y2 £ B': Y1 ^ 7a ift>(F, F,) ^ JU(V, F2) for all V g Z"
B' becomes a partially ordered, real Banach-space.

For all Z Q L we define

K0(l): = {V\ V £K, fi(V, F) = o for all F £1}

K^l): = {V\ V£K,fi(V9F) = 1 for all F £l}

For all k Q K we define dually

L0(h): = {F\F £L, /j,(V,F) = o for all V £k}

L0(k): = {F\F£L, p(V, F) = o for all F £ *}

i^jfe): = {J| F ^ i>, /^(F, J) = 1 for all F £k}

L1{k):^{F\F ^L, ^ ( 7 , ^ = 1 for all F 6 fy

Let us consider for any l0 Q L the greatest lg Q L so that ifo(Zo) = K0(lg).
There obviously holds ^ = w {l\ K0(l0) = Zo(^)}. In [1-3] it was shown
that any lg can be represented as lg — LOKO{1) with K0(l) = K0(lg). By

Axiom 2 a. For every pair FVFZ£L there exists FS^L so that
^ rg ^3, î 2 ^ i^3 and Z0(JP3) 2 ^ o ^ ) n K0(F2).

Any Zg turns out to be an ascending directed set possessing a greatest
element Eig. This is defined by

) | J 1 €U for all V £K

and satisfies \\EiJ\\ = 1.
It would have been sufficient (see [1—3]) to formulate the axioms 1

and 2 a for L. Nevertheless we should have obtained analogous results,
in particular: for each k Q K, L0(k) has the same E as L0(k). The set of
all E is denoted by G, its elements are called decision effects.
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Let us define the sets

U: = {L0(k)\ k Q K}, tl: = {L0{k)\k Q K}, W: = {K0(W £ L)

W: = {K0(l)\Ht<}-
As verified in [1—3], U, V', W, and JV are complete lattices with zero and
unit elements. Between U and tf there exists a lattice isomorphism,
whereas W is equal to W. Between U and W there exists a dual lattice
isomorphism. The zero elements in U> (t)) and W are {0} and 0, respec-
tively. The units are L, (L) and K, respectively. G is lattice-iso-
morphic to U and ??; thus dually isomorphic to W. The unit
element 1 in 0 is given by: ^(F, 1) = 1 for all V £K. By /i(V, E')
= 1 — jLi (V, E) for all V £ K, 0 becomes orthocomplemented and
so do U, tf and W. Furthermore, the lattices are orthomodular or, equi-
valently, segment-orthocomplemented (see [1—3]). That means: for every
segment G(0,E) Q G and each Et ^G(O, E) there exists a unique element

_L _L

E% £ G{09 E) so tha t E = EXV E2, where Ex V E2 is the abbreviation for
E± V ̂ 72 and Et 1 J&a, i.e. Ex ^ E'g- ̂ 72

 i s given by Ez = E A E[. Besides,
n
_L n

in (r we have for every finite set of orthogonal elements: . V Ei = 2J
Ei9 n any finite integer, S denoting addition in B'. All these facts
can be found in [3], for instance, A and v denote lattice-theoretical inter-
section and union, respectively. The lattice-theoretical intersection coin-
cides with the set-theoretical one; but in general, the lattice-theoretical
union differs from the set-theoretical one: in tJ and W, for instance, it
is given by forming the least extremal set containing the set-theoretical
union of all sets to be united lattice-theoretically.

To formulate axiom 2 b we first introduce the set
{Y\ Y £B', Y= XF,X£R+,F €l,p{V, Y) ̂  1 for all F ^K) .

This set is obviously convex, hence so is its (weak) closure £.
Axiom 2b. For all F £ L and all E £ G:

K0(F) 2 K0(E) implies F ^ E.

This axiom is important concerning the structure of the positive cone in
B' (see [3]). In [3] LTJDWIG considers the cones

&: = {Y\ Y^B', F^O},^+: = {r| T^B',/t(V, F) s£ 1

for all V £K)

1: = {X| X £B, p(X, Y) S o for all Y £<?>}.

Theorem 1 collects some properties of these cones, which were derived
in [3]:
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Theorem 1. 9 = U X -L, 0>+ = 1 - 0> (i)

(ii) t = L, I = & r\ @+

(iii) jg = U XK

(iv) J3' - 0> - 0>, B = J - <2.
Let us denote by C(V) the smallest, extremal set of K containing V

(see def. 2). As the last axiom for our exposition we formulate:
Axiom 3. For every pair Vl9 V2£K:

LAV,) = 4(F 2 ) implies CiVJ = C(V2).

The converse implication holds always.
It is now appropriate to give a mathematical outline of what we

finally bear in mind: For any E ((?we shall show that the pair (Kt (E),LE)
with LE: = {F\F ^L,F 5j E} is as dual as (K, L). Then we consider
their corresponding vector spaces and define a projector TE of B' onto
B(E)' determined up to an isomorphism by LE. The set & (0) of all TE

forms an orthomodular lattice isomorphic to O. 'By^'(G) we generate
a subalgebra of &(B') (£%{Br) being the set of all (bounded) operators
linear on B'). To verify duality of (K^E), LE) we need some results on
extremal sets and facets. To them the next section is dedicated.

II. Extremal Sets and Facets

For the sake of convenience let us quote two definitions given by
DAY in [13] chap. V.

Definition 1. (i) For any convex subset A of a vector space: p £A
is a passing point iff p belongs to an open segment 8 Q A.

(ii) e £ A is an extreme point of A iff it is not a passing point.
Definition 2. For any closed convex subset K of a topological

(locally convex) vector space: A Q K is an extremal set of K iff
(i) A 4= 0, A convex and closed

(ii) every open line segment ScK with 8 r\ A 4= 0 satisfies ScA.
Subsequently DAY proves

Remark 1. (i) Let K be a compact, convex subset of a topological
vector space over which its conjugate space is total. Then K has at least
one extreme point.

(ii) The set 21 of all extremal sets A of K has a minimal element
which is a singleton consisting of an extreme point. By our dimension
hypothesis remark 1 applies to B (and hence to B')\ consequently,
Kc B has extreme points.

Definition 3. For every k Q K, C (k) denotes the smallest extremal set
containing k.
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Obviously, the operator C has the properties of extensionality, isotony
and idempotence. If k = {F}, we write briefly C(V) (as mentioned in
section I).

Of particular interest for us are the internal points of a convex set
and the facets [14]:

Definition 4. In a real vector space let A be any convex set and M(A)
the linear manifold generated by A.

(i) x £ A is called an internal point of A relative to M(A) iff for each
line g £ M{A) through x there exists an open segment S Q g r\ A with
x£8.

(ii) The set of all internal points of A is abbreviated by A\
Thus the internal points are special passing points.
Definition 5. Let K 4= 0 be any convex set in a real vector space.

For each x £ K we define the facet A (x) in K by

(ii) for all y 4= x: y £A(x) iff y £ K and the line g (x, y) through x
and y contains an open segment S £ K with x £ 8.

Henceforth, for any two elements xv x2 of a real vector space ]x1, x2[
and [xv x2] denote the open and closed (line) segments, respectively.
From the definitions 1,4 and 4 we infer

Consequence 1. The extreme points of K are those points whose
facets in K are singletons.

Consequence 2. The internal points of K are those points whose
facets in K are equal to K.

BOURBAKI [14] p. 152 has suggested the following statements now
proved for the sake of completeness of this exposition:

Remark 2. There holds [x, y] C A (x) for every y 4= x with y £ A (x).
Proof. Since there exists ]yvy[cK with x£]yvy[, any yx = Xx

+ (1 — X) y, X £ ]o, 1[CR+ defines the open segment ]yv yx[CK because
K is convex. Besides, there holds x £ ]y1} y^[} thus yK £A(x). —'

Lemma 1. There holds with the hypothesis of definition 5: for each
x £K, the facet A(x) is the largest convex set AcK for x to be an internal
point of A relative to M{A).

Proof. To prove the convexity of A (#), distinguish two cases:
1) Given yv y^x^A(x) with yx #= y2 so that x £g(y19 y2). Then by

remark 2, any convex combination of y1 and y2 lies in A (x).
2) Given yv y2,x£A (x) with yx 4= y2 so that x $ g(yv y2).

Then there exists a unique plane p(yv y2, x) through yv y2, x in M{A (x)).
According to remark 2 there exist ]yv y^, ]y2, y2[ so that x £ ]yv yx[y

* 6 F2» y%L Wv ViiCK r\ p(yv y2, x) and ]y2, y2[C K r\ p(yv y2, x). Since
Vi =H y2, so yx 4= y2 too. Hence ]yv y2[ 4- 0 with ]yv y2[C K r\ p(ylf y2, x).
Therefore, for any y (z]yi, y^l w e c a n n n ( i a n element y £ ]yv y2[ so that
# 6 ]y» y[. hence ^ (and y) f 4̂ (x).
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To prove that A (x) is the largest convex set A C K with x an internal
point of A relative to M(A), we assume the existence of another convex
set Ax with x £ A (x) C A± C K such that x is internal relative to M{AX).
Then there exists y £ AX\A (x) C K so that a; £ ]?/, ?/[ with y ^K. Hence
y £A(x) and therefore 3/ £ J. (#) too, which is a contradiction. - J

Lemma 2. There holds with the hypothesis of definition 5:
(i) For each y £A(x): A (y) in K equals the facet Ax(y) of y in A (x).
(ii) A(x) = A[y)ifiy£A(xy.

(iii) The inclusion Q being a partial ordering in the set of all facets
A (x) in K and in the set of all M(A (#)), there exists an order isomorphism
between the two sets.

(iv) / / the dimension dimA(x) is finite, then A(y)CA(x) implies
dimA(y) < dim^4(#).

Proof, (i) Since obviously Ax(y) Q A{y), it suffices to prove A (y) Q
Q A (x) for every y £A(x): (i) is trivial if x or y £A(x) are extreme
points of K. This case excluded, regard any pair yv y2^K with yx =t= y%,
V €: ]t/v V& (i-e- Vv Vz^A (y)) a n d ]Vi> V*[ i 9(x> V)- Since x g A (x)* there
exists xx £ A(x) so that x £ ]y, xx[. Thus ^(^/j, y2) and gr(a;, ?/) lie in the
(unique) plane p(yvyz,x). Therefore g(y2,x)Cp(y19y^^i) is valid and
thus 0#= ]y, xx[ r\ g(yz, x) = {x%}CK. So we obtain x £ ]y2, x2[CK,
hence y2 ^ A (x) (and also yx £ A (x)).

(ii) 1) For all y£A(xY there holds A(y) QA(x) by (i); thus A(y)
= 4̂ (cc) by lemma 1.

2) If A{y) = A (x), then 4̂ (y)< = A (x)* with y g 4 (a;)'.
(iii) 1) For any x,y£K,M{A (y)) CM(A (x)) implies A(y)cA (x) by

definition 4 (i).
2) i ( t / ) c 4 W implies M(A(y)) QM(A(x)) and y ^4(a)\4(»)* by

(ii). Assume M(A(y)) = M(A(x)). Since always y £A(yY (relative to
M (A (2/))), so every line in M (A (x)) passing through y contains y in an
open segment belonging to A (x). Thus y £ A (xY, which is a contradiction.

(iv) By (iii) A(y)CA (x) implies M (A (y)) CM(A (x)). Since dim ,4 (x):
= dimilf(^4(#)) is finite, dimilf (A(y)) < dim M (A (x)) is consequently
valid; hence the assertion. —'

Let us again focus our attention on (B, B') where Kc. B is closed
and convex. B being finite-dimensional, we shall prove that, with respect
to the definitions 2, 3 and 5, the extremal sets of K are facets in K. To
this end we prove first

Lemma 3. Every facet A(V) in KcB is closed.
Proof. 1) If A (V) is a singleton, then the assertion is true because B

is a T4-space.
2) Suppose A{V) 4= {V} and A(V)CK. By lemma 2 (iii) we have

M(A(V))CM(K) and, since dimB < 00, M{A (F)) is closed. Denoting
by - the closure operation, we get the relation A(V)~cM(A(V)y~
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= M(A(V)). Let Fx £A(V)~ be an accumulation point of A(V). Since
Fx £ M(A{V)) and F £ 4 (F)% there exists F2 £ A (F) in ^(F1? F) so that
V £]VV F2[, hence V1 £ A (F) by definition 5. -J

Theorem 2. The set 21 o/ a^ extremal sets of K is equal to the set 21/ of
all facets in K.

Proof. To prove 21/ Q 21 we note that, according to definition 5 and
the lemmas 1 and 3, A(V) is non-empty, convex and closed. Let us
verify definition 2 (ii) for any A(V) £21/: given any ]FX, VZ[CK with
A(V) r\ ]VV F2[ 4= 0, then there holds for any F3 in the intersection
] Vl9 F2[ C A (F3) £ .4 (F) by lemma 2 (i). Hence A (F) £ 21.

To prove 21 C 21/ observe that, because of the finite dimension of B,
every A £ 21 contains a simplex of the same dimension as A has. The
barycentre F& of this simplex is an internal point of A, i.e. Vh £^4*. So
by the definitions 2 and 5 A (Vb) Q A. Conversely, for every F £ A with
F=j=F& there exists F £ , 4 with F & ^ ] ^ ^ [ s i n c e ^ £ . 4 * ; t n u s

Corollary 1. C(V) = A (F) /or oS F £ Z .
Proo/. Since A (F) £ 21, C (F) £ -4 (F) is evident. Assume C (F) C ̂  (F).

Then by theorem 2 there exists A(VJ with Cf(F) = -4(F1). Since
V £A (Fj), so 4̂ (F) C A (Fx) by lemma 2 (i), which is a contradiction. —J

Corollary 2. 21 = W.
Proof. By theorem 6 in [3] every C(V) £21 can be written as G(V)

= K0L0{V). Theorem 2 completes the proof. —'
Corollary 3. 21 is dually order-isomorphic to tl.
Proof. The assertion follows from corollary 2 and the dual order iso-

morphism between U and W. —'
Theorem 3. C(&) = K0L0(k) for every JcQK.
Proof. C(k) Q K0L0(k) is trivially valid. Since for each F £ k

G(V) Q C(k), we can infer from theorem 6 in [3]:

K0L0{k) = Ko (f\t 4 ( F ) ) = yV4 K0L0(V) = V.k C(V) Q C(k). -J

Corollary 1. C(k)= V C(V) for every k Q K.
V C A/

Corollary 2. For all finite k Q K.

with £ A F =

Proof. Since Lo ( £ hvV\= fl £0(F), the assertion results from

corollary 1. —i
Remark 3. Evidently, if Ve is an extreme point of K, then Fe is also

an extreme point of each A £21 with Ve£A. Conversely, if Ve is an
extreme point of any A £ 21, then it is also an extreme point of K. This
follows from the fact that for each ]F1} F 2 [ C ^ with F ^ J F j , F2[
]F2, F2[C^4 is also valid, which is contradictory.
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This enables us to point out a bijection between the set of all extreme
points of K and the set A (G) of all atoms of G.

Theorem 4. Every atom of W is a singleton.
Proof. By lemma 2 (iv) W satisfies the descending chain condition,

i.e. W is atomic, thus G too. Remark 1 guarantees that every element
of W has an extreme point. Therefore, if P £ G is an atom of G, for an
extreme point V^^K^P) C(V3t) = {VP} holds by remark 3. Since
W = SI and K^P) is an atom of W, so K^P) = {Vv}. -J

Corollary. For all E ^G:

E = . V P^ implies KX(E) = C I JJ ^ VP\ , wfore JT Af = 1, o < A, < 1.
i - 1 \i = l 7 i«l

Proo/. By theorem 4 we have JK1(^) = .V ^ I ( P < ) = V C ( F P < ) .

Applying the corollaries 1 and 2 of theorem 3, we obtain the assertion. —'
When we introduced the concept of a facet, there would have been

another way of defining it, which we are going to make up for. The
equivalence with definition 5 will be evident. Using the hypotheses in
definition 5, we define for every x £ A: y £ A (x) iff y £ A and there exist
y £ A and A £ ]o, 1 [ C #+ so that a? = Ky + (1 — A) y.

It is this definition that has a direct physically intuitive meaning, as
demonstrated in [4—6].

III. The Duality of (Kt (B), LE)

According to section I we have for all E £G:

K^E) = K0{E') = (K0(E))' 6 W = TT and

L,F^E} = L0K0{E) £ tf.

The purpose of this section is to prove all those axiomatic properties for
(K^E), LE) which were postulated of (K, L). In the sequel we shall use
the abbreviations for all E £G:

F, K=E) FtiE,*[V,FJ = p(V, F2) for all V 6 K,(E)

71 ^ F2 iff p(Vv F) = fi(Vz, F) for all F $ LE, with2^(1) = K

and L\~ L holding.
Furthermore, we introduce the notations

= K0$)c\Kx{E) for all let

Zf (I): = Kx (I) r\ Kx (E) for all I Q L

L$(k): = L0(k)r\LE for all kQK

£?(*): = 4 (Jfejnl^ for all kQK
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So we are able to verify the proposition of axiom 2 a for (K1(E)9 LE) in
Theorem 5. For every pair Fv F2 £ LE there exists Fs £ LE so that

KX{E) KX{E)

Proof. For every Fl9 F% £ LE there exists, by axiom 2 a, Fs £ L so that
Fx £ Fz, F2 £ Fs and KO(FS) 2 KO(FX) r\ K0(F2). Since always K0(F,) Q

rr rr

Q KO(FX) r\ K0(F2), so K0(F3) = KO(FX) r\ K0(F2). Then from K0(E) Q
CK0{Fx)r\K0(F2) there follows K0{E) Q K0(F3), hence Fz£lE. The
rest of the assertion is trivial. —J

(KX(E)9 LE) satisfies axiom 3:
Theorem 6. For every pair Vl9 V2^K1{E): £ f (Fx) - £?(Fa) i

Proof. First let us observe that by definition 3. CE{Vi): = G(Vi) r\
^K1(E) = C(F,) because V, ^K,(E), (i = 1,2). SinceL.(F,) = 4(O(F,)),
we can write for t = 1, 2: X?(F,) = £0(F,) n XeZ0(JB) = XO(O(F,)) n
r\L0K0{E) = 4 ( 0 ( F , ) v Z 0 ( ^ ) ) . By hypothesis Lo(C(Fx) v Ko(E))
= L0(C(V2) v K0{E))9 hence ©(F^ v Z"o(^) = C{V2) v Z0(J^). By ortho-
modularity of W, C (F,) £ Zx (JS) implies G (F,) = Zx (E) A (0 (F<)
v K0(E)) and so, by the preceding equality, CiV^ = O(F2). —'

Theorem 7. (a), (d) and (e) of axiom 1 are satisfied by (KX(E), LE).
Proof. The restriction \xE of /u to Kx (E) x LE satisfies (a) obviously.

Since 0 ^LE,(d) is evident and so is (e) because [xE{V, E) = 1 for all
V^K1(E).-'
(K^E), LE) satisfies (ft) of axiom 1:

Theorem 8. For all Vl9 V2^K1{E): Fx = F2 implies V1 ̂  V2.

Proof. From Vx = F2 there follows Ug(Vx) = L**{V2), thus by theo-

rem 6 G^V^ = O(Fa). Assume V1 4= F2. According to lemma 1, Vi are
internal points, thus the line g(Vv V2) meets the boundary of O(Ft) in
V1 and F2, which also satisfy V1 4= F2. Since Yt $ O(Fe) by lemma 2,
^(^i) 4= ̂ (^2) m u s ^ be valid. Moreover, there holds

V1 = % Yx + (1 - X) F2, A e ]o, 1[; F2 = ^ F2 + (1 - y) F l3 v 6 ]o, 1[

and from this and the hypothesis we infer at once jLt(Vv F) = /x(F2, JP)
for all F £ X^, i.e. Fx == F2. Thus, by the same conclusions as for Fx and

_ — Lz
V2, G{VX) = C(F2); which yields a contradiction. —1

Lemma 4. For every F £LE the mapping ju(-,F) attains its supremum
onKx(E).

Proof. Notice that K is compact, i.e. jbt(',F) attains its supremum
on K. Assume the existence of Vo $ K\KX (E) such that JU (V09 F)
= sup{jii(V9F)\V £K} and disregard the trivial case F= 0. Then we
may define Ao := fjt(V09F)-1 and by theorem 1 (ii) we obtain X0F £L.

A0F) = l for VoiK^E) implies X0F^E. On the other side,
14 Commun. math. Phys., Vol. 9
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K0(K
F) = Ko(F) 2 K0(E) implies X0F ^ J0, which gives a contradic-

tion. —J
Corollary, i^or aW JP £ XE aweZ A £ R+:

XF ^ E implies XF ^ E .
K^E) K

Proof. By lemma 4, /i(', JP) attains its supremum for Vo £ KX(E) and
so does ^ (^ AJP). Then the hypothesis guarantees o ^ ^ ( F , A.F7) ^ 1 for
all V £ if. Hence, by theorem 1 (ii), AJP £ £ and again, because of
K0(XF) = Ze(f) 2 K0(E), XF^E.-i

K
(K^E), LE) satisfies (y) of axiom 1:

Theorem 9. For all Fo, F0£LE: Fo = Fo implies Fo = f 0.

Proof. In theorem 9 of [3] LUDWIG proves a so-called "spectral"
representation for any Fo £L = L, which is obtained by recurrently solv-
ing the following system with respect to Fo: ^1\ = OLtE\ — I\_l9

i£[l9ri\ CN, where Et is determined by K0(Fi^ = K0(E^9 a,-:
= s u p ^ C F , - P ^ J I F £K},Fn = 0, JSf, > ^ and J ^ ^ ^, .

From our hypothesis we_ deduce K*{F0) = K*{F0). Since K0{E)_Q
QK0(F0) and K0(E) Q K0(F0), orthomodularity of W gives iT0(^0)
= K0{E) v (Zo(^o) A ^(J^)) = K0{E)\tK*;{F0) and an analogous equa-
tion for K0(F0). Thus we have K0(F0) = K0(F0) and so K^E^ K0QSj)
holds in the above-mentioned spectral representation for Fo and Fo.
Moreover, from lemma 4 and the hypothesis we can infer

sap{fi(V,F0)\V £K} = sup^CF,Fe

Therefore, Fo and Fo have the same spectral representations. —]

The axioms 1 and 2a holding for (KX(E), LE), it is possible to define
decision effects with respect to (J^ (E), L^) in the same way as for (K, L)
in section I. For this purpose let us first observe that, for any 1% Q LE,
the greatest If Q LE such that K*(l*) = Kflff) satisfies If = L*K*{lf)
analogous to section I. Therefore t)E = {lf\lf Q LE} forms a complete
sublattice of tf. If being directed by theorem 5, the element e^ £ If
defined by /^ (F , efi): = *vp{fiE(V,F)\F £lf} for all V ^K^E) is the
greatest element of If. Denote the set of all e^ by GE, which is a complete
lattice because tlE is so. Then we intend to prove that OE is isomorphic
to the segment 0(0, E) Q G. Moreover, we shall see that any element of
GE is the restriction of an element of G(0, E) to K^E). Conversely, any
element of GE can be uniquely extended to K so that it operates there
linearly.

Lemma 5. Every E-^^G (0, E) determines an element of GE.
Proof. Since E1 ^ E, so LOKO(EX) Q L0K0(E) = LE. That is every

l0 Q L such that K0(l0) = K0L0K0(E1) = K0(E1) is contained in LE, hence
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If = l0. Thus K0(l0) = KO(EX) implies K0(h) n KX(E) = K^EJ n J S ^ ) ,
i.e. Jf?(Z?) = Kf{Ex). Therefore LOKO{EX) is also the greatest If and thus
J B J I Z J ^ ) is an element of GE. —J

Lemma 6. Every e £GE determines an element of 0(0, E).
Proof. Consider If determining e. If Q LE = L0K0(E) implies

K0{E) QK0(lf). From orthomodularity there follows K0(lf) = K0(E)
v{K0(lf)r\Kx(E)) and K0(l*) = K0(E)v (K0(lf) nK^E)). By hypo-
thesis, Kf(lf) = Kf(lf), hence K0(lf) = K0(lf), which obviously ex-
presses that e has a unique extension to K. In other words, every e £GE

can be considered as the restriction of an element EX^G (0, E) to
KX(E).-^

Lemma 7. For all Fv F2(:LE:F1< F2 implies Fx < Fv
K ^ KX(E)

Proof. By theorem 1, JP2 — Fx = : F £ LE. Assume Fx = F2. Hence
Ki{E)

F == 0 and KX(E) QK0(F). Since also K0{E)QK0(F), we obtain
•£"i(2?)

Zx(^) v K0(E) = K Q K0(F). Thus J7 - 0, which is a contradiction. -J
Theorem 10. The lattices GE and G(0, E) are orthoisomorphic.
Proof. The mapping G(O, E) -> GE denned by Et -> E^K^E) is bi-

jective by the lemmas 5 and 6. Lemma 7 says that it preserves order in
both directions. The compatibility with the orthocomplementation is
trivial. —'

Thus we are permitted in the sequal to identify GE and G(0, E). We
shall make use of it wiien proving axiom 2 b for (K^E), LE). Before,
however, we need a subsidiary proposition: denning {Y\Y^B\ Y
^XF,X^R+, F £ LE, o ^ fj,(V, Y) g 1 for all V £ KX{E)} and LE as its
(weak) closure, we show

Lemma 8. Y £LE implies Y ^ E.
K

Proof. Let Y be an accumulation point of LE. Take any sequence
(Yj) in the above-defined set which converges to Y £ B'. Then by the
corollary to lemma 4 3̂ - :£ E, thus Y g E. —'

K ^ K

Theorem 11. For all Y £LE and Ex ^ E:

Kf(Y)2 Kf (Ex) implies Y ^ Ex.

Proof. By lemma 8 there holds Y t£ E. By orthomodularity we have

KB(Y) = KB(E) v (K0(Y) n K^E)), Z o (^ ) = K0(E) v (Z o ( ^ ) r> KX{E)).
Applying the hypothesis we obtain KO{EX) Q K0(Y). Thus axiom 2b
yields 7 ^ Ex. -J

Summarizing, we can conclude that statements and theorems valid
for (K, L) hold for (KX{E), LE) too. We shall particularly use theorem 1
with (KX{E), LE) substituted for (K, L).
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The next definition includes some sets useful in the sequel.
Definition 6. For every E £G we denote :

(i) the (closed) linear hull of KX{E) by B(E);
(ii) the (closed) linear hull of LE by B' (E), and define;

(iii) £{E) := {X\X e B(E), ^E(X, Y) ^ o for all Y £0>(E)};
(iv) &>(E) :={Y\Y €B(E)',Y ^ 0} where B(E)' denotes the

dual space of
Thus, the following theorem is the most important conclusion drawn

from the proved theorems in the whole.
Theorem 12. B(E)' is canonically isomorphic to B'(E). Hence we may

identify B(E)f with B'(E) and, therefore, £t(E) and gP(E) are the positive
cones of B(E) and B'(E), respectively. That is 1(E)= U XK^E)

a n d ^ ( S ) = l^ XLE.

Theorem 12 and its consequences create the facts upon which we
shall base the construction of the subalgebra of &(B') as announced in
section I.

IV. The Construction of the Algebra

Section III shows that (B(E), B' (E)) is the pair of dual spaces
pertaining to (K^E), LE).

Definition 7. The projector mapping B' onto B'(E) is denoted by
TE. Thus there holds lmTE = B'(E).

Theorem 13. TE is uniquely determined by TEY = Y\B(E) for all
Y 6 B\ i.e. by ^ (7 , TE Y) = p(V, Y) for all V $ KX(E).

Proof. Consider the restriction of any Y £ B' to B (E) defined by
/JL(X, Y\B(E)) = JU(X, Y) for all X£B(E). It follows that

1) 7|JS(i£) is linear on £(#).
2) Y\B(E) is trivially unique as a restriction.

Therefore, by 1) and 2) an operator of B' onto B' (E) can be defined by
Y -> Y\B(E) for all Y £ B'. Because of the bilinearity of \JL this operator
is linear. Restricted to B' (E) it obviously operates as the identity. Thus
it is idempotent, i.e. it is equal to TE. Since £(E) = U XKX{E) is

generating with respect to B(E), TE is completely determined by
> ( F , TEY) = p(V, Y) for all V £ KX(E) and any Y £B' ". -J

Corollary 1. (i) TEF = F for all F £ lE, hence TE [LE] = LE

= L0K0(E); (ii) TefaKiWl-iE}; (iii) TE(L0K0(E')] = {0} i.e.
() E

Proof, (i) Is evident, (ii) Results from L0K0(E) r\ ^K^E) = {E}.
(iii) Results from KX(E) = K0(E') Q K0(F) for all F ^ E''. —'

Since always Bf — Im.TE © KerTg there arises the question when
B' = B'(E) © B'{E') holds, i.e. when B'(E') = KerT£. The answer will
be given in theorem 18.
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Corollary 2. For all E £G:TE[&>] = {)
Proof. By definition of TE, TE [L] Q LE and by (i) of corollary 1

LE C TE[L]. Thus TE[L] = LE and hence the assertion. —'
Let us remember that &(B') denotes the Jfc-algebra of all linear

operators over B'. Then the set
3T := {T\T £&(B'), T:0>-> &}

forms a cone the elements of which are called positive. Since SP satisfies
0* r\ (— &) = {$}, ̂  canonically induces a partial order in &{B') by

"for all Hv H2 £&{B') :HX^H2 iff

This is obviously equivalent to

"#! g H2 iff {Hz-HJY £0> for all Y

By corollary 2 to theorem 13 TE is positive, hence we can prove
Theorem 14. TE is isotone for all E £G.
Proof. For all Yl9 Y2 £ B' with 72 ̂  Yx there holds Y2- Y1 ̂  &.

Hence TE(Y2- Yx) = TEY2- TEYx i0>(E). ->
Theorem 15. For all Ev E2£G:

(i) TETEi = TEi # J5'(^) £ B'(«a)
(ii) B'{El)QB'{E2)iffE1^E2

(Hi) ^ g 7̂2 i# T^ T^a = T^.
Proof, (i) is clear because TEi are projectors with IrnT^. = B'(Ei)

(*=1,2).
(ii) By definition 6 (ii) B'(EJ Q B'(E2) impHes LEiQLEzi thus

^ ^ -£72- The reverse direction is also obvious.
(iii) Suppose E1 ̂  JE/2' Because of theorem 1 it suffices to verify

TE1
 TE2F = TEF for all î 7 £ £. By theorem 13 there holds for all ̂  $ L

^(F, TETEF) = fjL{V, TEF) for all V {K^EJ; besides, ^(F, T^JP)
= /i(V,F) for all F {K^EJ. Since i ^ ^ ) S ̂ ( ^ s ) by hypothesis, so
there also follows /i(V,TE TEF) =/JL(V,F) for all F ( ^ ( ^ ) , i.e.
T J , l T J j i J P=T^fo ranJFe i .

Conversely, suppose TETEi — TEx. By corollary 1 to theorem 13
we have TETEEX= TEEX='Ev i.e. ft(V, TET^EJ = ^(F, T^a^)
= ^ (F, ̂ J = 1 for all F ^ iTx (E^). On the other side, applying theorem 13
to TEa, we obtain /i(V, TEzEx) = ^(F, ̂ ) for all F ^ ^ i W -
Altogether it consequently follows that KX(E^) Q K1(E2)9 hence the
assertion. —J

^"(G) := { T E | T E ^ ^ , ^ ^ ̂ } being a projector set, there exists the
usual partial order in ̂ (G), which is defined by

TEi ^ TBuiBTBuTEl=TBl.

Notice that theorem 15 ensures the antisymmetry of this order relation.
So we are able to formulate our main theorem:
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Theorem 16. The mapping 0:G->&~(G) defined by 0(E) = TE for
all E ^G is a lattice ortho-isomorphism between G and 3~ (G).

Proof, Theorem 15 and the preceding definition of order in &' (G)
show immediately that 0 is an order isomorphism. Hence &' (G) is a
lattice with the notations

TE> = : (TE)f, TEiAEz = : TEi A TEZ, TEIWEZ = : TEi v TE% . —J

Corollary. ^(G) is an orthomodular lattice in J~C&(B').
Proof. TEi ^ TE% implies E1 ^ E2, hence the assertion. —'

T(G)
Theorem 17. For all Ely E2£G: TEi^ TE% implies TEi g TEi.

1 y 2 xy~{G)
Proof. TEi ^ TE% is equivalent to TEi Y ^ TEY for all Y

Thus T ^ - ^ ^ T ^ ^ g Ez. -J
Remark 4. Concerning Hilbert-space, where K is the set of all positive

semidefinite Hermitean operators F with Tr (V) = 1 and where L is the
set of all Hermitean operators F with 0 ^ F ^ 1 and JU{V,F) is given
by Tr(F.F), the operator T# is determined by TEF - EFE for all i?7 ̂  X
and any projector E £ .£. In this case we can easily verify that the con-
verse implication in theorem 17 is also valid, but we failed to prove it
generally.

Let us now settle the question, when KerT^ = ImTE/ holds. As the
model in remark 4 shows, the lattice isomorphism 0 between G and 3T (G)
is not always ortho-additive. The next theorem gives a necessary and
sufficient condition for its ortho-additivity.

Theorem 18. "G Boolean" is equivalent to "T _L = I V + T*

for all orthogonal EVE2£G". __
Proof. If G is Boolean, then each E £ G is compatible with all E £G,

_ J- _ — —
i.e. E = (E A E) V (E A E') = $ A $ + $ A $ ' . By theorem 1 it suffices to
calculate the action of T ± on L. Because any F £L has the spectral

Ei\/ E2

n

representation (see [3], theorem 15) F = £ XVEV with Xv > o and

Ev pairwise orthogonal, it even suffices to calculate T _L EV. By

hypothesis Ev = \EV A ( j ^ V # J ) V (#" A \EX V EJ ) , and by corollary 1

to theorem 13 T ± \EV A (EI V E2) ) = 0, T j . ( ^ A ( ^ V E2J)
E^E^ X 7 7 J S W ^ X

= ^ A \E1 V .EJ2) - ( ^ A Ej) V (£JV A JEJ2) = EV AEX + EV A E2. On the

other side, ^v = (Ev A ̂ ) V (^v A El), hence T ^ " = Ev AE{ (i = 1, 2)
by the same corollary. Thus the final result:

T x Ev = Ev AEX + Ev AE2= TEEV + I 7 ^^" •
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Conversely, suppose T _L = TE + TE for all orthogonal El9E«£ G.

Especially, T ± = TE + I V = id5>. Thus every J7 £ £ is additively

decomposed into two components such that .F = F} -f- i1_L with F} ^ E
and .F± g 2£'. In other words, any F is reduced by all E £ (?, that is any
two elements of (7 reduce each other. By theorem 42 in [2] two such
elements of G are compatible, i.e. G is Boolean. —J

As demonstrated in [2], it suffices to suppose G to be irreducible, i.e.
Z(O) = {0,1},Z(G) denoting the centre of G. If (? is reducible, the struc-
ture of (J5, Br) is, in fact, completely determined as soon as the structure
of the irreducible components of G is known. With G reducible B' splits

n
up into B' = 0 B'(EV), n ^ dim B', Ev being (orthogonal) atoms of

v = l

Z(G). We will now concern ourselves with the converse. Remember
that A (G) denotes the set of all atoms of G.

Lemma 9.7/ B' = © (B')v, n^dimB', and U (A (G) r\ (B')v)
n
±

= A (G), then 1 = V Ev, each Ev being the greatest element of G r\ (B')v.
Proof. 1) A(G)r\(B')p*0 for all v£[l9n]CN. For assume the

existence of v0 ^ [1, n] such that A(G) n (B')Vo = 0. Since there exists
a basis b = {Pi\Pi(:A(G)9 i £ [1, dimJ5']} of J5', so 6 n ( B \ = 0.
Therefore, the Hnear hull of 6, which is B\ is contained in © (B')v,
which is a contradiction. v*v°

2) 6r being segment-orthocomplemented, any Pio ^ & can be supple-
m

II i-
mented by PXQ £ A (G) such that 1 = Pio V I V Pxl = Pio+ 2J P«G,

m<dimJ3 ' . Then there holds for all v £ [1, n] {Pio, PXi, . . ., P a J
n (J5')v 4= 0, for otherwise, there would be v0 such that {Pio, P a i , . . ., Pam}
n (B\ = 0 and so 1 f 0 (J5;)t, By 1), (B\ contains at least one

PVQ £A(G). Starting from PVo, we can again find PpH £A(G) such that

1 = pvo V I V PBJ = P,o + S pfa ™ < dim JS'. This, however, con-

tradicts the fact that every element of B' has a unique representation
by components of (B')v because Bf is a direct sum.

In the above orthodecomposition of 1, let us collect all those atoms
which belong to an arbitrary but fixed [B')v. Their supremum (equal to
their sum) is denoted by Ev. Thus we obtain
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3) We prove that each Ev is the greatest element of 0 r\{B')v.
Starting from any atom in an arbitrary but fixed {B')v, we can derive
an orthodecomposition of 1 in the form indicated in 2). The supremum
of all those atoms in this orthodecomposition which belong to the
arbitrary but fixed (B')v must be equal to Ev because of the uniqueness
of such an orthodecomposition of 1. Thus all atoms belonging to this
arbitrary but fixed (B')v are also atoms of Ev £ {B')v hence Ev is the
greatest element of 0 r\ (B')v. —'

Corollary. Each Ev of the orthodecomposition of 1 is compatible with
all E £G.

Proof. We have to prove Ev = (Ev A E) V (Ev A W) for all E £G.
±

There obviously holds for all E £G (E A EV) V (E A E'V) ^ E. Any E can
be decomposed by atoms of G. Since, by the hypothesis of lemma 9,

n

U (A (G) r\ (B')v) = A (G), the atoms of E are also atoms of Ev because

the Ev are the greatest elements in G r\ {B')v. For an arbitrary but fixed

v0 £ [1» ̂ ] we deduce from lemma 9 E'Vo = 1 — EVo = V Ev. Hence we
± ±

conclude E ^ (E A EV) V (E A EV). Thus E = (E A EV) V (E A J0i) and by

the orthomodularity of G Ev = (J0V A ̂ 7) V (^v A JS7')- —'
Theorem 19. Tfi^ ^e hypotheses of lemma 9 <md d im5 ' =1= dim(5 /)v

/or all v £ [1, w], (T *5 reducible.
Proof. From the preceding corollary there follows Ev ^Z(G) for all

Ev of the orthodecomposition of 1 £G. Since B' is supposed to be a non-
trivial direct sum (n > 1), there holds EV^O and i£v 4= 1 for all v £ [1, n] ;
hence the assertion. —•

Deflnition8. (i) Let s/(G) denote the (real) subalgebra of J*(J9')
which is generated by &~(G).

(ii) Let stf (G)' denote the commutant of stf (G).
We will now establish a connexion between the operation of any sub-

algebra of &(Bf) and the reducibility of G. To this end let us first note
the operation of TP for any P £A(G): by the proof of theorem 9, any
F£LP has the representation F = XP, X £ [o, 1]. Hence TPF = XP
= jbt{VP, F) P for every F £ £, which can be deduced from theorem 13
and its corollary 2.

Theorem 20. Let stf be any subalgebra of &(B'). If stf is reducible,
then so is G.

Proof. $? reducible implies si1 4= {aid^|id^ g^(JB'), a £R}. Con-
sider any A £ <£/' such that 4̂ 4= aidg'. 4̂ commutes especially with
each TP£@(B'): ATPP - AP = TP^1P = ^ ( F P , JLP) P = a(P) P
with a(P) := /u{Vp, AP), i.e. all P^^4((r) are proper vectors of A.
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Since A #= ocidBr, there exist at least two distinct proper values of A.
Suppose its total number to be n (1 < n ^ dim B') i.e. A decomposes B'
into the non-trivial direct sum of the n proper spaces (B')v, each (B')v

belonging to the proper value ocv of A. Let {P{\Pi £A(G), i £ [1, dimB']}
be a basis of Br. Then [1, dimi?'] is subdivided into n disjoint sets /„
such that a, = oc(Piv) for all iv £ Iv. Thus {Piv\iv £ Iv} is a basis of (B')v.

n
Any P £A(G) being a proper vector of A, we have derived U (A (G)
r\ (B')v) = A (G), i.e. the decisive hypothesis of theorem 19. —1

As it is structurally not restrictive to require G to be irreducible (see [2]),
we can show the

Theorem 21. / / G is irreducible, then stf = &(Br).
Proof. By theorem 20 B' is a faithful and irreducible j3/-module,

hence stf is primitive. Thus, by JACOBSON'S density theorem, stf is
algebraically dense in &(Bf) (see e.g. [19]) and so, because of the finite
dimension of B\ sf = 3S(B'). In particular, s/(O) = &{Bf), which ex-
presses that s>f(G) is a Baer-ring. —J

The concluding remarks of this paper are dedicated to the com-
parision of the projector TE with the Sasaki-projection extensively used
in [7-11] and [17, 18]:

Definition 9. (i) If G is orthomodular, a surjection &e:G-+ 0(0, e) is
defined by &e(g) = e A (g v e') for all g £ 6r and any e ^ 6r ([15]).

(ii) Since <Z>e is idempotent, it is called Sasaki-projection.
As immediately to be verified, the following implications hold for

e,g£G:
(1) g g e implies 0e(^) = ^ (by orthomodularity of G)
(2) e ^ g implies (Pe(gr) = e
(3) gr g e'impKes<Pe (gr) = O
(4) e' ^ g implies #e(gr) = e A gr.

According to NAKAMURA [16] there holds in an orthomodular O with
1

the definition "e^Se^ iff ex — (ex A e2) V (e2 A e^)":
(5) e^ez iff 0 e i06 a = 0 e a 0 e i

(6) e^e2 iff e ^ e ^
The model in remark 4 demonstrates that TE\G is not generally a

Sasaki-projection but if and only if 0 is Boolean, which is a consequence
of theorem 18. Whereas @6 is a v-homomorphism, TE\G is so only in the
Boolean case. The properties (1)—(4), however, are satisfied by TE as
can easily be seen by corollary 1 to theorem 13 and by the orthomodu-
larity of 0. We have, up to now, failed to settle the question whether
TE has property (5) or not.

Let us at last outline the main results of the co-ordinatizing procedure
byFouLis [7-11]:
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denotes that multiplicative semigroup of isotone mappings 0
of an orthomodular lattice 0 into itself for which for each 0 £ &*(G)
there exists one and only one 0* £ Sf{G). Here, * is an involutory anti-
automorphism on £f(G). <5?(G) is a Baer-*-semigroup whose projection
lattice &>'Sr(Q): - {0e\e £G,06£ 9>(G)} is ortho-isomorphic to G. S?(G)
is then said to be a co-ordinate semigroup of G. FOULIS has shown that
Sf (G) is the smallest (with respect to homomorphisms) co-ordinate semi-
group of G. Infimum, supremum and orthocomplementation in &' SP (G)
are determined merely by the *-mapping and the internal composition
on S?(G).

Thus there arise the following open questions in connexion with our
exposition:

1) It is possible to express the lattice operations in &"(G) by means
of the internal compositions of s/{G) %

2) It is possible to define a ^-mapping on ^~(G) only by order and
orthocomplementation so that this involution is compatible with the
internal compositions on @(Bf) and so that TE = TB* ?

3) Suppose £%(B') to have such an involution. Is G then modular?
4) When does TE satisfy ttE1VEz iff TETE% = TETE" ?
5) When does the converse of theorem 17 hold %

I thank Prof. G. LUDWIG very much for suggesting this investigation and for
his decisively stimulating criticism. I also thank Dr. K. KRAUS, Dr. P. STOLZ and
Mr. W. PREDIGER for critical remarks.
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