
Commun. math. Phys. 9, 176—191 (1968)

The Classical Mechanics of One-Dimensional Systems
of Infinitely Many Particles

I. An Existence Theorem

0. E. LANFORD III

I.H.E.S., 91-Bures-sur-Yvette

Keceived April 19, 1968

Abstract. We prove a global existence and uniqueness theorem for solutions of
the classical equations of motion for a one-dimensional system of infinitely many
particles interacting by finite-range two-body forces which satisfy a Lipschitz
condition.

§ 1. Introduction

In this paper, we prove an existence and uniqueness theorem for
solutions of the equations of motion of a system of infinitely many
classical point particles, constrained to move in one dimension, inter-
acting by two-body forces of finite range. Thus, let (qi9 pt) be a sequence
of pairs of real numbers representing the positions and velocities of an
infinite set of particles. We assume that each bounded interval in R
contains only finitely many particles, and we want to solve the differen-
tial equations:

with the initial conditions:

(For simplicity, we are taking the particles to be identical and to have
mass one). The interparticle force F will be assumed to be bounded and
to have compact support. As long as each bounded interval in R con-
tains only finitely many <fr(£)'s, the sum on the right of the second
equation has only finitely many non-zero terms for each i and the equa-
tions therefore make sense. It is clear, however, that for some initial con-
figurations we must expect the Eq. (1.1) to lead in finite time to a cata-
strophic situation with infinitely many particles in some bounded interval.
To take a trivial example, if there are no interparticle forces and if
rpi = __ qi for each i, then all the particles are at the origin at time one.
The crux of the problem of proving an existence theorem is to find a set
of initial configurations for which such catastrophies can be shown not
to happen.
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A first result in this direction was obtained by J. GINIBRE (un-
published) who proved that the Eq. (1.1) have a solution valid for all
values of t if the initial configuration admits an upper bound on the
absolute values of the velocities of the various particles and on the num-
bers of particles in the various intervals of unit length; furthermore,
he proved a local existence theorem for systems of particles moving in
Rv (instead of R), with the analogous restrictions on the initial momenta
and densities. Our theorem, which holds only in one dimension, gives
existence for initial configurations in which, roughly speaking, the velo-
cities increase at most logarithmically with distance from the origin and
the number of particles in an interval of unit length increases at most
logarithmically with the distance from that interval to the origin. (The
precise condition we impose on the initial densities is actually a bit more
restrictive; see § 2.)

The main interest of the existence and uniqueness theorem which we
will prove lies in its application to the time-evolution problem in the
classical statistical mechanics of infinite systems. We will discuss this
application in detail in a subsequent publication. Nevertheless, we give
here a brief sketch of how the application is made, as motivation for our
theorem and to explain why it is important to be able to solve the
equations of motion for a set of initial configurations more general than
those with bounded velocities and densities.

We have first to explain what is meant by a state of classical statis-
tical mechanics. By a locally finite configuration of labelled particles we
will mean either:

a) An n-tuple x = (ql9 px\ #2> 2V> • • • 5 Qn> Pn) °^ pairs of real numbers
or
b) A sequence x — (qi3 pt) of pairs of real numbers such that each

bounded set in R contains only finitely many g/s, i.e., such that
lim |g,| = OD.

l—»oo

We will denote the set of all such configurations by 9£. A locally finite
configuration of unlabelled particles will mean an equivalence class of
locally finite configurations of labelled particles, where two configurations
are equivalent if they differ only by a permutation of the indexing set;
we will denote by [x] the equivalence class of x and by \ST\ the set of
equivalence classes. Space translations act on an obvious way on $£ and
on \S£~\- The space [3£~\ may be equipped with a topology in a natural
way [1]; then a state of classical statistical mechanics is a Borel probability
measure on [#*] which is invariant under the action of space translations.

Now suppose that the equations of motion (1.1) have a unique solu-
tion for every initial configuration x in some subset 2£ of S£, and that
the solution curve
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A

in contained in 3F. By the invariance of Eq. (1.1) under permutations of
A

the indexing set, it is clear that 9? can be taken to be a union of equi-
valence classes; let [,8T] denote the corresponding set of unlabelled con-
figurations. For any t, we can define a mapping Tt of \9C\ into itself by
setting Tf[x] equal to the equivalence class of the value at time t of
a solution of the equations of motion whose value at time zero belongs
to the equivalence class [x]. By the uniqueness of the solution, this
definition does not depend on the choices made, and {Tf} is a one-
parameter group of mappings of [3t] onto itself.

If Q is a measure on [$T] which is concentrated on \SC\ i.e. which has

A

and if each Tl is a measurable mapping of \3C\ onto itself, then we can
define for each t a measure Qf by

A) if

Thus, we get a satisfactory time evolution for those states which are
concentrated on [&], and the usefulness of an existence theorem depends
on whether or not interesting states are concentrated on the set of
allowed initial configurations. In the subsequent publication referred to
above, we will give a criterion for states to be concentrated on our set
of initial configurations which implies in particular that

a) states obtained by taking the infinite volume limit of thermo-
dynamic ensembles at low activity [2], and

b) states obtained by taking an infinite volume limit of thermo-
dynamic ensembles with non-negative potentials, at any activity
have this property. On the other hand, since any state obtained by
taking an infinite volume limit of canonical or grand-canonical ensembles
has a Maxwellian velocity distribution1, it is easy to see that no such
state can be concentrated on the set of configurations with bounded
velocities (unless it is the trivial state which is concentrated on the con-
figuration with no particles).

In fact, the logarithmic rate of increase of density fluctuations is
almost the slowest increase which can be allowed if we are to have a
sufficient set of initial configurations for applications to statistical

1 A state is said to have a Maxwellian velocity distribution if the velocity of
any given particle is independent of the position of that particle and of the positions
and velocities of the other particles, and if the velocity of a single particle is dis-
tributed with probability density ] / -J-— e ~~ v '2, where ft is some positive real number.
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mechanics; a typical configuration of non-interacting particles has
density fluctuations which increase like log(^)/log(log(^))? where d is the
distance to the origin. To make this statement precise, we define a func-
tion on [$T] as follows: For any configuration [z], take the number of
particles in the interval [n,n + 1), divide by log(%)/log(log(w)), and take
the lim. sup. as n goes to infinity. This gives either a non-negative real
number or -j~ oo. An elementary calculation shows that, for the state
obtained by taking the infinite volume limit of the grand canonical
ensemble for non-interacting particles, with any (non-zero) temperature
and any chemical potential, this function takes on the value one on the
complement of a set of measure zero.

Having made these remarks by way of motivation, we will devote
our attention for the rest of this article to the problem of solving the
differential Eq. (1.1), without considering further the application to
statistical mechanics. In § 2, we give a precise definition of the set of
initial configurations for which we can solve these equations, state the
main result, and sketch the ideas underlying the proof. In § 3, we reduce
the equations of motion to a non-linear evolution equation:

on a Banach space isomorphic to l°° (where the derivative is to be taken
in the sense of the product tolopogy), and we estimate the norm of A (£).
In § 4, we show that, although the non-linear operator A does not satisfy
a norm Lipschitz condition, it does satisfy a Lipschitz condition with
respect to a family of semi-norms defining the product topology. We then
use this Lipschitz condition, together with norm estimates on the
operator A, to prove the existence and uniqueness of solutions of (1.2),
and to show that these solutions can be obtained by solving the integral
equation t

by iteration. °
§ 2. The Set of Allowed Initial Configurations

Before defining the set of initial configurations for which we can
solve the equations of motion, we need some notation. First, to cut off
the logarithm function for small values of its argument, we make the
definition: ,

log+(?) = log(|?|ve) (2.1)
where the symbol v denotes "supremum". We shall make frequent use
of the elementary inequalities:

log+(a + b) g log+(a) + log+(6) ;
log+(a . b) £ log+(a) + log+(6) ; (2.2)

log+(a) ^ \a\ if \a\ ^ 1 .
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Second, for any x — (qi9 p^ in &', and any bounded set A in R, we define
NA(x) to be the number of i's such that qi £ A, i.e., the number of par-
ticles in the region A for the configuration x.

The set of initial configurations x— (qi9 pt) which we want to consider
will be those satisfying the following two conditions:

1) There is a constant Klt such that, for each i,

| f t |£* i log + ( fc ) . (2.3)

2) There is a constant K2 such that, if (a, /?) is any bounded open
interval whose length /? — a is larger than log+((a + /?)/2), then

N^flW^Zitf-x). (2.4)

Condition 2) may be reformulated by saying that there is an upper
bound for the mean density of particles in any interval of length greater
than one whose length is also greater than the logarithm of the distance
from its center to the origin. It implies in particular that the number of
particles in any interval of unit length is bounded by a constant times
the logarithm of the distance from its center to the origin.

We will denote by $£ the set of labelled configurations satisfying
1) and 2), and by \SC\ the corresponding set of unlabelled configurations.

A

The set 8E, although not defined in a manifestly translation-invariant
way, is easily seen to be mapped into itself by translations.

For any x £ &, we will let \x\ denote the smallest number which will
work for both Kx and K2 in (2.3) and (2.4) respectively, i.e.,

X =

We can now formulate our main result:
Theorem 2.1. Let F be a real-valued function with compact support,

satisfying a Lipschitz condition:

\F(q1)-F(q2)\^K-\q1-q2\ (2.6)
A

and let x = (q{, pt) belong to 2£. Then there is one and only one function
x(t) = (gi(t)9 Pi(t)), defined for — oo < t < oo, with values in 0£y satisfying

(1-1)

2.
3. \x(t)\ is a locally bounded function of t, i.e., is bounded on any

bounded interval.
We will say that a solution of the Eq. (1.1) is regular if it satisfies

condition 3. Note that the uniqueness statement of the theorem is not
as strong as one might hope, since it does not rule out the possibility of
non-regular solutions.



Infinite Classical Systems 181

The formulation of the theorem supposes tacitly that we use the
same labelling set for all t and in particular that the total number of
particles does not change with time. The result is well-known if the
initial configuration has only finitely many particles. We will therefore
give the proof only for initial configurations with infinitely many par-
ticles; the argument can readily be adapted, at the expense of compli-
cating the notation, to apply simultaneously to the two cases.

The proof of the theorem is obscured by technical problems and by
straight forward but tedious estimates. It seems worthwhile, therefore,
to give a brief and unencumbered description of the underlying idea.
The central difficulty is that of showing that the differential equations
cannot drive infinitely many particles into a finite region of space in
finite time. One can convince oneself of this by showing that the differen-
tial Eq. (1.1) imply integral inequalities for the quantity \x(t)\ which
prevent its going to infinity in finite time. These inequalities are gotten
as follows: If we know \x(r)\ for 0 g r ^ t, then we have in particular
estimates on the density for that interval of time. Majorizing the force
on the ith particle by the maximum of |JF| times the number of particles
within a distance R (the range of the force) of qi} we can convert our
density estimates to estimates on the forces and thus, by integrating the
second differential equation, to estimates on the velocities at time t.
Similarly, from knowing \x(r)\ for 0 ^ r ^ t, we get bounds on the
velocities and therefore on the distances travelled. Using these bounds
we can find, for a given interval (a, /?), a larger interval from which
a particle has to start if it is to be in (a, /?) at time t. Knowing \x(0)\
enables us to majorize the number of particles in this larger interval at
time zero and therefore the number of particles in (a, /?) at time t.

Combining all these estimates gives a bound for \x(t)\ in terms of \x(r)\
for 0 g r ^ t, and this bound may be seen to imply that \x(t)\ cannot
go to infinity in finite time. Unfortunately, the estimates are very
tedious to write out since the density and velocity bounds vary with
position as well with time. Furthermore, while these inequalities are con-
vincing evidence that well-behaved solutions to the equations exist, there
remains the problem of constructing a proof. We have found it convenient
to bypass these inequalities and to organize the proof in a different way,
by reducing the Eq. (1.1) to a non-linear evolution equation on a Banach
space. The estimates described above then reappear in the form of norm
estimates on the "infinitesimal generator".

§ 3. Reformulation of the Differential Equations
A

Given any configuration x £ $", we will introduce a space of "neigh-
boring configurations" in which the evolution takes place. Let &x denote
the Banach space of sequences of pairs of real numbers £ = (£$, rji)
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such that

Given £ m ^ x-> w e denote by x + C the sequence of pairs of numbers
(& + £*> P» + Vil- ^ n e following two lemmas motivate the introduction
of the space <& x: The first shows that, for any £ in &Xi x + £ is in #*,
and the second shows that any regular solution of the equations of
motion with x as initial value stays inside the set of configurations of
this form.

Lemma 3.1. Let x£& and £ £ <3fx. Then x + £ £ # \ Moreover,
\x + £| <̂s bounded on bounded sets in <3/x.

A

Lemma 3.2. Ze£ # ^ ^ , aw^ Zef rc(̂ ) = (qS), Pi(t)) be defined for t in
a bounded open interval I containing zero. Assume:

L - % r U ^ » forall teIt
2. x(0) = x .
3. \x(t)\ is bounded on I.

Then, for each t £ I, we can write

with £(£) in $/x, and ||£(£)IU ^n bounded on I.
We postpone the proofs of these lemmas. By Lemma 3.2, to find

regular solutions of the differential equations, we can concentrate our
attention on ones of the form x + £(£)> with £(£) £ <3fx. In terms of the
new dependent variable £(£) = (£i{t), rj^t)), the differential equations
become:

or, schematically,

^ L (3-2)

where the derivative is to be taken a co-ordinate at a time and Ax(£)
is the sequence of pairs of real numbers

) (3.3)

The following proposition shows that Ax defines a bounded non-linear
operator on &x:

Proposition 3.3. Let Fbea bounded function vanishing outside (— R,R),
and let £ £ &x. Let AX(Q be defined by (3.3). Then Aa(£) g ^ ; moreover,
there exist constants C, D (depending on \x\) such that

IK(C)IUso
for all C 6 *&x-



Infinite Classical Systems 183

Again we postpone the proof. Combining Lemma 3.1, Lemma 3.2,
and Proposition 3.3, we see that Theorem 2.1 is equivalent to:

Theorem 2.1'. Let F, x be as in Theorem 2.1, and let Axbe defined by
(3.3). Then there is one and only one function £(£) = (|*(£), r]i{t)),
defined for — oo < t < oo, with values in $/Xi satisfying:

2. £(0) = 0 .
3- ||?(£)|U ^s a l°catty bounded function of t.

In 1., the derivative is to be understood in the sense of the product topology

We will now give the proofs of Lemma 3.1, Lemma 3.2, and Proposi-
tion 3.3. Let us begin with Lemma 3.2. We have to show that

feW ~ fri a n d \P&)-Vi\

are bounded with respect to i and t. The differential equation and the
boundedness of \x(t)\ imply that, for some K,

Therefore,

IfcW-fcl
where

and K' is K times
Thus

AQt^K':

: ̂  K fdt
j
i

the length

iog+(tel +

oil.

AQt)i

where, to get the second inequality,
inequality, we get

AQt ^ Ts,

dt))£K'log.

ki(t)-<li\>

£ K' [log+ (q{)

we have used

M -

+ log

(2.2).

J '
. \iM

±AQt),

Rearranging this

•* 1 Art T-v /^••-i-r-k «-l nrl

log+(^) f°g+(^)
with respect to i and t. The boundedness of - ^ ~^~ follows at once,

since
\Pi(t)\ t log+flg<l + AQt) \pi\

This completes the proof of Lemma 3.2.
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The proofs of Lemma 3.1 and Proposition 3.3 both involve some
tedious particle-tracing estimates which are isolated in the following
lemma.

Lemma 3.4. There exists a constant K such that, for all x £ 3F, all j} > a,
all X ̂  1, and all sequences (£t) of real numbers such that

aupfl&l/log+to)}^ A,
the inequality l

# {? • q, + £, 6 [a, j8]} £ H W ~ a + -O(log+(A) + log+(|a| v |/?|))] (3.5)

holds. (The notation # I , I a set, denotes the number of elements in
the set).

Proof. It is enough to prove the lemma with the added restriction
that oc and /? have the same sign, since we can prove the general result
from this more restricted one by breaking up any interval into a piece
to the right of the origin and a piece to the left. By symmetry, we can
assume a ^ 0.

Let
W = {q g R: q + £ £ [a, /?] for some £ with | | | g A log+(g)} .

We will proceed by estimating the length of W and then applying the
definition of \x\ to estimate the number of g/s in W.

The first remark we need is the following: If

a^ 1 + 2A, (3.6)
then

q — X log+(g) ^ a implies q — a < 2 A log+(a) . (3.7)

To prove this remark, we first observe that q — a ̂  X log+(g), so it
suffices to prove that q < a2. But q — A log+ (g) is a strictly increasing
function of q for q ^ X, and, by the hypotheses of (3.7), a ^ g — A log+(g),
so we have only to prove that

a 2 - Alog+(a2) >a.

Dividing this inequality by a, using the fact that log+ (a2) = 2 log+ (a),
and transposing, we see that it suffices to show:

a>1+niog+(a)
a

But 1 + 2A1°g+(aV< i + 2A g a [by (3.6)], so this inequality holds
and our remark is proved.

Now let q ̂  0 and suppose

q + Xlog+(q)^oc, i.e., \q\ - A log+(|g|) ^ - a <£ 0 .

Applying the above remark, with a = 1 -f- 2X and |g| replacing g, we
see that

\q\ < (1 + 2A) + 2A log+(l + 2A) . (3.8)
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To save writing, we denote the right-hand side of this inequality by h.
Similarly, if q — A log+ (q) <£ /?, then
a) If £< l + 2?i,q<h. (3.9)
b) If ^ 1 + 2 A, q< £+2Alog+( /9) . (3.10)
Combining (3.8), (3.9), and (3.10), we see that

WC(-h,h)v(0, p + 2Uog+(P)) .

We can reduce the second interval as follows: If q £ (0, /?) r\ W, then

a rg g + A log+(g) < g + A log+(/?),
i. e.

q> oc- Alog+(£) .
Thus,

Tf C ( -* , h) w (a - A log+(j5), )8 + 2 A log+(/?)) .

Applying the definition of \x\, we see that

# 0' •• * t w) ̂  N IP - a + 2h + 3;l log+(£)l;
inserting the value of h and making some elementary re-arrangements
completes the proof of the lemma.

We can now give the proofs of Lemma 3.1 and Proposition 3.3. To
prove Lemma 3.1, we have to find bounds on

valid for all £ with ||C|U ^ A, where we can assume A ̂  1.
The momentum bound is immediate since

\Pi + Vi\ < \Pi\ j _ _ M _ < M .II^II

To get the density bounds, we apply Lemma 3.4 to show that for
any ft > oc,

g+w , iog+(H v jjg

Using the equation

( R -4- CL \

•^~2 ) >

we have

which gives the desired bound on the density and completes the proof of
Lemma 3.1.
13 Commun. math. Phys., Vol. 9
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To prove Proposition 3.3, it suffices to find constants C and D such
that

\ to h - q, -
b ) "?

whenever \\£\\x ^ X and A ̂  1. (We have introduced X just to avoid
having to discuss separately what happens for |j<̂ "||̂  small).

We have already made the necessary momentum estimate (3.11). To
get the estimate on the forces, we first write:

^ M # {j : q, + £ e [ft + Si ~ K, q, + Si +
But

log+(|ft + Si\ + 5) ^ log+(&) + log+(A log+(

^ 2 log+(ft) + log+(A) + l

Hence, here are constants C and D such that

+ Si - q, - St) m log+(A)] log+

so inequality b) is satisfied and the proposition is proved.
We will now make a brief digression to show in a heuristic way how

the norm estimates of Proposition 3.3 imply that the differential equa-
tions cannot drive infinitely many particles into a finite region in finite
time. Although the argument we will give is not a necessary part of the
proof of the main theorem, it illuminates the role played by the choice
of a logarithmic rate of growth of velocities and densities in the proof
of a global existence theorem; we will also obtain an intermediate result
needed in § 4.

From the differential equation , = Ax(£(t)) and the initial
condition f (0) = 0, it is at least plausible that the inequality

0

holds for t ^ 0. Using the estimate

we get:

If Wl. ^ fdx[C
0

Hence, if h(t) is the solution of the integral equation:

h(t) = fdr[C + Dh(r) log+(*(r))], (3.12)
o



Infinite Classical Systems 187

it is again at least plausible that

for alH ^ 0 for which h(t) is defined. Thus, to show that ||f(O|U cannot
go to infinity in a finite time, it suffices to prove that h (t) is defined for
all t, i.e., that the solution of (3.12) does not go to infinity in a finite
time. But by elementary calculus it is easily seen that h(t) is given
implicitly by

l = r. ds

and that, since 1/s logs is not integrable at infinity, h(t) does not go to
infinity unless t does also. Thus, we have an a priori estimate on the
norm of J (t) valid for all t, so we can expect to be able to prove a global
existence theorem if we can prove a local one.

If, instead of allowing density and velocity fluctuations to increase
like the logarithm of the distance from the origin, we allow a faster
increase (e.g., like some power of the distance), we can carry through
most of the constructions and estimates of this section. However, \\A (f)||
increases more rapidly with || £|| in this case; the reciprocal of the bound
is no longer non-integrable at infinity; and our technique for proving
a global existence theorem fails. The choice of a logarithmic growth rate
is thus to a large extent determined by two conflicting requirements: on
the one hand, if we take a growth rate which is significantly faster, we
are unable to prove a global existence theorem; on the other hand, if
we take a growth rate which is significantly slower, we do not get enough
allowed configurations for our intended applications to statistical
mechanics.

§ 4. Proof of the Main Theorem

If the non-linear operator Ax satisfied a norm Lipschitz condition on
each bounded set in <& Xi standard theorems would enable us to conclude
the existence and uniqueness of solutions of the equation:

Unfortunately, the operator Ax almost never satisfies a norm Lipschitz
condition (no matter how regular the potential is assumed to be), and
it is not even norm-continuous in general. We will show, however, that
Ax satisfies a Lipschitz condition of a very special kind in the product
topology on <&x> and that this Lipschitz condition allows the standard
existence proofs to be carried out almost exactly as in the Banach-space
case.
13*
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To simplify the notation in this section, we will assume that we are
dealing with a definite initial configuration x — (qit p^, and we will there-
fore write ||£|| instead of ||£||x; <& instead of <3/x, and A instead of Ax.

For any positive real number m, define a semi-norm m|[ || on <& by

J | t|| = sup { 'fogjfe)'1 : 1̂1 = m} a this set is non-empty
= 0 otherwise .

Evidently, the set of semi-norms {m|| ||} defines the product topology on

<Sf; furthermore, || f| = sup m|| f|l •

The following lemma gives the Lipschitz condition satisfied by A:
Lemma 4.1. Let F satisfy the hypotheses of Theorem 2.1, and let a real

number d be given. Then there exists a constant B such that, for any a > 1,
there exists an m0 such that, for all m ^ ra0 and all £,£' with ||£|| ^ d,
[It'll ^ d, we have:

JA(O -A(£')\\ £ Blog+(m) a m | | t - til • (4.2)

Some interpretation of this lemma may by helpful. What is asserted
is that, on any norm-bounded set in & (the ball of radius d), the m-norm
of A (t) — A (£') may be majorized by a constant multiple of the larger
ara-norm of t — t'> provided that m is large enough. The "constant" can
be taken to increase no faster than logarithmically with m, and to be
independent of a.

Proof. By the definition of A and TO||t||>

m\A (t) - A (t')|| = sup { wlfoj— : l*<l ~ m l '
where v v5+vs«; j

^^< = Em tF(<li + fi - ft - ^) - ^ f e + ^i - ft - IJ)] • (4.3)

Since

we have only to estimate A F{.
We first choose m0 so that, if m ^ m0, and if |^ | ^ am, |^ | ^ m,

(Here, R is some number such that F(q) = 0 for |<y| ^ i?.) This can be
done by choosing m0 so that

2d • log+(am0) + i? < (a — 1) m0 .

Next, using Lemma 3.1, we see that there is an E such that

# 0': \9i + Si ~ 1i ~ 61 ^R}^E log+ (qt) (4.5)

whenever llfll ^ ĉ .
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In the sum defining AFit we can evidently omit all fa such that
- ft ~ h) a n d F(ft + £ ~ ft ~ #) are both zero. By (4.5), the

number of terms left is no greater than 2E\og+(qi). We estimate each
remaining term using the Lipschitz condition satisfied by F; thus:

?t - q, - £,')|

But now, if m ̂  m0 and \q{\ g m, (4.4) implies that |g |̂ g am (or else
the term in question would have been zero). Hence

and
\AFt\ g 2E log+fe) • K • [log+(m) + log+(am)] • «m|f - £'« .

This inequality immediately implies the lemma.
We can now proceed to construct the solution of the equations of

motion. It is easy to see that the differential Eq. (3.2) and the boundary
condition £(0) = 0 are equivalent to the integral equation

Z(t) = fA(C(T))dr, (4.6)
0

where the integral is to be evaluated co-ordinate by co-ordinate. We will
solve this equation by sucessive approximations: Let

foW = O; f.+i(0 = /4(C»(T))dT for » S 0 . (4.7)
0

Proposition 4.2. Let F satisfy the hypotheses of Theorem 2.1, and let
Cn(t) be defined by (4.7). Then:

1. For each t, fn (t) converges in the product topology on & to a limit £(t).
2. For any m, m||£n(0 — £(0|| converges to zero as n goes to infinity;

the convergence is uniform in t on any bounded set.
3. The function £(£) is a solution of (4.6).
4. ||C (01! is a locally bounded function of t; moreover ||£n(0|| is bounded

in t on any bounded interval, uniformly in n.
Proof. We will consider only t ^ 0; the proof for t < 0 is obtained from

the argument we give here by changing some signs. Let C, D be as in
Proposition 3.3, i.e., such that

Let h be the solution of the integral equation

h(t) = fdt[C + Dh(r)
0

we saw in § 3 that h{t) is defined for all positive t.
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We now claim that

for all £ ̂  0. The assertion is clearly true for n = 0. On the other hand,
it is easy to see that

f
0

HfdT[C+D\\Zn(T)\\l0g+(Un(T)\\)].
0

Hence, if ||Cn(T)|| ^ &(T), we have

Ifn+iWll £ Jdr[C + Dh(r) log+(i(r))] = h(t),
0

and (4.8) follows by induction.
Now for any T > 0, apply Lemma 4.1 to get B such that

JA(0-A(n\\ 2S B\og+(m)xmU- Hi ,
whenever ||f|| and ||f'|| are not larger than h(T) and m is large enough.
Choose a > 1 so that Blog(oc)T < 1. If m is large enough and if
0 ^ t ^ T, we have:

0

^ Bl0g+(m)/dT«m |Cn(T)-
0

Repeating this argument n times, we get:

mllk+i(9 - CnWl ^ BHog+(m). . . log+(a»-1 m)

0 0

Since

we get finally

The ratio of succeeding terms on the right is
B\og+{(xnT) • T

rT+1 '
as n goes to infinity, this ratio approaches B log (a) T which, by the
choice of a, is less than one. Hence

Z Jtn+l(t) - £n(t)L
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converges uniformly in t on [0, T]. This proves statements 1., 2., and
4. of Proposition 4.2. Statement 3. follows from statements 2. and 4.,
and the Lipschitz condition.

Remark 4.3. All the above estimates have been made for a definite
choice of the initial configuration x. I t is easy to see that the convergence
of m||fw(0 — f (0|| to zero and the bound on ||fn(£)|| c a n be taken to be
uniform in x on {x : \x\ f£ 6} for any real number 6.

Proposition 4.4. Let £(t) and £'(£) be solutions of the integral Eq. (4.6);
suppose \\C{t)\\ g M and ||f'(0l ^ ^ /or 1*1 - T- Then ?(0 = HO /or

||
Proof. Again we consider only t ^ 0. Choose 5 so that the Lipschitz

condition (4.2) holds for ||f|| g if; ||C'|| ^ If. Choose a > 1 so that
B T log (a) < 1; then for m large enough and 0 ^ t ^ T

0

Iterating n times and using the fact tha t | | £ ( T ) — C'W|| ^2M for
0 ^ T ^ 2 \ we get:

As before, the ratio of succeeding terms on the right approaches a limit
which is less than one, so

This is true for any large m, so £(t) — £' (t).
Combining Propositions 4.2 and 4.4 gives Theorem 2.1' which, by the

discussion in § 3, is equivalent to Theorem 2.1.
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