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Abstract. A generalization of the spherical harmonic addition theorem is proved.
The resulting polynomial with four parameters, which corresponds to the Legendre
polynomial for the usual spherical harmonic addition theorem, is expressed as four
different but equivalent series. Each of them is a finite series of the Gegenbauer
polynomials. Thereby the symmetry properties of this polynomial are clarified.

§ 1. Introduetion and Summary

In several problems [1] of mathematical physics, there is a need to
generalize the spherical harmonic addition theorem. Let us consider the
functions of two points {2 and £’ on a unit sphere,

Bllf,ll’il('Q: 'Ql) = 2' O(ZZ,Lv m, M - m’) Ylm('Q) YZ’M— m('Q,) > (1)

m

which transform by a rotation as the (2L -+ 1) components of a spherical
tensor [2] of rank L. In (1), C(lI'L;m, M — m) is a Clebsh-Gordan co-
efficient (CGC). From two vectors we can construct only L + 1 or L
linear independent spherical tensors or pseudo tensors of rank L. Hence,
we can expect and also prove that B ]flu (2, Q) can be expanded in the
following forms:

Bll/’,l,';l(!")’ Ql) =

min (I, L) )
RN BRE(2, ) (2)
s =max(0, L—1")
for 11— L= even,
and
) min(, L) §
BIZ;’ZM(.Q, Q) - y FIl,’;ls(t) Bf§%1~s+1(9s ), (21
s=max(1,L—1 +1)
for [+ — L =o0dd.
n Egs. (2) and (2'),

t == cos® = cosl cos0’ +- sin0sind cos (¢ — ¢)

with Q = (0, ) and Q" = (0', ¢'), and F{X(#) is a rotationally invariant
function of ¢.

1 H. Joos used functions slightly different from our By%"1(€, Q) in this case.
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The splitting of the two cases for { + I" -- L == even and odd is due to
the space reflexion properties of BA4 (2, 2');

BEG (=0, - Q) = (—)*V BEh (2,2 .

For L =0 (= M), I' must equal to /, hence, Eq. (2) reduces to the

well-known spherical harmonic addition theorem, since

reh(t) = (—) (21 + 1)2 Py(t) and B)3 (R, Q) = 1/4x .
Therefore, Eqgs. (2) and (2) just correspond to a generalized addition
theorem of the spherical harmonics. Our task is to prove (2) and (2') and
obtain and explicite formula for F}4(?).

This problem was first solved by H. Joos [1] in his studyzof the
representation theory of the inhomogeneous Lorenz group and its appli-
cations to the scattering amplitudes for two particles with arbitrary
spins. Unfortunately his result for F £ (¢) is rather complicated, a double
series in ¢, and its symmetry properties, which will be discussed in § 2 are
also obscure.

We meet the same problems as above in the study of a three-particle
system (e.g. the quark model for the baryon) and the application of the
Regge pole theory to it. This study will be discussed in a separate paper.
In this case we must study the analytical properties of F}X(f) with
respect to [, {" and L. For this purpose Joos’s result is not applicable.

In this paper we shall follow a procedure different from that of Joos,
and prove (2) and (2') in § 2 by using the rotation matrices. The ex-
pression for F}L(t) obtained in §2 is a single series which contains
bilinear products of the Gegenbauer polynomials and the CGC. In § 3 we
simplify this series and obtain four equivalent expressions for F}L(1)
cach of which is a linear combination of the Gegenbauer polynomials.
The results in § 3 manifest the symmetry properties of F 2% (t) and also
admit us to study the analytical properties of it with respect to I, /'
and L.

In § 4 the orthogonality relations of F ]f';l;(t) are discussed. Appendix A
is devoted to the proofs of various addition formulas for the bilinear
products of the Gegenbauer polynomials. The symmetry properties of
r };;l;(t) are also reestablished by using these addition formulas. In Appen-
dix B, we prove the various mathematical formulas which are used in
the text.

§ 2. The Proof of the Addition Theorem

In this section we shall prove the generalized addition theorems, (2),
in the introduction. We follow the procedure which is the most concise
one for the derivation of the usual addition theorem of the spherical
harmonics [2]. We evaluate (1) in a rotated coordinate system where the
point Q' is on the z-axis and Q lies in the a; — z,-plane, i.e. (£2)

2%
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= (0{ =0, ¢7), (£2)=(0; = O, ¢, =0) (suffix 1 denotes the coordinate
in the rotated coordinate system. In this coordinate system the spherical
harmonics take their simple forms,

Y, « (0, <P1 o( (2 + 1)/47‘)1/2 ,

(3)
Ylu(Q) 0) = pl,;z(COS@) = Piu (t) P

where p;, , (f) is the normalized associated Legendre function;

1 [214+1 (I—m)]u2 . dm+!
Pun® =377 [ g ] (SO g (1 ()
The relation between Y,,,(0, ) and Y,,(6,0) on one hand and

Yy, (0, ¢') and Y, (0, ;) on the other are given in terms of the
rotation matrix,

DL (e, B, y) = (Lmle e P lue= 17 Lo Ln') (5)
as follows;
Ylme ‘P) EYZyQO) um( ¢’~0/s“—(l)1)a

’ ’ (6)
Yl'ﬂl—-m(e P ‘P :2 Yl'u’(oy <P1) D,u’,M—m(‘“dj: —0 s T (P) .
"

In Eq. (6), the azimuthal angle @ should be understood as an implicite
function of 0, ¢, 0" and ¢" which is easily obtained from the ordinary
relations between Euler angles. For our purpose the explicite form of @
is unnecessary and we drop out the arguments of D% ,. hereafter. Sub-
stituting (6) and (3) in (1) we find

BEL(Q, Q) = (2 + D)/4m)2 Y] C(U L; p, 0) D yrpy, (1) . (7)
1

In deriving (7) we have used the relation

D,u mDu m’ *‘Z c ll,? .u‘u)O(ll'7 mm)Du+,u m+ (8)

and the orthogonality relations of the Clebsh-Gordan coefficients. As was
stated in the introduction the parity selection rule allows us to treat the
two cases, i)l + ' — L = even and ii) I + I' — L = odd, separately. First
we consider the former case.
i) I+ U — L = even.
In this case, using C(II'L;u,0)= (=)'""#[(2L + 1)/l + 1)]*/2
C(LI; u, — p) and p;, _,(£) = (—)* Py, ,(t), we rewrite (7) as
—)! (47/(2L + 1)¥2 BEL, (R, 2) = O(LIU'; 00) DE 31y, o(t)
min(L,1) (9)
+ X CLs py —p) (=) (Dfar + (=) DEar) pou0) -

n=1
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Setting l=F%kand l'=L -k (k=0,1,2,...L)in (9) we obtain L + 1
relations (10):

— )k (472 L+ 1))V BREHQ, 2) = C(L, k, L — 3 0,0) Df 3Pz, o (1)

k
+ 2, C(L k, L —k; S, "3 (D M"I‘( sM)pIc,s - (10)

§= 1
k= sk s=0,1,2,...,L).
We regard (10) as a linear algebraic equation for L + 1 unknowns, D§ 5

and (DEy+ (=) DLy ) (s=1,2,..., L), and try to solve them in
terms of BEEr%(Q, ). Inserting (4) and the explicite form of CGC

C(L,k, L —Fk;s, —s)

() [RE—B )@@= (L (A1)
T =! [ @L + V)i (k— o)k + o) ] ’

we can rewrite (10), after some manipulations, as

k
X, = ;‘Oflcs(t) U, (12)
with
X, = 4n 26k (L — k)1 [2L) @ (L — k) + 1)1 2k + 1)1]2 BLEF(Q, ),
Uy= Df 31 » (13)
Usg=((L+ ) (L—s) )2 (—=sin@®) (DEy + (=) DE ) (s=1,2,...1L)

and
1 dk+s . e~ s(2s)vk!

fis® = gr g @ = D =g C’,f_zs(t) ;
where C% (¢) is a Gegenbauer polynomial [3].
We prove in the Appendix A a relation
k
2 Fes(B) (=)~ P by (1) = Oy (14)
s=p
with
hos(t) = 51— e L (1 gy
) =5 o L8 dtk (=)
(— 2=k (k +s—1)! 1_p (15)*
T s @k = 1)t Cies @), (b= s).
By the use of (14), we can solve (12) as
Z, hks(t —)E-e. (16)

2 For k = s = 0, we define kg, (t) = 1.
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Inserting (16) and (13) in (9) we get finally

min(l, L)
BEL(Q.02) = Y FRL() Bpls(2.2), (17)
s=0
with
PLY (Y o (N oyt | @EE D@L
FELO = ! [ g et )
nin(, L) X o
! (L — k) 112
g [‘@ B A ‘(zi;::x-)'s'] (18)
)2k - s — )OIk, — k) L 0 TE )

At this stage we are reminded the symmetry properties of B 0182, Q.
Since C(11' L; m, M —m)=C{'IL; M —m,m) (—)"+V~L the defining
equation of B4, (2, Q') leads to

BEh(Q, Q) = () V-2 BRL(2, Q). (19)
By applying (19) in our case (I -+ I’ — L = even) we learn from (17)

wmin(l, L)

Blh (2. Q)= N FEL) Bk (Q, Q)

=0 (20)
1111)1({’,14) , L .
= L FZL’LZS( ) B L-s(*Q/ O) L -l'lf:lL~8(t) Blb;’,l{l—s (-Q’ ~(~)/),
§=0 s ==max(0,L—-1")

where we have changed summation variable s to L — s and again used
(19) in the last line. Eq. (20) holds identically in the four independent
variables ¢, ¢’, Q and ¢ and L + 1 functions B #(Q. Q)
(s =0,1,2,...L) are independent, we are lead to the symmetry rela-
tions for F LI (t);

‘FIZ;’;Z;() .LL S(i) (,g = O’]izﬁ"‘5L)
and 2L

FRE@W) =0, for s=0,1,..., L0 1, if L=1,
(-1 — L= even).

From (20) and (21) we get (2) in §1 for the case [+ 1" — L = cven.
Returning to Eq. (18) we find that F” (t) is a polynomial in ¢ of
degree n, where
n=min.of ({ — s, ' — L -+ s), (22)
with
max (0, L, ') = s = min(L, ),

since C%,(t) is a polynomial of degree . In Fig. 1 we show the contour
lines for the degree of the polynomials F 2% (t) for given fixed values of [, I'.
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Fig. 1. The contour lines for the degree » of the polynomials b I:; s(i) in the £, — s-
plane for fixed ! and I'. We draw for a typical case 21" >>1>1"and [ 4- 1" — L
= even. The dots on this diagram denote the permissible points

i) I+10 —L=odd

In this case, as C'(LIl’; 00) == 0, the corresponding ecquation to (12)
contains L unknowns instead of L 4 1. Taking into account this minor
change and the phase relations of CGC, we can proceed the almost
similar calculations as those in 1), hence, we write the final results only:

, 1\xin§Z,L) ,
Bl (Q, Q) = P FRL() BRI T2, 2), (2
s=max(1,L—1" +1)
with
, 1) (21 +2)! 12
Fll/:ls(t) = (=) (L~ 8)! [ 2 _ s) ) + 3) (2 )( —_)— ; .: 8) T 1)! (23 — 1) ]

ming{, L) (l . k)!

My [ ‘4”Q—ww+sm1y0wuhk—k)ug)
= L =L+ 00+ k) ’ Y

L+ -k
ciitm il
The symmetry relations of F 1’;}; (¢) in this case are
FRD) = FR0, (0, (s=1,2...., 1)
and
PRty =0, for s=1,2,... L1, if L=1.
The degree n of the polynomial F}%(t) is given by
n=min.of { — s, 1 —~ L-+s~ 1),
with
max(l, L —1l') < s < min(L, 1) . (22"
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§ 3. Evaluations and Rewritings of F'L', ®

The expressions for F}4(t) obtained in § 2, Egs. (18) and (18), are
rather complicated and the symmetry relations (21) and (21’) are also
obscure. In this section we proceed further calculations to simplify (18)
and (18'). For this purpose, it is necessary to treat the two cases i)
1+ 10— L=-even and ii) | + I" — L = odd separately.

1)) 1 +1U — L = even

Starting from (18) we insert the explicite form of the CGC given by
Racan [4] in it,

C(LI s by — k) = (—=)L-*U1QU+ DL+ -1+ L 1) (23)
B+ =L)AL+ L=+ — k) (L4141 + 1)) t]ye
.y . (=) e

< WL AT =T =) L=k = ==V +E+n =L+

Apart from a common factor we must calculate the following double

series of the bi-linear products of Gegenbauer polynomials:

I~mm‘ﬁ(l’m - - 7)l2k(k +s =D~ k!
= % — v‘(2b—1"(l: +‘>b—-v) (I — L+ »)
y (24)

_g;ik ‘() ok o)
AL —k—v1(L—2b+Fk+ 0!’
with b = (L + " — [)/2, (b: non negative integer).

In Eqgs. (23) and (24), the integral index v assumes all integral values
such that none of the factorial arguments are negative. In order to treat
the various cases, originated from the relative order of magnitudes of
{, U, L and s, in a unified way, we make a following convention:

The range of the swmmations over v and k are enlarged formally to cover
the various cases simultaneously, thereby the terms which include negative
integral factorial arguments in the denominator or negative integral index
m of C%,(t) are put equal to zero. (a).

Under this convention (a) the upper and the lower limits of the
summation variables may be dropped. We note that the convention (a)
is a natural one because 1/m! = 1/I"(m 4+ 1) =0, for m = —1, -2, .. .,
and C% (t) = 0 are consistent with their definition by the generating
function

(1 — 2zt + 2?)~" = 2 cr (Byam . (25)
m =0
In order to simplify the Eq. (24), the following addition formula for the
bilinear products of the Gegenbauer polynomials is useful,
2RI =R (ks — 1) 1 b
% (n— k)t (n + k)! Oy (8) Cf—s (1)

nsl__ ] (26)
= =2 n)—Cl_z,l sy, for Il=n,

(n —s)!

e
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the proof of which is given in the Appendix A. In order to apply Eq. (26)
2 L—v
to (24), the double sum in (24) is writtenas ) 3= 3 3 and the terms
kv v=0 k=s
y=>50+m (1l < m = b) are combined,

(=yp & wri Tl 1k
1 :WL§82k(k+ s —1)! (l— k)! ka[_L. (t) Ok—s (t)
b_‘ (__,)b—HH -
e (b +m)l (b — m)! (c + m)! (c — m)! (27)
- in 1 Ny 1 —
CX k(s — 1)1 — ) gt CF () CEL (D)
k=s
where we have the abbreviations
a=(L+1-1)2, L=at+b,
b=(L-+U—-0/2 or I'=b+c, (28)
c=(-+1— L)2, l=c¢c+a, (L+1—1 =even)
and
PR T
k™ @ — k)t k)
(@ )! (@ +l ) 1 29)

Puik =@ T —mt@ 4 ktmt T @ =k mi k=
Now we substitute in (27)

2m —)@2m — o — 1) (2(a + m — o))} _
g?’l;k (2a)! Z ol 2(m — o)} f%'*‘m o, for m=1,

and

g =2/, (30)
which are proved in the Appendix B. Performing the sum over k by
using (26) we get

(=)t ha

= (@ — s)! Ciats(t) [(c!)—l (bl)-2

+ 2¢! Zb’ (b + m)t (b —m)! (c + m)! (c — m-)!)—l]

m=1

(31)

R (")L"i \I!y (c — O)' 2(0/ -+ )) Ol +atp /

i (2@)1 94:1 (20)! (& + 0 — s)! c—a +s— Zn()

2m(m + o — 1)!
m%n (m - O)' (b + 777‘) (b - m)' (C ‘l_ 7") (C - m) ’
Putting
o 4 2m(m -+ o — 1)1 N

Fo,¢ :m: 0 (m — o)t (b +m)t (b —m)!(c +m)!(c—m)!’ (32)
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we write the square bracket in the first term in (31) as cly,, . with

Yo, = @h,e — (Ble)72. (33)

Performing the sum over m in (32) and (33) in the Appendix B we get

o @otbtetG re—opt L .
The ™ Qb — )t c— )1 + o)l (b~ e — o)t 2Bt 2yt 107 ¢ = 1. (3D
and

Yo.c = BET 4‘* AN (35)
Collecting the results (31), (34) and (33), remembering (23), (18) and the
convention (a) we obtain the final result,

, ,mm(b, [(e—a + 8)]2)) b
FELO) (D9t ¥R

e
0 ==max (0,s —a) =/ (36) 3

with

N LU (N~ | B Ei+1@r+1)
Nps=(=)"" [(28 S ERL =) DL T =)
2L+ 1) R
(L Jl’“—“l)"“(ﬁ;z' — D)WLl 4 T )!] (37)
. (_)Ha,s[( (c+a)+1) 20+ +1)
- @s + 1! 2(a +b~s)—]—1)!
c(2(a 4+ b) + 1)t 12
2@+ b+ o) £ 1) (2a) (20)1 (20)!] :
By using the symmetry properties of F2%(t), Bq. (21), we obtain the
second expression for FJX (1)

FLE(t) = sle! NP

(38)

) min(a, [(¢ +ja—s)/2]) (M) (2(a 4- ¢ — )1 (2(D + o))! ;1z~+b+ 0

o maa—y 0 (@+c—o)l(s—a+ o) Ci s o—s—2,(t) -

Furthermore, we shall show in the following, by using the recurrence
relations for C? (¢), that ¥ If’;l;(t) can be written in the third and the fourth
forms. Repeated use of the recurrence relation?

vCy L) = v O () — (n 4 ) (1)

n

leads to
Ltate olle + o)t (2(c + s + 1))!
Uit s—20(l) = (2(a—|~n))'(c+s—1— ! (39)
\, (=) 2w -+ o) (c+ s+ 1—g-4 ! Lda+y

S @ =M@ I RE 51— gt Gemats O

3 [@/2] means the maximum integer which does not exceed «/2.
* See the Appendix A, (A.4).
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the validity of which is ascertained by the mathematical induction
about p. Substituting (39) into (36), remembering the convention (a), we
interchange the order of the summations over » and g and rewrite (36) as

, 2(c + 5 +
FRL(@) = (L —s)!blc! NF, (_(é*crsiff)l)

L@@+ ) drain
1_;4 e + ). (,'za‘r‘s ()

(40)
R (=) (@ + 0)! @b + ¢ — o)l (e +5+1—p+ )
W(Q—w(a+o—s)'(b+c—o)'(b—g @e+s+1—g+mt"

The last factor in (40), the series over p, can be written with the change
of summation variable 9 -7 = 0 — » as

2;v~bs (41)
b (=Y (@ +v+TN@b+ec—v—1)(c+s+1—1)!

”r‘:o T'(a+v+r-—s)'(b+c——v—r) b—v—1)(2(Cc+s+1—-2)
(41) is evaluated in the Appendix B as

Bk b, (42)

(=YY" (c+ s+ 1)1 (2c)! 2(a + b +c¢) + Dsl(a +»)! (@ + c -+ »)!
("(c+s+l))'c'(a+b+c)'(a—l—b—s)'(b——v) (§—=b+v!2@+c+r»)+ 1)

Substituting (42) into (40) we obtain the third expression for F }j.f; (),
(43)°

: ) B (=) (L — o)) 2(d — 2))ee
Fll;;ls(t) = 8!(26)! N}};l Q}j (Q) (s —0)! (@ — o) Cl -—L+s(t)
withd=a+b+c+1=(0+1V+L)2+ 1.
Symmetry properties of F2X (t) lead again from (43) to
FLL(t) (44)
 min (@, Z—8) (=)2@2UL— ) 2@ —0)se L+IL—
— ([, — s\! | N 41 v e~y tL—e
(L 8)'(20)'N.L;S Q%O (9) (L—S'—Q)!(d—g) Ol—s (t)
Thus we have obtained four equivalent expressions for FJX(#), (36),
(38), (43) and (44). On the boundary curves «, f, y, 6 and ¢ in Fig. 1,
F _,l;;l; (¢) consists of single term. We list them in the above order by using
the Egs. (36) or (38), (36) or (44), (36) or (38), (38) or (43) and (36) or (43),
respectively;
FEL @) = @DV (L +V — DI NEY, ona,
FhL0 = @D+ T ~ DINE 65" 0, onp,

Fih o) = @0+ T~ L) NEy , onvy, (45)

F,f’;’(,(t):(l-y V- I @L)INEL CE W), on o,

b () = @I @0~ V) NG, R i), one.

5 (a), = (@ +n—1)(a — 1)L
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For general values (I, l’, L and s) we can choose in a same way as above
the simplest expression from these four equivalent ones.

ii) 14+ — L = odd

We start from (18’) in § 2 and substitute (23) in it. Apart from a
common factor we have to evaluate

min (/,L)
B ) o (=) (k4 s =11 — k)
J= kés % L+ —=l—=o)' =)l — L+
Lak (46)
J&;@ )
L=k =l =T th+n’
instead of I, (24). We set in this case
a=(L+1-10-1)2, L=a+b+1,
b=(L+V~-1-12, or I'=b+c+1
(47)
c=(10+1—-L-1)2, l=c+a+1.
d=a+b+c+2=(L+1+1+1)2,
26+ 1
We follow the convention (a) and write the double sumas 3’ 3’ = 3 3/,
kv v=0 £k
combine the terms y = b — m and v = b + 1 + m, we have
Jo 3 (=) .
i (b—m)'(b+1—|—m)!(c—m)!(c+l+m)! (48)
) Log 1_p
(X 2k(k+ s — 1)1 (- )REE CEL 0 CEL ),
%
with
1
+1 _
2k ESa+m+1l—hl(@a—m+ k!
1 (49)
Te+mrIltkl@—m—k!"
We prove in the Appendix B that
h(fn+1 va (=) 2m—o0)! 2(@ +m—o0) + 1)! at+m=atl (50)

o= a! (2(m — o))! (2a + 1)! k

with f¢ given by (29). Substituting (50) into (48), we apply (26) to get

Jo o foe— @@t + ) drarite

= @a T, 2, @ Fe—s @ HeCema-tsa-ze®), (BD)
with
_ oy (m + o)!
xg,c_még(b~m)!(b+m+1)!(c-—m)!(c+m+1)!(m—g)!' (52)
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We evaluate 2 in the Appendix B as

0 _ (20)!b1ec! (2(0 4+ ¢ — o) + 1)!
Lo = QB = el @ + DI+ DI to—l®rerni - O3
Collecting the results (51) and (53), remembering (23), we get from (18’)
the final result
FEL®) = (L — 5)le!NE, (54)

min G, [(c—gs—vlw (b) @20 +c—9) + 1)! (2(a -+ o) + 1)!
0 b+c—gl@+1—s+p)!

Lta+1+
(o R +s——92g(t) )
¢ =max(0,s—a—1)
with
Nt =y [t
“(28) (2(L + 1))! 1/2
Ny Ty S | Y R 5 Y A A YN 1 +L——l)!]
_ (yerams- [(2(0 +a) +3) (20 +c) + 3)
= @s+ 1)1 2@ + b — s + 5)!
- (25) (2(@ +b—8) + 3) (2(a + b +2))1 I
T@d) Ra £ 1)1 (26 + 1)t (2¢ + 1)1 ] :
We apply the symmetry properties of 'F};._l;(t), Eq. (21') in § 2, to (54)
and have the second expression for F 1 ():
min(a, [(c + a—s + 1)/2]) (a)

21 + 1) @V + 1) (2(L — s + 1))
QL =9 +3)12s + 1)!

(55)

Fllf;l;(t) =(s— 1)!C!N1lf;ls’

o =max(0,a—s + 1) e (56)
2@ tc—9) + 120 + o) + 1) 0§+b+1+e
@rce—olG—Tl—atar Citastiz -

The third and the fourth expressions for F}4(t) are obtained by the
similar procedures as those in i). We insert (39) with ¢ — a + 1 into (54),
change the order of summations over » and p. The relevant formula
corresponding to (42) is

b—v
~» (=@t rv+)@2b+ec—v—1) + 1)
1P’c’,a-HH—Lav~_-Téo at+v+t—s+DIb+c—»—r1) (57)
(c+s+1—1)

cb—r—7)!2(Cc+s+1—1)!

(=P =11+ ! (2@ +b +c) + 3)!
@4+b—s+I)!G—w!(@+b+c+ 1)
cRe+Dec+s+ Dl @+cec+»+ 1)

@R +s+ 1)@ +c+v)+3)(s—b+v—1)tct’
the proof of which is given in the Appendix B. The third expression for
FEE () in this case is thus given by

(58)

1  min(b,s—1)
FRL@®) = (s— D! @2c+ 1INEL ) (9)
e=0 (59)
(PRI —e) — D!R@ = e)ie b+ Ze 0
(3_0"1)!(d—g)g r—I—1+s\)
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The fourth one obtained by (21) is given by

: ’min(a,s 1) @
FELO = (L—o) @+ )INE, X (3)

e=0 (60)
(=) 2L — o) — 1)1 (2@ — 0))ag ~L+ L—0
' (L—s—0)!d— 0 G, 0.
Notice that in these formulas @, b, ¢ and d are defined by (47) and N ila

by (55).

Finally we remark that if we try to study the analytic properties of
F}E(t) with respect to I, ! and L the formulas obtained in this section
are appropriate, since the analytical properties of C%(f) in n and v are
studied by several authors [5].

§ 4. Orthogonality Relations for F/, ()

In this section we shall study the orthogonality relations for ¥ };;’é (¢)
We first note that BA4, (2, ') as defined by (1) is a spherical tensor
of rank L, hence the sum 3’ Bp4,(Q, Q') By k' (22, £) is a rotational

ar
invariant and depends only on ¢. Indeed from (7) in § 2 we get

2 BE(2,2) B " (Q,2) = QL+ Dfda - (=) +V

M
‘ Z CLU 5k, — k) O(LV'T"" 5 &y — k) po, (D) pre, 2 (8)

k=—n

(61)

with % = min(l, !, L), where we have used the unitarity of DL .
Integrating (61) over ¢, we get

1
Jdt ) BEh (2, Q) Bij "(2, Q) = 2L + 1)[822 8,0y yer . (62)

1M

In the following we treat separately the cases ! + I’ — L = even and odd:
i) I+ 0V — L = even
We substitute (2) into (62) and defining

Gpe(t) = @n)2 Y BEE*(Q, Q) BLE " (R, 2, (63)
M
we have
1
X [AtFELW) Gps ) FYL (1) = 2@L+ 1) 8y 0p . (64)
8,8 —1

In (64) the ranges for s and s’ are max(0, L — I') < s < min(ZL, ) and
max (0, L —I"") = s’ £ min(L, !"). By using (61) with (11) we have for
G#¥ (t) the formula
[Q(L —s) + 1)1 (2s + 1) (2L — &) + 1)1 (28" 4 )12

(L= )t(L — &) (2L)!
T L =Bt R
(s + k) (s + k)!

630 =
(63)
0 PE().

k =—min(s,s’)
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From (65) we see that G$¥ (t) is a polynomial of ¢ with degree s + s’
ii) I+ 1V — L =odd
We substitute (2') into (62) and defining

Gp ()= ()2 Y BLE+H(Q, Q) Bt (Q,2),  (66)
M

we have again (64) with a slight changes for the ranges over s and s';
max(l, L — l') £ s £ min(L, I) and max (1, L — I"") < s’ < min(L, I').
In this case G§* (t) is written as
[2(L —8)4+3) (2(L — 8) + 1)1 (25 + 1) (25 — 1)!
(L — )t (L — s)!

C@@L—8) +3) 2L — &) + 12 + 1) (28 — DI
(L4 1)2L)!

MNP 2RI = UL R
(8 + k) (8" + E)!

o3 (1) =

(67)

(t) PE(t) -

k = —min(s,s’)

The orthogonality relations for F} (¢) take slightly simpler forms if
we define new functions H}X (f) by

, (L — k)t (L + k)1 12

Hﬁ&@)=|}———gﬁ;~—*~] (68)

- X rph O A B DY Ph), for 141 — L= even,
8

and

, QL — k)t (L + k)t 712
HER® = | (LT 1) @D ]

(@ — ) +3) @ —5) + 1)1 @5 + 1) s — DI,

) w—ww+b' (68)

L;s(t) PE@), for 1+1 — L=odd.
The orthogonality relations for H };;’,:.(t) are given by
n 1
Y [ AtHEOHGE () = 2@L+1) 8 8y, (69)
E=—n -1

with #n = min (L, [, I'") for both cases.
Substituting (18) ((18")) into (68) ((68")), we obtain for both cases

, 21 + 1) (2L + 1) (I — k)1 |2 )
apo = (- [EERGEE D E= I B o @ik k) PEO, (10)
where we have used
- — §2)k! v Lk
Pi = SEEZ RN 6 (1)
and
¢ 2k(m s — 11 F-m _
sé‘k—_(w Om 8 (t) C () - amk; (72)

the proof of which is given in the Appendix A.
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Incidentally it should be noted that if one equate (68) ((68')) to (70)
one obtains the relations between F 1{';‘; (¢). These relations were also
obtained by Joos [1] by a different method.

Finally we note the orthogonality relations for BA4, (2, ') for the
sake of completeness;

[ BER(Q, 2" Bh (R, 2)dQ dQ = 6,0 0y e Og,1, O3y 36U L), (73)
where §({I'L) =1 for ||-U|=sL<l+1,
=0 otherwise.

Acknowledgement. The author wishes to express his sincere thanks to Dr.
M. Yamamura and Mr. N. SET0 for their helpful discussions.

Appendix A. The Addition Formulas for the Bi-Linear Products
of the Gegenbauer Polynomials

We shall prove various addition formulas for the bi-linear products of
the Gegenbauer polynomials which are used in the text. At first we list
various recurrence relations for C%(t) which are used for the later dis-
cussions. Starting from the standard ones [3]

(n+ 29)C% =2y (CTL —tCrEYy (A1)
nCy = 2y(tCy T — ortly, (A.2)
we geb
Oy =0ntl—2tontl 4 ontl (A.3)8
and
(n4 )02 =y (Cr T~ Crt]). (A4)

Multiplying £ on both sides of (A.4) and subtracting from (A.2) we have
(n+2v—k)C%, = 2v— k) O3t — 2(w — k) tC2* 1 — kO T) . (A5)
From (A.2) and (A.3) we also have

nOttl=2(n + v)tC%tl — (n + 29)C,FY . (A.6)
We follow the convention (a) in § 3 and prove
m+0!  od+ TP (m 4+ p)! m o o+
ey e AUy e UL SRRy

According to the convention (a) the sum over s on the right-hand-side
min (m,1)
(r.h.s.) of (A.7) means } , hence for p > min.(m, 1), (A.7) is a trivial
s=p
identity 0 = 0. Assuming p < ! we prove (A.7) by the mathematical

¢ (A.3) is derived for » == 0, but it is also valid for » = 0.
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induction about m. For m = p (A.7) holds since r.h.s. = Lh.s. = C;I{_-;p(t).
Hence we assume that (A.7) is valid for certain m (> p) and prove that
(A.7) holds also for m + 1.

Form —-m + 1

Lhs. of (A7) = b+l (m+D! )

3t
m4+1—p (p+l)!(m—p)!Ul~1’ ©)
mA4l+1 3 (m + p)!

—m+1—p Z‘ (s + p)t (m — 8)!

()7 O 0L ).
I—s s—p

Substituting (A.5) w1th y=12+m,n=1[0—sand k =m — s in the

above we have
m

Lh.s. of (A7) = 2 T ;p;’fm” plm s+ 1) Cprs

Iy g+
— (25 + 1) e0m 0{2 — (m — s)Cm 1302 0;_/’

I—s—
(m+p mEL (—)s—» Cpi3i

. 2+1’
S e N e T T A

P @s— 1 CET — s+ p) s+ p— 1O

We use (A.6) with v = p — 1/2 and n# = s — p in the last factor of the
above equation and get an equation m — m -~ 1 in (A.7). Hence (A.7)
is valid under the convention (a).

In an exactly similar manner as above we can prove that

(l—@_‘__o_%_;_p(t) :2 (__)m—s (M-}—p) 0)"1“7)7, (t)02+p(t)

(I —m)t(m —p)t "I=p 5 (s +p)lm—s)t "I—2mts
(A.8)
Next we consider the analytic continuation in m in (A.7). Eq. (A.7)
is proved for integral points m = p,p + 1, p+ 2,... . However, the

m-dependence of the Lh.s. of (A.7)isgiven by I'(m + [ + 1)/I"(m — p+ 1)
and that of r.h.s. is inferred from

I—s I’(~l——i—m—l—a)F(~1—+m+1)
Lim 2 2
o= X i i
0,7=0 t!a!I’(—+m>F(—+7n)
ct+r=1—¢ 2 2
apart from I'(m + p + 1)/I'(m — s + 1). Therefore the asymptotic
dependence on m allows us the use of the Carlson’s theorem [7], and
(A.7) is valid for Rem = p. However, the analytic domain where (A.7)
holds is further enlarged to the whole m-plane, because the both sides
of (A.7) are simply rational functions of I'-functions. By using

I'm—p+ 1)/l m—s+1)

= I'(s — m)sing(m — s + 1)/'(p — m) sing(m — p + 1),
3 Commun. math. Phys., Vol. 9

cos(c —7)0 (A.9)
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we put m = —1 in (A.7), getting

L+p , _ _yHl=D! 1 Akt
Ot + ) Tp—1+ 1) = X L= ah e o).
The Lh.s. of the above equation is zero for I — p = +1, +2, +3, ... and
1/21 for I — p = 0, hence we have

L2100 + s — 1)1
2 (s + p)!

s=1p
(A.10) can also be proved in an elementary way by using various re-
currence relations and a relation

1_ 1
o3l Ty =0, (A.10)

!
2 Ok) O () = CFF (1) (A.11)
k=0
which is a direct consequence from the generating function of the Gegen-
bauer polynomials, (25). However, the procedure is much tedious.

In order to prove (14) in § 2, we define f, ,(t) and %, () according to
(13) and (15). Further we define matrices

(F)ks = flcs(t): (H)ps = hlcs(t) (_)Ic—s . (A12)
Then (A.10) is rewritten simply as
HF =1. (A.13)

Hence, we have
FH=1, (A.14)
which can be rewritten

ko2 -1 Lis s
szs —pr () = 3 PAGEEE o okt

= Opp - (A.15)
(A.15) is used in § 2.
By using (A.15) we have from (A.7) and (A.8)

l+m
(28) (=) 5k + 5 — 1! AL+ —k CE, (1) A.16
Z(Z+k)|(m—k)v(m+k)'0— ()07 ()h (m 4+ )t (m — s)t ( )
and
0 2R -k E+s—1)! 1k (=) =m)!t h+m
D Ty e oy A L B O e TR 4 SN
for I=m. (A.17)

(A.17) is used in § 3.

Incidentaly it should be noted that (A. 16) and (A.17) furnish the
direct proof of the symmetry properties of F%(t). For that purpose we
insert into (18) ((18’)) the expression for the CGC given by WIGNER [6]
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instead of (23),

@UAN) (I +V L)W+ L)
CFU+ Ly

(LA L= UV — k) (L + K112

T=R 0+ k) ]

. }‘w (—)v(l'*'L_v)!(l/‘*‘v)‘ )
Tl ST/ Cny QY ) /gy e Yy ey gy gy T

LW by — k) = [

(A.18)

We repeat the similar calculations as those in § 3, and thereby use (A.16)
instead of (A.17) and finally obtain (44) ((60)) directly. In the text we
have obtained (44) ((60)) from (43) ((59)) by using the symmetry proper-
ties. Therefore we have proved the symmetry properties of F}L(t)
defined by (18) ((18")) only by using the properties of CGC and the Gegen-
bauer polynomials.

Appendix B

In this appendix we shall prove various formulas which are used in
the text.

Proof of Egs. (30) and (50)

From the defining Eq. (29) of g%., we have a recurrence relation

g‘lln:lc = *‘29%1—1;7(: + (2a’ + 1) (2a + 2) g%ﬁ% kT gm 2k

(m=2,3,4,...). (B.1)

Eq. (30) satisfies (B.1) as can easily be verified, hence (30) is proved by
the mathematical induction about m. Similarly, from the defining
equation of h%%1(t) we have a recurrence relation

h‘)n E = ’2hm 1;k + (2a + 2) (2“ + 3) k‘rlnt% kT hm 2;k (B2)

Eq. (50) satisfies (B.2) and is proved in a similar manner.

Proofs of Egs. (34), (35) and (53)

According to the convention (a) in § 3, the defining Eq. (32) of ¢}
is symmetric between b and ¢, hence we prove (34) in the case ¢ = b.
Eq. (34) is valid for b = p. (We assume ¢ = 1). From Eq. (32) we have
a recurrence relation

(bz—~gz)<pgc Pyt <p°*1. (B.3)

After some manipulations it can easily be verified that (34) satisfies (B.3).
Hence, by the mathematical induction about b — p we have proved (34).

For the proof of (35) we can also assume ¢ = b. From the defining
Eq. (33) for y,, ., and (B.3) with ¢ = 0 we have a recurrence relation

” 2(b + ¢) — 3)!
Voo = ¥o-1c T G120 — 1) (Be = 1)1 (b Fe—2)!°

(B.4)

3%
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where we have used (34) with ¢ = 1. For b = 0, (35) is valid since (33)
leads to y,, , = (c!)~2. As can easily be verified, (35) satisfies (B.4), hence
the mathematical induction about b guarantees the validity of (35).

To prove (53) we get from (52) a recurrence relation

OG-0 b+eo+ V., =1, +upi'- (B.5)

(53) satisfies (B.5) and its validity is proved in a similar way as above.
Proof of Eqs. (42) and (58)
Putting 6 — v = p and a + b = L in the defining Eq. (41), we write
955,1,,1,-3 =¢¢p,withd=a+b+c+1=L+c+ 1. Then we have

Te _ v (=) L—-p+o)d—s—0)!2d—L—-1+4 90— o))}
¢d’L.S_ ) ol(o—o)l(s—o+o)!2d—s—o)!(d—L—-1+p—0)!"

(B.6)
From (B.6) we have a recurrence relation

84‘5—33}#13 =(L+1) ¢?lj11,L,s-—1 + (L—s+1) $§—1,L—1,s—1 , (B.T)
For s = 0 we get from (B.6)
(—)e Li(d — o)! @(d — L — 1))t

<

PaL5=0= " GI@@d o) @ —L 1)1

and putting s = 1 in (B.7) we get gZZl 1.s—1- Therefore successive use of
(B.7) gives for general s

o _ (20— 9@~ (L= (L= ! @A L) oo
P 15— Cd =) @@ —o)isieldid—L-L-s—g! (B8

which satisfies (B.7) as can easily be verified. Rewriting (B.8) in terms of
the original variables we get (42) in the text.

Similarly putting 6 —v=p and @+ b+ 1=L in the defining
Eq. (57) we Writequ,L’L_sE y)f,L’s withd=a+b+c¢c+2=L4c+ 1.
Then we have

¢ (=) (L—p+o—1)d—s—0)2d—L+p—0c)— 1)

'PS,L,FEO do—o)l(s—ot+ol(@d—s—o)d—L+to—0o—1!"
(B.9)
From (B.9) we have a recurrence relation
SPG it 41, = LPG s H (L= )P 1150 (B.10)

Successive use of (B.10) gives for general s

(=)= =11 @A) 2@~ L) — 1)1 (d—s)l(@d— o) (L—s— 1)

a1, olsld! Qd — ) Rd —o)! @ —L—I)(L—s—pg—1)
(B.11)

Rewriting (B.11) in terms of the original variables we get (58) in the text.
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