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Abstract. A generalization of the spherical harmonic addition theorem is proved.
The resulting polynomial with four parameters, which corresponds to the Legendre
polynomial for the usual spherical harmonic addition theorem, is expressed as four
different but equivalent series. Each of them is a finite series of the Gegenbauer
polynomials. Thereby the symmetry properties of this polynomial are clarified.

§ 1. Introduction and Summary

In several problems [1] of mathematical physics, there is a need to
generalize the spherical harmonic addition theorem. Let us consider the
functions of two points Ω and Ω' on a unit sphere,

Bl iM (Ω, Ω'}=ΣC(U'L m, M - m) Γ, m (Ω) Yr ίt - m (Ω') , ( 1 )
m

which transform by a rotation as the (2L -j- 1) components of a spherical
tensor [2] of rank L. In. (1), C ( l l f L\ m, M — m) is a Clebsh-Gordan co-
efficient (CGC). From two vectors we can construct only L f 1 or L
linear independent spherical tensors or pseudo tensors of rank L. Hence,
we can expect and also prove that Bί}

lί\ι(Ω, Ω') can be expanded in the
following forms :

Bl>fM(Ω,Ω'} = ™Σ' } Fίf.(t)Bl ^- (Ω,Ω') (2)
s = max(0, L~ Γ)

for I -f I' — L = even ,

and
min (l,L)

s = max(l,.L-Z' + 1)

for / -{- V ~ L - odd .
In Eqs. (2) and (2'),

i = cosθ = cosθ cosO' -\- sinO sinθ' cos (φ — φf)

Λvith Ω — (θ, ψ) and Ω' •= (θf, φ'), and Fl'fs(t) is a rotationally invariant
function of t.

1 H. Joos used functions slightly different from our Bs£^^l(Ω, Ω') in this case.
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The splitting of the two cases for / -f Γ -- L ̂  even and odd is due to
the spaee reflexion properties of B};?M(Ώ> ^');

BΆ(-Ω, -Ω1) = (^)'+ !' Bl ϊM(Ω, Ω') .

For L — 0 (= M), I' must equal to I, hence, Eq. (2) reduces to the
well -known spherical harmonic addition theorem, since

F^Q(t) = (-Y(2l^l)^Pl(t) and B$$(Ω, Ω') = Ifiπ .

Therefore, Eqs. (2) and (2') just correspond to a generalized addition
theorem of the spherical harmonics. Our task is to prove (2) and (2') and
obtain and explicite formula for Ffc?8(t).

This problem was first solved by H. Joos [1] in his study^pf the
representation theory of the inhomogeneous Lorenz group and its appli-
cations to the scattering amplitudes for two particles with arbitrary
spins. Unfortunately his result for F}jfs(t) is rather complicated, a double
series in t, and its symmetry properties, which will be discussed in § 2 are
also obscure.

We meet the same problems as above in the study of a three-particle
system (e.g. the quark model for the baryon) and the application of the
Regge pole theory to it. This study will be discussed in a separate paper.
In this case we must study the analytical properties of F^'8(t) with
respect to I, I' and L. For this purpose Joos's result is not applicable.

In this paper we shall follow a procedure different from that of Joos,
and prove (2) and (2') in § 2 by using the rotation matrices. The ex-
pression for Fl>?'s(t) obtained in § 2 is a single series which contains
bilinear products of the Gegeiibauer polynomials and the CGC. In § 3 we
simplify this series and obtain four equivalent expressions for F^8(t)
each of which is a linear combination of the Gegenbauer polynomials.
The results in § 3 manifest the symmetry properties of Ffc?8 (t) and also
admit us to study the analytical properties of it with respect to /, I'
and L.

In § 4 the orthogonality relations of Ffc}'s(t) are discussed. Appendix A
is devoted to the proofs of various addition formulas for the bilinear
products of the Gegenbauer polynomials. The symmetry properties of
Fl'.l

s(t) are also reestablished by using these addition formulas. In Appen-
dix B, we prove the various mathematical formulas which are used in
the text.

§ 2. The Proof of the Addition Theorem

In this section we shall prove the generalized addition theorems, (2),
in the introduction. We follow the procedure which is the most concise
one for the derivation of the usual addition theorem of the spherical
harmonics [2]. We evaluate (1) in a rotated coordinate system where the
point Ω' is on the Zj-axis and Ω lies in the x1 ~ zrplane, i.e. (Ω'}
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— (0| == 0, φ[}y (Ω) = ($x = Θ, (pi = 0) (suffix 1 denotes the coordinate
in the rotated coordinate system. In this coordinate system the spherical
harmonics take their simple forms,

lμ > I μ,0 > (3)

where Pι,m(t) is the normalized associated Legendre function;

'2? + 1 (I — m)\ I1/2 / . A)xm dm+l

 2 z ,

The relation between 3^m(#, 9?) and yz/t(Θ, 0) on one hand and
YΓm'(θ'} φ'} and Fz^(0, φ{) on the other are given in terms of the
rotation matrix,

as follows

r

 (6)

In Eq. (6), the azimuthal angle Φ should be understood as an implicite
function of θ, φ, Of and φ' which is easily obtained from the or dinar y
relations between Euler angles. For our purpose the explicite form of Φ
is unnecessary and we drop out the arguments of D^>m' hereafter. Sub-
stituting (6) and (3) in (1) we find

BtfM(Q, Ω'} = ((2V -f l)/4π)Va JΓ C(ll'L; μ, 0) D^tMpltμ(t) . (7)
μ

In deriving (7) we have used the relation

Dl

μ,mDlμ',m' = Σ G ( l l ' j \ μμ'} C(lVj\ mm'} Dj

μ + μ>>m + m> (8)

and the orthogonality relations of the Clebsh-Gordan coefficients. As was
stated in the introduction the parity selection rule allows us to treat the
two cases, i) I -f- I' — L — even and ii) I -f V — L — odd, separately. First
we consider the former case.

i) I -|- V — L — even.
In this case, using C(ll'L\ μ, 0) = (-)'-"[(2.L + 1)/(2Γ + I)]1/*

C(Lll'\ μ, — μ) and Pι,-μ(t) = (—)μPι,μ(t), we rewrite (7) as

(_)i (4π/(2i + l))va BlfM(Ω, Ω') - C(Lll'\ 00) DftίMPι,o(t)

mm(L,l) (9\

+ 27 C(Lll';μ, - μ) (-)" (Z>JfΛf + (-^^.M) Pϊ.^W
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Setting I = k and V = L — k (k •= 0, 1, 2, . . . L) in (9) we obtain L + 1
relations (10):

(-)* (4π/(2£ + 1))V» £££-*(& «') = C(L, k,L-k;0,0) Dξ,

+ Σ C(L, k, L-k s,~s) (-)• (Dfia + (-)• D*,ιM) p!c,s(t) . (10)
β = l

(fc ^ $,&,$ = 0, 1,2, . . . , £ ) .

We regard (10) as a linear algebraic equation for L -j- 1 unknowns, Dj jΛf

and (Djjif 4 (-)S£>-S,M) (s = 1, 2, . . ., I/), and try to solve them in
terms of -#i;if~^ (Ώ, Ω'). Inserting (4) and the explicite form of CGC

C(L,k,L-k 9s9-8)

__ (-)k~s Γ(2(L - k) + 1)! (2fc)! (L - s)\ (L + s)\ Ί i/2 (I1)
" (L - k)T [ (2ΪΓFΪ)! (fc - β)! (fc 4 «)! J '

Λve can rewrite (10), after some manipulations, as

X* = Σ f κ s ( t ) U s (12)
β = 0

with

V0=D$ιlf, (13)

E7. =

and

where (7ji(ί) is a Gegenbauer polynomial [3].
We prove in the Appendix A a relation

Σfks(t)(-Y~vhsv(t) = όk,, (14)
s = p

with

By the use of (14), we can solve (12) as

2 For k = s — 0, we define h00(t) = 1.
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Inserting (16) and (13) in (9) we get finally

Bfo (Ω, Ω') = Σ F i f.(t) Bl\fr (Ω, Ω') , (17)
5 = 0

with

l j

At this stage we are reminded the symmetry properties of Bff'M(Ω> Ω').
Since C(ll'L\ m, M - m) - C(IΊL: M - m, m) (-)l + l'-L

ί the defining
equation of B}^'M(Ω, Ω') leads to

B^M(Ω, Ω') = (- )' + ''-* 5|'S(β', β) . (19)

By applying (19) in our case (I J

Γ Γ — L = even) we learn from (17)

Bl faΩ, Ω') =- ^Σ'^n f.W Bl fr (Ω, Ω')
s = o (20)

where we have changed summation variable s to L — s and again used
(19) in the last line. Eq. (20) holds identically in the four independent
variables θ', φ', Ω and ί, and L + 1 functions B^8(Ω, Ω')
(s — 0, I, 2, . . . 7>) are independent, we are lead to the symmetry rela-
tions ϊorFi>.f8(t);

n ?8(t)=Fl;ί-,(t), ( θ - 0 , l , 2 , . . . , L )
and (21)

Î'ί (0 = 0, for 6 - 0 , J , . . . , L - Γ - 1 , if L > /',

(I + Γ - L = even) .

From (20) and (21) we get (2) in § 1 for the case I + Γ - L ~~~ even.
Returning to Eq. (18) we find that F];fs(t) is a polynomial in t of

degree n, where
n -= min. of (I - Sίl' - L + s) , (22)

with
max(0, L - /') <: s ^ min(/>? /) ,

since Cv

m(t) is a polynomial of degree m. In Fig. 1 we show the contour
lines for the degree of the polynomials F^}'s (t) for given fixed values of I, Γ.
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Fig. 1. The contour lines for the degree n of the polynomials J?£ s(t) in the L — s-
plane for fixed I and I'. We draw for a typical case 2Z' > I > V and I -\-V — L

— even. The dots on this diagram denote the permissible points

ii) I -f V — L = oc&Z
In this case, as C(Lllr \ 00) = 0, the corresponding equation to (12)

contains L unknowns instead of L -f- 1. Taking into account this minor
change and the phase relations of CGC, we can proceed the almost
similar calculations as those in i), hence, we write the final results only:

Bl>l

M(Ω,Ω')=

with
+ l ) ( 2 L f 2 ) i _ _ γ

~-7y + T)ί(2s - 1)! J

The symmetry relations of Fl\fs (t) in this case are

and

Fί-fs(t) — 0, for s ^ 1,2, . . ., L — Γ, if

The degree n of the polynomial .F/'.ζ (£) is given by

w = mill, of (Z — s, Γ - L -'\- s - J ) ,

with

max(l, L — lf) ^ s ^ min(Z/, Z) . (22')
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§ 3. Evaluations and Rewritings of Fl^8 (£)

The expressions for F^8(t) obtained in § 2, Eqs. (18) and (18'), are
rather complicated and the symmetry relations (21) and (2Γ) are also
obscure. In this section we proceed further calculations to simplify (18)
and (18'). For this purpose, it is necessary to treat the two cases i)
I -f Γ — L — even and ii) I + Γ — L = odd separately.

i) I 4- Γ — L = even

Starting from (18) we insert the explicite form of the CGC given by
RAG AH [4] in it,

C(Lll':k,-k)^- (-)L-*l'\[(2lf + 1) (L + Γ - l)\ (I + L - l'}\ (23)

• (I -f V - L) \ (L -f- k)! (L ~ k) \ (I -f k)! (I - k ) ! ((L 4-1 + V -f 1) ί)"1]1/2

7" v\ (L + V - I - v}\ (L - k - v)\ (lf - v)\ (l-l' +k + v)\ (I - L + v)l '

Apart from a common factor we must calculate the following double
series of the bi-linear products of Gegenbauer polynomials:

min (I, L) / }v 2k(k -\- s 1)! (I k}\

T' ^ VΓ(2&^^Γ(I-^~P26 - v)\(l ^ΊΓ+~v)Y

_____
• (L - k - v) ! (L - 26 + k + v) ! '

with b — (L + Γ — l)/2, (b: non negative integer).
In Eqs. (23) and (24), the integral index v assumes all integral values

such that none of the factorial arguments are negative. In order to treat
the various cases, originated from the relative order of magnitudes of
I, Γ, L and 5, in a unified way, we make a following convention:

The range of the summations over v and k are enlarged formally to cover
the various cases simultaneously, thereby the terms ivhich include negative
integral factorial arguments in the denominator or negative integral index
m of Cv

m(t) are put equal to zero. (a).
Under this convention (a) the upper and the lower limits of the

summation variables may be dropped. We note that the convention (a)
is a natural one because 1/m! = \IΓ(m -f 1) = 0, for w = — ] , — 2, . . . ,
and Cv

m(t) = 0 are consistent with their definition by the generating
function

(l-2xt + x2)-v - Σ Gv

m(t)xm . (25)

In order to simplify the Eq. (24), the following addition formula for the
bilinear products of the Gegenbauer polynomials is useful,

for

Σ (n — k ) ! (n -f- k ) !
k
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the proof of which is given in the Appendix A. In order to apply Eq. (26)
26 L-v

to (24), the double sum in (24) is written as J^1 Σ = Σ Σ an(^ ̂ ne terms
k v v — 0 ft = s

v = b ± m (I ^ m ̂  b) are combined,

1

 m*~Ί (b + w j Γ ( δ - m)\ (c 4- m)! (c — m)\

_j_ s __ ]_) i (£ _ /<Λ j q<*> Qϊ ' *

where we have the abbreviations

a=(L+l- Z')/2, L^-a^b ,

b = (L+l' - l)/2, or Γ = b -f c , (28)

c = (Z -I- Γ - £)/2, Z = c 4- α, (^ 4- Z - Z' = even)

and

Now we substitute in (27)

fla _ 2™ p (~)σ(2TO -0-1)1 (2(α + »* - g))l /a + m-g f o r w . > 1

ff™:* ~ 72^)Tσ 0̂ ffl(2(m-ί)jl '* ' ίθ1 m^l>
and

fl«;t = 2/g , (30)

which are proved in the Appendix B. Performing the sum over k by
using (26) we get

+ 2c! JΓ ((6 + m) \(b-m) I (c + m) ! (c - m) ί)

(31)

(2α)! ^ (2ρ)!(α + ρ-«)! c

^ 2m(m 4- ρ - 1)!

— m) ! (c 4- m) ! (c — m) ! '

Putting

^ _ _ __
'" " = „ (m — ρ ) l ( b + m)! (6 - TO)! (c + TO)! (c — m)! ' v '
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we write the square bracket in the first term in (31) as clψbίC with

V».c=?8 > e -(&!c !)- ' . (33)

Performing the sum over m in (32) and (33) in the Appendix B we get

. ^ _ __ - j - _ ,
Γ/ί>,c - ' ρ \ ( b - ρ)\ (c - ρ)! (b -f c)! (b + c - ρ) ! (26)! (2c)! ' ^ — ' ( >

and

w ___ (2(M-c»! m]
Ψl>,e - (26)t (2c)! ((6 -f f ' j ! ) 2 ' ( }

Collecting the results (31), (34) and (35). remembering (23), (18) and the
convention (a) we obtain the final result,

_ _
(6 -f c - ρ)! (a -f ρ - 5)!

with

___ __

ΐ' - L)\~(L~+Ύ-\- lf + 1)!

(25 + l ) ! ( 2 ( α + & - « ) + !)!

•(2(α + b) + 1)1 _ _ _____ 1 1/2

~ (2 (a + b + c) + 1) Γ(2α) ! (26) Γ(2c) ! J '

By using the symmetry properties of F^}'8(t], Eq. (21), we obtain the
second expression for F]^}'s (t)

ίa\ ( 2 ( α - i - c ~ ρ ) ) ϊ ( 2 ( 6 + ρ))! 1 + & + β (38)
,Λ x / (α + c — o)! (5 — α + o)! α + c-β-2ρ •

C = max(0,α— s) > w / v ^ ; v v /

Furthermore, we shall show in the following, by using the recurrence
relations for Cv

n(t), that F^^f) can be written in the third and the fourth
forms. Repeated use of the recurrence relation4

leads to

Jr + α + e ρ l(α + ρ)! (2(c + a + 1))!
Oc-α + β-2eW - (2(α + ρ))!(c + 5 + 1)!

)! (2(c +

[α/2J means the maximum integer which does not exceed α/2.
See the Appendix A, (A.4).
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the validity of which is ascertained by the mathematical induction
about ρ. Substituting (39) into (36), remembering the convention (a), we
interchange the order of the summations over v and ρ and rewrite (36) as

(~y-v(a + ρ)!(2(6 + c - ρ))!(c + * + 1 - g -r v)

The last factor in (40), the series over ρ, can be written with the change

of summation variable ρ -> τ = ρ — v as

6 "/ __ __ (~Γ(α + v + τ) !(2(b +c~v - τ))\ (c + a + 1 - τ)! _ ___
" rtΓo τ! (α + ι> 4- τ - β)! (& 4- c - v - τ)! (6 - v -- τ)! (2(c + s + ί- τ))! *

(41) is evaluated in the Appendix B as

$ΓΛM
— (-)*""(c + g + 1)1 (2c)! (2(α + 6 + c) + l ) ! a ! ( α + v)\ (α + c + v)\

Substituting (42) into (40) we obtain the third expression for F^}'s(t),

(43)6

with d — a j

r b ~ } - c ~ \ ~ ] . = (ljrl'jr L)J2 -f 1.
Symmetry properties of F^'s (t) lead again from (43) to

Fl f8(t) (44)

= (L-8)l(2c)lNl ?Γ*(aΣ*$ ("yΛΪ)!((2Λ"g)
ρ~ cfcL~Q(t).

ρ = 0

Thus we have obtained four equivalent expressions for F]^}'s(t), (36),
(38), (43) and (44). On the boundary curves α, β, γ, δ and ε in Fig. 1,
Fl\fs(t) consists of single term. We list them in the above order by using
the Eqs. (36) or (38), (36) or (44), (36) or (38), (38) or (43) and (36) or (43),
respectively

Fl'fi (t) - (21) I (L + Z' - I)! N$, on α ,

\(l+l'-L)lNi*!iC&L(t), o n / i ,

! (I -f I' — L)! Nty'L_ι>, on γ , (45)

^I'/oW = (Z + V - £)! (2i)l NtfQ C ( ί ) , on (5,

.W = (2ZO!(2(Z- Z'))! Ntt,.8cfc£'8(ί), on fi .
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For general values (I, Γ, L and 5) we can choose in a same way as above
the simplest expression from these four equivalent ones.

ϋ) l + l'-L = odd

We start from (18') in § 2 and substitute (23) in it. Apart from a
common factor we have to evaluate

__ mln (l,L) ^ (-)*> (& + *-- l)\ (I - k)l

Ίc = s v vl(L + 1' ~l - VY (V ~ V)\(1-L + V)\~

'(L- k ~ v ) \ ( l -I' + k + v)\ '

instead of I, (24). We set in this case

a = (L + I - V - l)/2, L = a + b + 1 ,

b = (L + V -I- 1)12, or V = b + c -f 1 ,
(47)

c=(l + V -L- l)/2, Z - c + a -f 1 .

We follow the convention (a) and write the double sum as Σ Σ = Σ 2J >
k v v = 0 k

combine the terms v — b — m and v = b -f 1 + m, we have

& / \δ-m

J^ 27^Ίi^yπ^pτ:
___

)! (c _ m)! (c -f 1 + m)! (48)

2 1 (t + a - i) ! (Z - k) ! Λgit*1 σfci* (0 σfc? W ,
*

with

(49)

(α + m + 1 + k)! (α — m — &)! *

We prove in the Appendix B that

:A;

 ρ = o σl(2(m-σ))l(2a + l)\ Sk

with /| given by (29). Substituting (50) into (48), we apply (26) to get

with

^ (b — m)! (b + m + 1)! (c — m)! (c + m + 1)! (m - ρ)! *
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We evaluate χ% β in the Appendix B as

ρ (2ρ) !6 !c ! (2(6+c-ρ) + l)!

#M ~" ρ!(δ - ρ)! (c - ρ)! (26 + 1)! (2c + 1)! (6 + c - ρ)! (6 + c + 1)! * ^ '

Collecting the results (51) and (53), remembering (23), we get from (18')

the final result

Ftt(t) = (L-s)\c\Nl r (54)

minfc[<„-• + ι-D/21) , f tv ( 2(t+ c- e) + l) ! (2(α- | -ρ) + l)l ί + a + 1 + t

' ρ = rnaX(M-«-l) W ( 6 + C - ρ ) ! ( α + l- β + ρ)I ^ —l+.-2βW.

with

• - s) + 3)! (2s + 1)!
- ( 2 s ) ( 2 ( L + 1))! 11/2

.(l + v + L + l}l(l + l>-L}l(l + L ^ <r + L-DI (55)

(_ )c + α s 1[(25 + 1)!(2(α + 6 _ s ) + 5 ) j

• (2s) (2(g + b-β) + 3) (2(a + & + 2))! Ίi/2

•(2ίZ)! (2α + 1)1(26 + 1)1 (2c + 1)! J

We apply the symmetry properties of Fl'.fs(t), Eq. (2Γ) in § 2, to (54)
and have the second expression for F£.f8 (t):

^min(α, [(c + a—s + l)/2])

(a + c - ρ)! (s - 1 - a + ρ)! e +

The third and the fourth expressions for F];.fs(t) are obtained by the
similar procedures as those in i). We insert (39) with a -> a + 1 into (54),
change the order of summations over v and ρ. The relevant formula
corresponding to (42) is

>~» _ (~)7(a + v + *)! (2(6 + c - y - T) + 1)!

:)+3)! (58)
(a + δ - <s + 1)! (b - v)\ (a + b + c + 1)!

• (2c + 1)! (c + s + 1)! (a + c + v + 1)!

• (2(c + 5 + 1))! (2(α + c + v) + 3)!(«-δ + v- 1)1 cl '

the proof of which is given in the Appendix B. The third expression for
Fl'f's(t) in this case is thus given by

min(M-l) / Ά X

Fl ?.(t)=(*-l)\(3lc+l)\Nl>f Σ U
= 0 \β/ (59)



30 Y. MUNAKATΛ:

The fourth one obtained by (2V) is given by

min(α,s-l) / \

Fi!s(t) = (L-s)\(Zc+\}\NV's Σ !
e = o Vβ/ (60)

(-)" (2(£ - g) - 1)! (2(«t - g)),8 i + £-g

(L-8-e)l(d-e)β

 υ/- W "

Notice that in these formulas α, δ, c and ίί are defined by (47) and Nl'.l's
by (55).

Finally we remark that if we try to study the analytic properties of
F^s(t} with respect to Z, Γ and L the formulas obtained in this section
are appropriate, since the analytical properties of Cv

n(t) in n and v are
studied by several authors [5].

§ 4. Orthogonality Relations for Fl^s (t)

In this section we shall study the orthogonality relations for Fl>fs(t).
We first note that •#£;*&/ (β, Ω'} as defined by (1) is a spherical tensor
of rank L, hence the sum Σ ^^M(Ω, Ω'} BIL'M '*(Ώ> Ω') is a rotational

M
invariant and depends only on t. Indeed from (7) in § 2 we get

Σ BtfM(Ω, Ω') J5£ £'*(β, Ω') = (2L + l)/4π (-)' + '"
M

(61)
• 27 C(Lll';k,--k)C(Ll"l"t;k,-k)pltk(t)prtk(t),
k - -n

with ?ι = min(Z, Z", £), where we have used the unitarity of D^)M.
Integrating (61) over t, we get

JdtΣ BtfviΩ, Ω') ££;£'* (β, β') = (2i + l)/8π2 - div,&vv,, . (62)
-1 M

In the following we treat separately the cases I -\- Γ — L — even and odd :
i) I + Γ — L = even
We substitute (2) into (62) and defining

Qi '(t) = (4π)a27 ̂  r (β, fi;) ̂ ί:rβ"(β, Λ') , (<%)
M

we have

d t F t Q > ' t F ' t = 2 2 L 1 ) d ι r ό r r. . (64)

In (64) the ranges for s and s' are max(0, L — I') ^ θ ^ nήn(L, I) and
max(0, ̂  — I'"} ^ s' ^ min(.L, I"). By using (61) with (11) we have for
O£ *'(t) the formula

-s) + 1)1 (2s + 1)1 (2(L - s') + 1)! (2^ + I)!]1/2

(L-β)\(L - s')\(2L)\
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From (65) we see that Gj;8' (t) is a polynomial of t with degree 5 + 5'.
ii) l + Γ - L= odd
We substitute (2') into (62) and defining

<?£•>) - (4π)22; ££&"•* + 1(β, £') £ί,'M~s'+1*(β> β') , (66)
M

we have again (64) with a slight changes for the ranges over s and s';
max(l, L — Z') ̂  s g min(X, Z) and max(l, L — Z") fg s' 5j min(Z/, Z').
In this case Gl>s' (t) is written as

s)+ 3) (2(£ - β) + 1)! (2g + 1) (2β - 1)!

( '

(L - β)\ (L - β')\

> (2(L - «') + 3) (2(L - *) + 1)! (2^ + 1) (2«' -

The orthogonality relations for F];.fs (t) take slightly simpler forms if
we define new functions Hl>?k (t) by

(68)

and

•Fi'^(t) Pk

s(t), for Z + Z ' - i

The orthogonality relations for H^(t) are given by

1) d ι r όrr, , (69)

with % = min(L, 1,1") for both cases.
Substituting (18) ((18')) into (68) ((68')), we obtain for both cases

λvhere we have used

- - * W ri + *m mx
05_^ (ί) , (71)

and

* ~m m r* + * m - Λm-e W°e-fc 10 — °mk>" - / o -L M)
s __ T. ^σ ~Γ "'/

the proof of which is given in the Appendix A.
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Incidentally it should be noted that if one equate (68) ((68')) to (70)
one obtains the relations between F];fs(t). These relations were also
obtained by Joos [1] by a different method.

Finally we note the orthogonality relations for B^'M(Ω, Ω') for the
sake of completeness;

, Ω1) &L>:IM'(Ω, Ω'} dΩ dΩ' = διr <W- δLL, δMl}rδ(lΓL) , (73)

where δ(lV L) = 1 for \l - Γ\ ^ L ̂  I + V ,

== 0 otherwise.

Acknowledgement. The author wishes to express his sincere thanks to Dr.
M. YAMAMURA and Mr. N. SETO for their helpful discussions.

Appendix A. The Addition Formulas for the Bi-Linear Products
of the Gegenbauer Polynomials

We shall prove various addition formulas for the bi-linear products of
the Gegenbauer polynomials which are used in the text. At first we list
various recurrence relations for Cv

n(t) which are used for the later dis-
cussions. Starting from the standard ones [3]

(n + 2v)C'n = 2v(Cv

n

+l - *C;±i) , (A.I)

nC*n = 2v(tC*n±l-C»l±l), (A.2)
we get

riv _ fΊv + l f>*Γ<v + l\Γiv + I ( \ 0 \ 6
^n — ̂ n ~ Δl^n-\ ~r ^n-2 (Ά ό)

and
(» + v)<7» = v(Cfc+ 1-C»±|). (A.4)

Multiplying k on both sides of (A. 4) and subtracting from (A. 2) we have

(n + 2v- k)CPn == (2v - *) CJ+1 - 2(v - k) tC^±l - kC>+\ . (A.5)

From (A. 2) and (A. 3) we also have

nCv

n

+l = 2(n + v) tC*n±l - (n + 2v)Cv

n±.l

2 . (A.6)

We follow the convention (a) in § 3 and prove

(m + l)\ nl> + v m - y^ (-)'-» (m + p)i M +-

According to the convention (a) the sum over s on the right-hand-side
min(m,Z)

(r.h.s.) of (A.7) means Σ » hence for p > min. (m, I), (A.I) is a trivial

identity 0 = 0. Assuming p ^ I we prove (A.7) by the mathematical
6 (A.3) is derived for v =t= 0, but it is also valid for v = 0.
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induction about m. For m = p (A.7) holds since r.h.s. = l.h.s. = Cf_ P (t).
Hence we assume that (A.7) is valid for certain m(>p) and prove that
(A.7) holds also for m + 1.

For m -> m -f 1

l.h.s. of (A.7) = ——-, -.—, 7.. ,—-—ΓT- C? + p (t)v ' m -\- 1 — p (p + I)! (m — p) \ l~ι> v '

= m + l + l ™ (m + p)\ __ _ p ̂  + m 1 + p

Substituting (A.5) with v — IJ2 + mtn = I — s and k — m -~ s in the
above we have

l.h.s. of (A.7) =v y

- (2s + 1) «7»i+_s(2 - (m - .9)(7flJ42

P)< («-

We use (A. 6) with v = p — 1/2 and ?£ = 5 — p in the last factor of the
above equation and get an equation m->m -f 1 in (A. 7). Hence (A. 7)
is valid under the convention (a).

In an exactly similar manner as above we can prove that

(I — m)\ (m — p)\ l~p ^ (s + p)\ (t

(A.8)

Next we consider the analytic continuation in m in (A.7). Eq. (A.7)
is proved for integral points m = p,ιp -\- 1, p -\- 2, . . . . However, the
m-dependence of the l.h.s. of (A.7) is given by Γ(m + / + l)IΓ(m — p + 1)
and that of r.h.s. is inferred from

? 4 m W = Σ — - / i N / i - r^cos(σ-τ)<9 (A.9)

apart from Γ(m + p + l)jΓ(m — s -f 1). Therefore the asymptotic
dependence on m allows us the use of the Carlson's theorem [7], and
(A. 7) is valid for Rem ^ p. However, the analytic domain where (A. 7)
holds is further enlarged to the whole m-plane, because the both sides
of (A. 7) are simply rational functions of Γ- functions. By using

Γ(m -p+ l)/Γ(m - s + I)

= Γ(s — m) sinπ(m — s -f- l)jΓ(p — m) sinπ(m — p -f 1) ,
3 Commun. math. Phys., Vol. 9
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we put m = —I in (A. 7), getting

cfc'Wfr + D Γ ( p - i + i ) = Σ (s +|- ;)! ofc'ffl ci+/(0 -

The l.h.s. of the above equation is zero for Z — ̂ = ± l , d b 2 , ±3, . . . and
1/2 1 for Z — #> = 0, hence we have

l 9 . .^ (s 4- Ί)}\ l~s v ' s— p \ / tv \ >
s = p ^ rι

(A. 10) can also be proved in an elementary way by using various re-
currence relations and a relation

ΣCl(t)C£t(t) = C} + ' ( t ) , (A. 11)
fc = 0

which is a direct consequence from the generating function of the Gegen-
bauer polynomials, (25). However, the procedure is much tedious.

In order to prove (14) in § 2, we define fks(t) and hks(t) according to
(13) and (15). Further we define matrices

Then (A. 10) is rewritten simply as

HF = 1 . (A. 13)
Hence, we have

FH=l, (A.14)
which can be rewritten

«-» - ff 'H' + p- 1 ) 1 M + 3 * - g

— — "
s = 2?

(A. 15) is used in § 2.

By using (A. 15) we have from (A. 7) and (A. 8)

% (I + k ) \ ( m - k ) \ ( m + k)\ ϊ-* w ft-β v ' (m + /) ! (m - s) ! '

and

Γ (2^(Z-^)!(^ + ̂ - 1)1 M + λ /n Λ-* (t\ - (-)m" s(^-m)! rl
f - (m-k)l(m + k)\ - Cϊ-* W°t-. W -- (̂ ^ - G

for l^m. (A. 17)
(A. 17) is used in § 3.

Incidentaly it should be noted that (A. 16) and (A. 17) furnish the
direct proof of the symmetry properties of Fj^.f8(t). For that purpose we
insert into (18) ((18')) the expression for the CGC given by WIGNER [6]
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instead of (23),

C(LU> ,k,-k)=\&±^±^
L (l + l' +L + !)!(/')! (Z')ί

k)\T+kvk)l(L + k)l]11* (A 18)

(L -Ύ + I ~ v)! (L - k^vγΓ(v + Z'Ί- Z + A jT '

We repeat the similar calculations as those in § 3, and thereby use (A. 16)
instead of (A.17) and finally obtain (44) ((60)) directly. In the text we
have obtained (44) ((60)) from (43) ((59)) by using the symmetry proper-
ties. Therefore we have proved the symmetry properties of Ffc?8(t)
defined by (18) ((18')) only by using the properties of CGC and the Gegen-
bauer polynomials.

Appendix B

In this appendix we shall prove various formulas which are used in
the text.

Proof of Eqs. (30) and (50)
From the defining Eq. (29) of gfn.k we have a recurrence relation

(B.I)
(m = 2, 3, 4, . . .) -

Eq. (30) satisfies (B.I) as can easily be verified, hence (30) is proved by
the mathematical induction about m. Similarly, from the defining
equation of h^^ (t) we have a recurrence relation

+ (2α + 2) (2α + 3) h^\.k - A« t|;l (B.2)

Eq. (50) satisfies (B.2) and is proved in a similar manner.
Proofs of Eqs. (34), (35) and (53)
According to the convention (a) in § 3, the defining Eq. (32) of φ^ c

is symmetric between b and c, hence we prove (34) in the case c ̂  6.
Eq. (34) is valid for b — ρ. (We assume ρ J> 1). From Eq. (32) we have
a recurrence relation

After some manipulations it can easily be verified that (34) satisfies (B.3).
Hence, by the mathematical induction about b — ρ we have proved (34).

For the proof of (35) we can also assume c ̂  b. From the defining
Eq. (33) for ψb) c, and (B.3) with ρ = 0 we have a recurrence relation

_ , (2(6 + c)- 3)1 __
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where we have used (34) with ρ = 1. For 6 = 0, (35) is valid since (33)
leads to ψ0)C = (c!)~2. As can easily be verified, (35) satisfies (B.4), hence
the mathematical induction about b guarantees the validity of (35).

To prove (53) we get from (52) a recurrence relation

(b - ρ) (b + ρ + l)χ» β = y ,^ + χ + ] . (B.5)

(53) satisfies (B.5) and its validity is proved in a similar way as above.
Proof of Eqs. (42) and (58)
Putting b — v = ρ and a -f- b = L in the defining Eq. (41), we write

( ? L-8 = φQ

L with eZ = α - f & - f c + l = = L - f c - f l . Then we have

=

(-Γ(L~ρ+σ)\(d-s-σ)\(2(d-L- 1 + ρ - or))!
\ (ρ ~ σ)\ (S - ρ + σ)\ (2(d - s ~ σ))\ (d - L - 1 + ρ - σ)\ '

(B.6)
From (B.6) we have a recurrence relation

For 5 = 0 we get from (B.6)

IQ _ (-)*L\(d- ρ)\(2(d-L- 1))!
Yd,L,s = 0 ρ\ (2(d - ρ))! (d - L - 1)!

and putting s = 1 in (B.7) we get <^ L β = 1. Therefore successive use of
(B.7) gives for general s

- - - - -L- ι»!
- β))! (20 - ρ))!β! ρ\d\(d - L - 1)! (L - s - ρ)! ' l ^

which satisfies (B.7) as can easily be verified. Rewriting (B.8) in terms of
the original variables we get (42) in the text.

Similarly putting b — v — ρ and a -f- b -f- 1 = L in the defining
Eq. (57) we write ψQ

d L L_s = ψ% L g with d = a + b + c + 2 = L + c+I.
Then we have

-Q = y (~}a(L- Q + c r - l) !(d -s~σ)\(2(d~L + ρ-σ) - 1)!
^,l},s~σ^o σ! (ρ _ σ)\ (s - ρ + σ)! (2(d - s - σ))\ (d - L -f ρ - σ - 1)! *

(B.9)
From (B.9) we have a recurrence relation

Successive use of (B.10) gives for general

(d-L) - l)!0-θ)!0- ρ)!(L- a - 1)!

Vd,Lt8~~ ρlsldl (2(d - β))\ (2(d - ρ))! 0 - L - 1)! (£ - s - ρ - l ) \

(B.ll)

Rewriting (B.ll) in terms of the original variables we get (58) in the text.
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