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Boundary Values of Analytic Functions. II
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Abstract. It is known that a complex-valued continuous function 8(x) and a

Schwartz distribution can both be extended to an analytic function S(z) in the

complex plane minus the support of S. Conditions are given for the existence of

limits lim S(x + iε), in the ordinary sense, at certain points of the support of 8,
ε->0 -f

for the case in which S(z) is the Cauchy representation. In this way we obtain
"local" Plemelj and dispersion relations. Possible generalizations and applications
are discussed.

§ 1. Introduction

Let S(x) be a complex-valued continuous function on the real line R.
Given such a function 8 (x) we can find two functions Sλ(z), $2(z) analytic
in the upper and lower half-planes respectively [1, 2] such that the
discontinuity on the real axis is exactly equal to 8(x):

lim [81{x + iε)-82(x-iε)] = S(x). (1)
ε~>0 +

It is also known [1,2] that this extends to distributions 8 ζ £d' in the
sense that there exist analytic functions S1(z), §2{z) analytic in the upper
and lower half-planes respectively such that

lim / [S^x -f iε) - S2(x - iε)] φ(x) dx = (8, φ) (2)

for all φ ζ 2. For simplicity, in what follows, we shall write 8 for both
S1 and S2. If the support of S(x) is not the whole real line, then S(z) can
be regarded as an analytic function in the entire complex plane minus
the support of 8(x).

A summary of these results with a bibliography can be found in the
introduction of [3]. In the same paper it is shown that in the case of
distributions the existence of the limit (1) is possible for certain points
of the support of 8. In this way we can study certain "local" properties
of distributions such as a value of a distribution at a point. On the other
hand, as has been shown in [4], such "local" properties of distributions
are important when discussing unitarity and analyticity of the scattering
amplitude. For example, the partial waves ft(s) are distributions.
But under certain hypotheses it can be shown that fι(s) is just
a Lebesgue measurable function [5], so that there is no difficulty with
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I m / . W έ |/,(β)|a,

fi(s) = l i m fiis +
ε->0 +

for almost all 5. Apparently, there is some interest in ''local dispersion
relations".

In this paper we intend to study certain "local" properties of distri-
butions. Dispersion relations and relations of the form (1) are both
consequences of the Plemelj relations [6].

lim S(x -f iε) = ~S(x) + -^S{x) * P-.

lim £(.τ - iε) = - ~S(x)
;—>0 + ^

where S(z) represents the Cauchy integral of the function S(x). Hence,
in § 2 we shall examine the validity of relations of type (3) for distri-
butions. The distribution space ]/l + t2 @'Li, introduced in [7], provides
the most adequate frame for this problem. In § 3 we will derive "local"
dispersion relations for distributions and add some concluding remarks
in §4.

§ 2. Plemelj Relations

Definition [7]. j/ϊ + t2 @'Li is the space of those distributions S for
a

which T^qrp" 6 ^'LX [̂ ] We say that S converges to zero in j/l -j- t2 2)f

Lx
q

when ~77γzΓW converges to zero in 3i'Lχ1.

The distribution spaces <3, £?, <%", Θ'c, £)'LP for p < oc are contained
in j/l + ί2 S^i, being dense in this space. On the other hand, |/ΐ + t2 S>r

Li
is contained in Sf'. Note that the important space <§' of distributions
with compact support is contained in j/l -f t2 @'Li, as are the spaces
@'Λi oc^ — 1 [1] which are useful in applications2. In this paper we use
the space |/l -f- t2 <£}'Lι because it is the most general space for which

1 ]/l + t2 may be replaced by t + iε, ε 4= 0 (ε cannot be chosen to be zero,
because of the singularity in t = 0).

2 The spaces Θ^ were implicitly introduced also in [9].
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we can define the convolution

8(t)*p(j) [7].

Further it is easy to show [8] the existence of the Cauchy representation

with the usual properties [1]. Now relation (1) follows from (3), so that
to write local Plemelj relations for distributions we must at least ensure
the existence of the limit (1) at the point x [3]. More precisely, we shall
assume the conditions of Theorem 1 hold.

Theorem 1 [3]. // there exists an integer n ^ 0 and a continuous
junction F(t) such that F^(t) = S(t), the derivatives being taken in the
sense of distributions, and ifz

]imn\-^l—==C (5)
t->x (t ~ X)n W

ivith C finite, then the limit (1) for the distribution S exists at the point x and
is equal to C.

But it is known that for Plemelj relations in the case of functions we
need a Holder condition, so that we shall certainly need one in our case,
too. We first prove

Theorem 2. Let 8 ζ j/l -f t2 Q)'Lx and assume that there exists an integer
n ^ 0 and a continuous function F (t) such that

a) S(t) = F^n) (t), the derivative being taken in the sense of distributions,
b) the limit (5) exists,

c) the function Φx(t) — n\ -r, rn — C satifies a Holder condition
{t — x)

with the index μ > 0 at t = x.
Then the following limits

( X—η + oo\

Γ f \ F(t) 7J + J 1 ^ " ^ '
— co x + η J

lim \β{χ + is) + S(x - is)]
exist and are equal.

Proof. Under the hypotheses of the theorem, invoking the represen-
tation (4), we can write

n\

2π Ϊ I (6)

The Theorems 1 and 2 may also be formulated in a different way [3].



348 F.

Let us form the sum

S(χ + is) + S(x - i e ) =

ι
L\

t-x + iε/
+ O

- » - i β)"*1 + (t - a;
— oo

( ί ί — 7? + OO \

dt(
/ + / ) F ( t ) [ ( t _ χ _ i ε r + ί + {t _ x

— oo X + ηj
X + η

F W [-(ΓΓϊ37^i+r + ( ί _ x + i e ) .

Observing that

J ( ί "" X^n [ (t - x - i ε)»+i + (ί - x + i ε)«+i J d t

"I, (8)
. (t - i ε)^1 (t + i ε)n-

—n

we can write the relation (7) in the form

§(x _j_ ιε\ J^ j§(x _ ιs\ (9)

( X — η + co\

r r \ r l 1 1
/ + / \(t — x)nΦJt)\-r4 ^-^Γ+T + -7i Γ-^ΪΓU*
I / IV / Uf \ / \ (f ŷt Λ p \ n + l (f <γ _i Λ p\n+l I

- c o %+ η /

X + η

_J_ . / φ /A /̂  ^̂ jn _[ ^ £

By condition c), we can let ε -> 0+ in the right hand side of relation (9).
Then letting η ~> 0+ the integral over (a; — η, x + ^) tends to zero and the
other term also has a limit. Hence

lim [8(x + iε) + S{x-iε)]
e->0 +

»• / 7 " + Λ i ( 1 0 )

ε—>0 -\- £jι> v l j j i \ι — JU)

\— oo a; + η I

We observe that if n = 0, the right hand side of (10) coincides with the
usual principal value 4- 00

1 p f W) d ί _ ! p Γ
t π J t — x iπ J

— 00

Similarly in our case we could write

t — x
— 00

(11)
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which is to be understood in the sense of (10).

We now express P \S, γ^_—> in terms of the distribution 8.

Lemma 1. Let P~ denote the principal value, then

p % ι

Proof. Let t — x = u and y > 0. We have

t u — iy J u — ξ — iy ξ
— oo

7 Γ_J 1 1 dξ_
J [u - ξ - iy u + ξ - iy j ξ
o

oo

= f _±_\ i L
J u — iy [u + I — iy — u-\-ξ

+ *2/
o

1

Similarly for y < 0 we obtain

t u — %y u — %y N 7

Lemma 2. Let S £ j/l + ί2 S ^ . I%ew- ίAe expression

/or φ ζ β?_2

 4 α?i(i defines a continuous linear functional on 0_2

i.e. α distribution which we shall write 8 * P—= P~r * 8 = T. If the
t t }

convolution exists in the usual sense, it coincides with (13).
Proof. This Lemma is a modification of Proposition 2 of [7] where it

is given for φ ζ £f.
We now prove
Theorem 3. Suppose that the distribution $ £ | / l ~ M 2 i ^ i satisfies

the conditions of Theorem 2. Then the distribution T = 8 * P-rhas a value
t

at the point x and we have
I 1 \

(14)

1
4 We remark that although the expression (13) has a meaning for φ(t) = -

t + iε
(this will interest us very much), a direct calculation shows that (13) has no meaning
for general 99 £ Θ19 because in this case the result of the majorization is a term of
order t~x Int.
24 Commun. math. Phys., Vol. 8
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Proof. By Lemma 2 we have

(τ L_. L \
\ ' t — x — i ε t — x -\- i ε /

~7 -. --—: -. 1 — ^ Λ (15)
t 7 t — X —• 18 t — X + I 8 / V '

t + I 8 \/t I t — x — i ε t — x
and by Lemma 1

(τ,-Γ -—= -: ί—τ-\= -iπ[8(χ + iε) + 8(x- iέ)λ . (16)
\ ' t — X — 18 t — X + I 8 /

 L V ' V / J V '

By Theorem 2, we can let ε -> 0+ in (16). We show that this limit is
equal to the value of the distribution T at the point x. Let α(ί) be an
infinitely differentiable function with the usual properties of a "bump"
function used in distribution theory and whose support contains the
point x. Consequently, the point x is in the compact support of the distri-
bution U (t) = θί(t) T (t) and not in the support of the distribution V (t)
= T(t) — U(t). One can easily show (as in the proof of Theorem 1, § 5.1
of [1]) that

lim /v, l \ = 0
e^O+X t — X — I 8 t — X + I 8 /

and consequently

lim /T,
 1

 :

 1 -λ
e _ > 0+\ t — X — I 8 t — X + I 8 /

= lim
ε->0 4-

(Ό) i i \

- \ ' ί — x — ί ε t — x -\- i ε i

On the other hand, U has a compact support so that
l i m (ϋ>t " -7—V- )

= lim [Z7(α? + ίε) - #(# - iε)] = ?/(») = T(x)

where U(z) ist the Cauchy representation. Now if ί1 (z) is a representa-
tion of T (not necessarily the Cauchy representation) we have (Theorem 2
of [3])

lim [f(x + iε)-f(x-iε)'\

= lim [U(x + iε)-U{x-iε)]=T{x).
ε—>0 +

Taking Theorem 2 into account, we can conclude

(17)
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Moreover, we showed in [3]

lim [8(x + iε) - 8{x - iε)] = 8{x) . (18)

Note, however, that (18) was obtained under weaker hypotheses on
the local behaviour of F(t) (without the Holder condition). This question
also arises with the ordinary Plemelj relations.

Adding and subtracting (17) and (18) we obtain

lim Six 4- IF) — l-fί(r) 4- * p/s * \
ε_>0 + 2 2πι \ t — xi

i i / i \ < 1 9 >

lim Six — iε) = —8(x)-\- P(S >

These are the local Plemelj relations for distributions and reduce to the
ordinary case for n = 0. We draw attention to the fact that relations
(19) hold under weaker hypotheses. For example, we have

Theorem 4. Suppose that the distribution 8 £ J/Ί + t2 2'Li satisfies
condition a) of Theorem 2 and also the following conditions

b) lim n! —— and lim n! ——
i It T\n it vλn

ε—^CC ~j~ \v ds) &—^*0C— \v ~"~~ *^)

exist and equal C+ and C- respectively

c) the functions Φt (t) — n\ -,-——-r— — C+ and
' ' x x ' (t — x)n

satisfy Holder conditions with indices μ+ > 0 and μ- > 0 respectively.
Then the conclusion of Theorem 2 hold.
The proof follows the same lines as that of Theorem 4 of [3].

§ 3. Dispersion Relations

From (19) we obtain dispersion relations for the case in which
lim 8(x — iε) = 0 at the point x. Then

ε > 0 +

^)TW < 2 0 >

or

Im8{x) = — PlReS, -r-^—) . (21)

Because the space j/l -f t2 Q)'Lχ is contained in Sf' the condition
lim S(x — iε) ~ 0 is assured, for example, by requiring the Fourier

ε->0 +

transform of the temperate distribution 8 to vanish on the negative axis
[10]. Relation (20) can be considered as 'localizing" the dispersion re-
lations of [7]. Certainly if the distribution 8 does not belong to J/T~+Ίί^i^i,
dispersion relations of type (20) cannot be written and one can resort
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to subtractions. Such questions may be treated in the space (1 -f £2)*v2 ®'Ll,
k > 1 and the resulting relations may be considered as "localizations"
of subtracted dispersion relations involving distributions [11].

§ 4. Concluding Remarks

We observe once again that the relations we have obtained extend
the Plemelj and dispersion relations when local Holder conditions are
imposed on the distributions. However, dispersion relations are also
valid in the functional form for distributions [7, 10], and this suggests
us to write down Plemelj relations where the limit for ε -> 0-f is
taken in the sense of distributions. We shall use Lemma 1 to do this.

Just as it is necessary to study the Cauchy integral in the treatment
of singular integral equations and in Riemann Hubert problems, so it is
necessary to study the Cauchy representation in treating singular inte-
gral equations involving distributions. Problems of that kind have already
been treated in [12]. In particular, the Chew-Mandelstam and Shirkov
integral equations belong to this category (because the fι (s) are distribu-
tions).

On the other hand, the results we have obtained may be extended to
the case of an arbitrary boundary curve in the complex plane (possibly
containing the point at infinity) as well as to the case of several variables.
Some of these questions will be treated on another occasion.
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