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Abstract. The representation theory of the groups 80(5), SO(4, 1), SO(6) and
80(5, 1) is studied using the method of Master Analytic Representations (MAR).
It is shown that a single analytic expression for the matrix elements of the generators
of 8O(n + 1) and S0(n, 1) in an S0(n) basis yields all the unitary representations
(for n = 4,5) and that the compact and non-compact groups have essentially the
same analytic representation. Once the MAR of a group is worked out, the search
for the unitary irreducible representations is reduced to a purely arithmetic opera-
tion. The utmost care has been exercised to conduct the discussions at an elementary
level: knowledge of simple angular momentum theory is the only prerequisite.

Introduction

In the course of a study of the unitary irreducible representations of a
variety of groups we have discovered that, in all cases where the represen-
tations have been analyzed in detail, in every linear representation of the
(locally compact) Lie algebra, the matrix elements describing the represen-
tation was a specialization of certain analytic functions. We refer to this
general representation as the Master Analytic Representation (MAR). It
provides us with a method of studying the representations of various
noncompact groups. In this paper we apply this method to study the
representations of the groups £0(5), £0(4, 1), £0(6) and £0(5, 1).

The plan of the paper is as follows: in Sec. 1 we study the MAR for
£0(5) in an £0(4) basis and deduce all the unitary representations of the
£0(5) group [1]. An elementary diagramatic analysis for this purpose is
developed and exploited. We then use the Weyl trick [2] to write down
the MAR for the de Sitter group SO (4, 1) and specialize it to find all the
unitary irreducible representations of £0(4, 1) and of its covering group
[3]. Sec. 2 deals with the unitary representations of the £0(5, 1) group
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and its covering group. The MAR of the S 0 (6) and the 80(5, 1) groups is

labelled by three parameters. The values of these parameters which

furnish the unitary irreducible representations of the covering group of

80(5, 1) are obtained, thus furnishing a complete catalogue of these

representations. This is a complete solution to the problem since the

matrix elements of all the generators are known explicitly. We believe

that these results are obtained here for the first time.

The earliest use of the idea of analytic continuation is due to DIRAC [4].

Various authors have recently carried out studies in representation theory

which make use of some of the ideas of MAR. Particular mention must be

made of the work of BARUT and FRONSDAL [5], HERMANN [6], and HOL-

MAN and BIEDENHARN [7]. The method of MAR have been used by one

or other of the present authors in other investigations [8] and the theory

was announced at the Third Coral Gables Conference [9]. An account with

application is contained in a thesis by one of us (J.G. K.) [10] and a more

detailed presentation of the method of MAR is given in another paper [11].

I. Master Analytic Representations of the Orthogonal and Pseudo-

Orthogonal Groups in Five Dimensions

The unimodular, real orthogonal group in n dimensions, S0(n) [12],

is generated by -^-n(n— 1) generators

Axβ = — Aβa, α, β= 1, . . . n (I.I)

which obey the commutation rules (C.R.'s)

— i[AΛβ,Aμv] = gκrAβμ + gβμA&v — gaμAβv — gβpAκμ (1.2)
with

£«/? = <5α|8. (1.3)

The S0(n) groups have the feature that within any unitary irreducible

representation (UIR) of S0(n), the S0(n— 1) subgroup labels uniquely

specify a state — that is to say, if we reduce a UIR of SO (n) with respect

to S0(n— 1), each UIR of 80(n— 1) will occur at most once.

We shall obtain the UIR's of the covering group of $0(4, 1) [3] by

the method of Master Analytic Representation (MAR) from the UIR's of

the covering group of 80(5) [1]. The group 80(5) has ten generators, six

of which are generators of the 80(4:) subgroup, and the remaining four

transform as a four-vector with respect to this /SO(4) subgroup. We can

consider the (covering group of the) /SO(4) subgroup as a direct product

of (the covering groups of) two 80 (3) subgroups and use these two sets of

80(3) labels to classify the states within an UIR of SO(4). In this basis

the four-vector is a combined spherical tensor of rank 1/2 with respect to

each of the two 80 (3) subgroups. The advantage in using this basis is
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that the "magnetic quantum number" dependence of the matrix elements

(M.E.) of the extra generators of SO (5) will be given by the usual

Clebsch-Gordan (C.G.) coefficients of SO (3). If we had used the SO (4)

labels directly, then this magnetic quantum number dependence would

be given by a C.G. coefficient of $0(4), which is a little more difficult to

handle [11]. In this section we shall use this SO (3) 0 SO (3) basis for the

analysis of the UIR's of SO (5) and $0(4, 1).

We rewrite the C.R.'s (I.I) for the Lie algebra of $0(5) as follows:

[ZWι, Xmz] = — J/2 (7(111 m1m2m1 + m2) XΏh + m^

mlm2m1 + m2) Tmι + m]t (1.4)

(1-5)

'

+ C (Ύ T 1 ; mιmι mι + mO C ("2" T ° ; mam2 °) ^m, + mi} - (1-6)

Eqs. (1.4) imply that Xm and FTO generate two commuting $0(3) groups.

Eqs. (1.5) imply that Qmm> is a combined spherical tensor rank 1/2 with

respect to each of the $0(3) groups generated by Xm and Ym. Eq. (1.6) is

characteristic of the semisimple structure of $0(5).

Representations of SO (5) and its Covering Group

We are interested in hermitian representations of the $0(5) Lie

algebra; this implies

We introduce a basis labelled by the quantum numbers (^raj) pertaining

to a TJIR of the Xm) and the quantum numbers (j2 m^) pertaining to a

UIRof the 7m:

. (1.8)

The hermiticity requirement (1.7) implies then:

Qmn\ A?2mim2>

-

The Wigner-Eckart theorem as applied to the two $0(3) subgroups

enables us to factor out the (m-^rn^ dependence of the M.E.'s of Q as
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follows:

Let us define:

(1.10)

1 . 1 e
/• l M
ψ+TJ'-Ti!

1 . 1

/•__!•_!
yi 2 ?2 2

On account of (1.7) we then have:

[(2/! + 2) (2/a -I- 2)/(2/1 + 1) (2/2 +

[(2/i + 2) (2j<

(1.11)

= _ c*

So we are left with two unknown reduced M.E., a(JιJ2) and b(j1j2). We
sketch below the method for obtaining them.

We consider the C.R.

ΓQ Q "I O (~X JL- Y \ (Ύ ]"%}

and sandwich it between the states \JιJ2mιmz) anc^ (jιJ2mιm2\ -^or

/ j = j± -}- 15 /g = /2» we §e^' usmg (1.10) and (1.11):

11/2 6ίί'W (1.14)

(1.15)

?2 = ?2 — 1, we get :

With j [ = ̂ —1, y*2 = y'2, we get :

2 ?a /. j_ _ M
1 V 1 2 '? 2 2 /

rr (i iβ)

Combining (1.12), (1.14) and (1.15), we find:

'.- .- M2 _ (2?ι + 3) . (2;. + 1)
J i /2/1 ^2/j + 2) (2/j_ + 2)

Similarly, (1.12), (1.15) and (1.16) lead to

_ ι _ . __ n
2 '?2 2 /

. (1.17)

1 \ | 2
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It is advantageous at this point to change variables and define

x = j j + 72 + 1

B(x,y)=\b(hjt)\ί (1.19)

Eqs. (1.17) and (1.18) then read as follows:

[(*+ \}*-ιf}A(x,y} = [(χ+ l)*-(y+i)*]A(x,y+l)=V(x) (1.20)

[x*-(y+l)*]B(x,y)=[(x-1)* I2ι

-( 2 /+l)2] J B(x-l ) 2 /)^-If(2/)

Next we need an inhomogeneous equation for the reduced M.E.'s A (x, y)
and B(x,y). For this we consider the diagonal matrix element of the

C.R. (1.13) for the state \JιJ2mιmz) *° obtain:

I)]

ma) (1.22)

Since m1 and m2 vary independently of one another, we may equate the
coefficients of m1 on the two sides of (1.22), and similarly for m2. The
resulting equations, expressed in terms of V (x) and W(y), read:

V(x) -W(y-l) V (x - 1) - W (y) _ ?_ (I-23)

^
We have to solve these two equations to determine V(x) and W(y).

Let α; = e and ι/ = / — 1 be zeros of V (x) and W (y) respectively. That
is to say,

1) = 0 (1.24)

Then setting x = e + 1, y = / in (1.23) enables us to solve for V (e -f 1)
and Tf(/):

F(e + 1) = — 2(e + 1) (e + / + 1) (e — / + 2)

>F(/) =2/(e-/)(e + / + l ) (1.25)

We now make explicit use of the that W (y) is independent of x, so that
W (y) can be evaluated at any value of cc, and in particular at # — e + 1 .
We set x = e + 1 in Eqs. (1.23) and use (1.24) and (1.25) to get two
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equations in W(y) and W(y—l). Solving them, we find:

W(y) = - (e- y} (β + y + 1) (/ + y) (f-y- 1) (1-26)

We use the same trick to evaluate V (x) we set y = / in (1.23), use (1.25),

and solve for V ( x ) . The solution is:

V(x) = (x + f ) ( x — f+l)(e — x)(e + x -f 1) (1.27)

Thus Λve have solved for the independent reduced M.E. afajz) and

b(hJz) To analyze the representations, it is convenient to write the final

expressions in the following form :

• {x (x + l) - (/ - 1) /} {e(e + i)-χ(x + 1)} j i/2

{β (e + 1) - y (y + 1)} {(/ - 1) / - y (y 4- 1)} -11/2 (L28>

x* - (y + I)2 J

These analytic functions with the definitions (1.10) and (1.11) furnish the

Master Analytic Representation with parameters e and /.

To proceed with the specialization to unitary representations (of the

covering group) of SO (5), we note that the state labels must vary in such

a domain that the master analytic functions remain real. Since these

functions are symmetric in e(e -f 1) and (/ — 1) /, we may assume without

loss of generality that

The quantities e(e -f 1) and (/— 1) / cannot both be negative because
a(hh) would become imaginary. (Remember that x = jλ -f j2 -f 1 > 0.)
λVe now wish to study the behaviour of the expressions for the matrix

elements when the state labels x and y vary. The denominators within the

square root do not change sign; we are therefore interested in the be-

haviour of the polynomials in the numerators of the two expressions in

(1.28). This is facilitated by considering the following diagram in which

we plot the sign of the polynomial numerators as x and y from — oo to

-f+1 —-y f-1

Fig. 1. MAR diagram for 80(5). The shaded regions represent the domain of
variation of x and y respectively

+ oo. Nonnegativity of the master functions together with the informa-

tion x = JιJrJ2Jr 1 ̂  I? \y\ ̂  x—1, show that the only region of
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interest is

e^ x^ /, / — l ^ τ / ^ 1 — /

so that

e—l^x—L^f—l^y^ 1 — / (1.30)

which are the GeΓfand-Tseitlin branching rules for SO(5). Each UIR of

SO(5) is labelled by two parameters e, / which are both integral or both

half integral which satisfy e Ξ> / ̂  1.

The UIR's of SO(4) included in a UIR of 80(5) are obtained by

requiring the transition matrix elements for transitions leading out of

the allowed set to vanish. Thus, since a(j1, J2) vanishes at ^ -f- j2 + 1 = £?

the transition from the state labelled by (JιJ2) (with j1 -f j2 + 1 = e) to

(?! -f 1/2, j2 Hr 1/2) is not possible. On the other hand, for ^ -f ?2 -f 1

= / — 1, the same transition is forbidden, but this means that jτ + j.2 + 1

= / is the lower limit, since that state cannot be connected with the state

with j[ = fa — 1/2, and j'2 = j2— 1/2. It is then clear that the parameters

of the MAR, which originally entered as the arbitrary constants of the

solution to the recurrence relation for (or, better, as the zeros of the poly-

nomials associated with,) the matrix elements, serve to specify the range

of variation of the state labels. Due reflection will reveal that this is no

mere accident and this characterizes the MAR for any compact group.

The group 80(6) has two Casimir operators Q, E of the second and

fourth degree respectively. They take the values

Q = ̂ AaβAΛβ = e(e + 1) + /(/- 1) - 2

X= WΛWa=e(e+l)f(f-l) (1.31)

and WΛ = y εΛβγμvAβγ Aμv

for these representations.

Representations of the de Sitter Group SO(4, 1) and its Covering Group

The method of MAR demands that we carry out WeyΓs trick, [i.e.,

Q -=> P = iQ, and then [X, Y, P} generate SO (4,1)], and then analytically

continue the M.E. into regions in which the corresponding operators are

hermitian. It is trivial to verify that the Weyl trick gives quantities satis-

fying the C.R.'s for generators of SO(4, ]). Defining the reduced M.E. of

P by the equation

C

<h?2Kfo'2>...

the first step in the method of MAR is the following identification:

<3ί h\ Pll?ι/2> = i (ti iί\ Q\\hh} (I 33)
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The two independent M.E. of P are

y ,h +

= Γ
[

- β(β + 1)}
1)2 _ y2

(L34)

{β(β + 1) - y(y + 1)} {y(y + !)-(/-!) /} Ίl/2

sa - (y + I)2 J

The next step in the method of MAR is to analytically continue the range
of variation of x, y in A' ' (x, y) and B' (x} y) and choose e, f so that P is
hermitian, i.e., A' (x, y) and B' (x, y) are real and nonnegative.

We note that previously e and / turned out to be limiting points in the
ranges of x and y, while here β and f must be considered as parameters
which can a priori take any arbitrary complex values. However, though e
and / may be complex parameters, both e(e + 1) and (/ — 1) / must be
real. For, if e(e -f 1) were complex, then the reality of B' (x, y) implies
that (/ — 1) / is the complex conjugate of e(e + 1); but then B' (x, y) is
negative.

We consider the functions

- [x(x + 1) - β(e + 1)] [x(x + 1) - (/ - 1) /] ^

^[χ*~(y+l?]B'(x,y) ( '35)

= [β(β + 1) -y(y + 1)] [y (y + 1) - (/- 1) /]

For hermitian representations of SO (4, 1), the following conditions are
satisfied :

* = h + h + 1 ̂  \h~h\ + 1 = \y\ + 1 S 1 ,
( J.,ou)

Since α(a ) and ^(ί/) are both symmetric in e(e + 1) and (/ — 1) /, and
since e(e + 1) and (/ — 1) / must both be real, we may assume without
loss of generality that

e ( e + l ) ^ (/-I)/ (1.37)

Just as in the case of $0 (5), we can first prove that e(e + 1) and (/ — 1) /
cannot both be negative. For if they were, then the function β(y) is
negative for all integral and half integral values of y except possibly for
y = — 1/2. If y — — 1/2 is the only of y to be considered, we can also
restrict x to be half odd integral. Then we see that oc(x) is nonzero for all
positive half odd integral values of x\ in particular, oc(x) is nonzero for
x— 1/2. This means that we have a non vanishing transition matrix
element from x = 3/2 down to x = 1/2. Since x — jl

J

Γj2-\-I^l) the
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former is "allowed" while the latter is not. We conclude that e(e -}- 1) and

( / — I ) / cannot both be negative. In view of the inequality (1.37),

e(e -f 1) is positive or zero.

The reality of e (e -f 1) and (/ — 1) / implies that either e is itself real

or a complex number of the form e = — 1/2 -f ia\ similarly, / is either

real or of the form 1/2 + iρ. However, we have just seen that e(e -f- 1) is

nonnegative. We conlude that e is a real number in the range 0 ^ e < <χ>.

[Note that e appears only in the combination e(e + 1).] As for /, it is

either real and in the range 1/2 g / < oo, or complex of the form

/ = 1/2 + iρ.
We now divide the analysis into the cases where / is real, and / is

complex.

i) Representations of the D Series: f real, / ̂  1. We begin with the

following situation: e (β + 1) > (/ — 1) / > 0 (T.38)

and consider later the possibility of replacing the inequalities by equali-

ties. (1.38) is equivalent ^ ° e \ i > f > i π 39)

In the integral case, the least possible values of e and / would be 2, while

in the half-odd-integral case, this least value would be 3/2. The zeros of

α(#) and β ( y ) occur at the points e, f— 1, —/, —e— 1 which obey:

e > / — 1 > — / > — e—l (1.40)

In particular, note that no two of these zeros coincide. The signs of oc(x)

and β ( y ) are plotted in Fig. 2. [The shaded regions are the regions of

positive α (x) and β (y) which qualify for the domain of variation of x and

y respectively in UIR.]

e+1

-e -f 0 —-y f e

Fig. 2. MAR diagram for general discrete series

oc(x) is strictly positive for e + 1 ̂  x < oo, and vanishes for x = e.

Hence the states with x Ξ> e -f 1 cannot be connected to those with

x < e -f 1. The range —/ ^ x ίg / — 1 is one for which α (x) is nonnegative,

and α (x) vanishes at x = f — 1 and x = — /. Hence the states with

1 — / ̂  x g / — 1 cannot be connected to those with x > f — 1 or

x < 1 — /. Similarly, β (y) is nonnegative for / — 1 ̂  y ^ e, and for

—e — 1 ̂  y ^ — /, and vanishes for y — e, f — 1, —/, —β — 1. Hence the

set of states with / ̂  y g e cannot be connected to states with y outside

this interval; and similarly, states with —e < y < —/ cannot be con-

nected to states with y outside this range. Remembering that x ^ \y\ -f- 1?
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we see that the only representations in this case are the following :

D+f .x > e+ 1; e > ? / > / ;e'f ~ - * - / » (L41
D-f .x^e+I; —f^y^—e; e + 1 > / > 1

In terms of ̂  and j2ί the ranges are

h + h = e> e + 1> e + 2, . . °°
(1.42)

±(7i-7'2) = / , / + i , . . . e
In the representations Djj given by (1.41) or (1.42), we must remember
that e and / are both integral or both half-odd-integral, obeying the in-
equalities (1.39).

Now we consider the possibilities that arise when the inequalities in
(1.38) are replaced by equalities. Suppose we take

e ( e + l ) = ( / - l ) / > 0 (1.43)

This is equivalent to
e + 1 = / > 1 (1.44)

oc(x) and β(y) become
oc(x) = [x(x+ l )-e(e-f I)]2

β(y) = ~ fr & + 1) ~ e(e + i)]2 (L45)

j8 (ί/) is strictly negative for all y except y = e or y = — e — 1, where it
vanishes. So in principle the states in the range e ̂  y ^ — e are con-
nected only to one another, and not to states with y outside this range.
However, since β φ 0, there are at least two distinct values of y in the
range e ̂  y ^ — e; in particular, e — 1 ̂  — e. But then the transition
matrix element β(e — 1) from y = e down to y = e — 1 becomes nonzero
and negative. We conclude that we have no representations for

e(e+!) = ( / - I ) / > 0 (1.43)

Consider next the possibility where the second inequality alone in
(1.38) is replaced by an equality:

.(.+ !,>(,-1,,.0.

i.e., e ( e + l ) > 0 , / = !

This is the same as the requirement / = 1, e > 0, so that the values of e
and / under consideration are

/ = l ; e = l , 2 , 3 , (1.47)

We have, first of all, a set of representations very similar to the Z)̂  of
(1.41); namely:

D+i: α ̂  e + 1 e^y^l\
(1.48)
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These representations were not included in (1.41) because there / = 1 was
not allowed. We can now consider the representations D^f of (1.41) with
/ > 1, and the representations D^ of (1.48), as constituting one class of
representations. However, the situation described by (1.46) leads to
further representations because of the following reason. The function β(y)
vanishes for y — / — 1 = 0, and for y = — / = — 1. This vanishing of β (y)
for two consecutive integral values of y implies that the states with y =-- 0
form a set which cannot be connected to any other states with y φ 0. We
find therefore the following class of representations.

e+1

-e -1 o 1 -^y e

Fig. 3. MAK diagram for the case / = 1 showing D£L and D^Ί

D^ .x^e+l, 2/ = 0; e = l , 2 , . . . (1.49)

The ranges of j± and j2 in D^ and D®}1 are given by (see Fig. 1.3)

Ati :?i + ?2 = e, e-f 1, . . .00 ,

± ( 7 ι - 7 2 ) = l , 2 , . . . e ; e^ 1 (a)
(l.oO)

D(

t lι' h + J2 = e, e+ 1, . . .00 ,

We have a still further exceptional situation which occurs when
e = f = I so that the zeros e, f — 1, — /, — e — 1 are the consecutive

0 1 2

-1 0 1 —^y

Fig. 4. MAR diagram for e = / = 1 showing Z)^, D^ and /

integers 1,0,—1,—2. In this case in addition to the representations
DIΊ, DfJ, DM, we have yet another possibility because the state with
x = 1, y = 0 is disconnected from all other states. This gives rise to the
identity representation (see Fig. 1.4):
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The "range" of values of jv j2 are

/ : h = j, = 0 (1.52)

Last of all we consider the possiblity that both inequalities in (1.38)
are replaced by equalities :

e(e + 1) = (/ - 1) / = 0 : e = 0, / = 1 (1.53)

The functions α (x) and β (y) are explicitly :

<φ) = x*(x + I)2; j%) = - y*(y + I)2 (1.64)

We find a single representation which should be added to the class D®}1

of (1.49). We have the representation

D$tl:x^ 1 ,2/ = 0 (1.55)

The range of values of jτ and /2 is :

Let us summarize the results of this subsection. Assuming / to be real,
we considered here the possibility / ̂  1. We then find the following
representation of $0(4, 1), in all of which β and / are quantized:

D^f:f=l, 3/2, 2, 5/2, . . . e = 1, 3/2, 2, . . . β+ 1 >/

Z > £ ι : / = l ; e = 0 , l , 2 , . . . (1.57)

/ : / ι = 7' 8 =0
ϋ) Representations of the C Series, f = 1/2 -f ί ρ , 0 < ρ < oo.
We have in this case:

e(e+l)SgO,eS: :0;/(/- l ) = -^-ρ2;--ί>/(/-l)>-~... (1.58)

The zeros and signs of oc(x), β(y] are given in Fig. (1.5):

e+1

-e 0 — * y e

Fig. 5. MAR diagram for continuous series

The functions oc(x) and β(y) are

oc(x) = {a;(α; + 1) ~ e(e -f 1)} \(x+ 2

A straightforward analysis using the diagram in Fig. 1.5 yields the fol-
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lowing general class of representations:

Getρ:x ^ e + M ^ ϊ / ^ — β ;

1 (L60)
e= 0,-g , 1, . . .00

so that the ranges of j1} j2 are given by

Ce,ρ : ?Ί + ?2 = e, e + 1, e + 2, . . . oo

?Ί —7a = e, e—1, . . . — e; (1.61)

e = 0,y, 1, . . . ρ > 0

There is no distinction like D^ for the (7 Series, and the range of x and y
is independent of the value of ρ. No exceptional cases arise for the C Series.

In the above we assumed ρ > 0, thus excluding the possibility ρ = 0,
when / = 1/2 becomes real. Let us now look at this possibility. For
integral x and y, we have the same kinds of representations as before,
because β (y) does not acquire any new zeros:

C f5 :?Ί + ?'a =
 e > e + M+2, .. .00;

j1 — j2 = eie—I,... — e; (1.62)

e = 0 , l , 2 , . . .

However, for half integral values of x and y, β(y) acquires an extra zero,
at y = — 1/2. Then the states with e ί> y ^ 1/2 are connected only to
one another, and not to any other values of y\ similarly the states with
—1/2 ^ 7/ ^ —e are connected only to themselves. We find two new
families of representations which could be classed along with D^ff of (1.41)
and (1.48). They are:

D+1/2 : α ^ e + l , e ^ y ^ ~ ; e = y, 3/2, . . .
(1-63)

Aΰ/2 : » ̂  e + 1, — y ^ ? / > — e e = y , 3/2, . . .

The corresponding ranges of jl and ?'2 are:
D*U2 '.Ji + Jz^e^+l^ + Z,...^-,

±(?Ί-?2Hγ,3/2, . . .e; (1.64)

e =-,3/2,5/2, . . . oc.

iϋ) Representations of the E /Series, f = 1/2 -f r, 0 < r < 1/2.
From the expressions (1.59) for <x(x) and β ( y ) , we can see that when x

and ί/ are both integral, we have a family of representations of the fol-

lowing kind:

Eetr:x^e+l; e^y^—e; 0 < r < γ
μ.DO;

e = 0, 1 ,2 , . . .
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The range of jλ and j2 is provided by:

Ee,r' h±h = e ,e+ 1, . . . 0 0 ;

ji—h = — e,—e+l,... + e; e = 0, 1, 2, . . . (1.66)

If one so chooses, these Eβ) r representations could be put into the same

class as the CβtQ representations of (1.60).

In all these cases, discrete as well as continouous, the Casimir operators

have the values Q = e(e + 1} + /(/ _ 1} _2

(1.67)
Λ = e ( e + ! ) / ( / - ! )

We note that the values of the Casimir operators do not label the represen-

tations uniquely; D^/ and D~j have the same Casimir operators;

D^l5 D~fl and D®tl all have the same Casimir operators; and finally

Dj^, D^Ί, DII and / have zero for both Casimir operators. To distinguish

between different representations with the same Casimir operators, we

should use "nonanalytic labels" like the domain of variation of the state

labels x and y. It is also relevant to notice that these representations

which have the same value for the two Casimir operators have matrix

elements which are the same analytic functions and they are all asso-

ciated with the same unitary represntation of the compact group, if

such a representation with the same values of the Casimir operators

exists.

We conclude this section by listing together all the classes of UIR's of

/SO(4, 1), including in each case the spectrum of UIR's of /SO(4) that

appear. (The trivial identity representation is omitted.)

Dtj : e ̂  / ̂  Y e — f = integer

/ ^ 2 / ^ β ; e -\- 1 ̂  x < oo .

£><Γ/: e ̂  / ̂  Y e — f = integer

— e < y ^ — /; e + 1 < x < oo .

Z>° JL : e ^ 0 / = I e = integer

^ ^ 0 ; e i- ] ^ x < oo .

C^ρ e ^ O ; f — ~2~Jr i$\ e^ integer 0 ^ ρ < oo

— β 5^ y ^ e e + ] ^> x < oo .

/ = γ-Mρ; 2e = odd integer 0 < ρ < oo

— β 5j y :±Ξ e e -^ I ^ x < oo .

Ee,r:e:>Qι / = γ + / ; e = integer; 0 < r < γ ;

— e ̂  y ^ e; e + I < x < oo .

15 Commun. math. Phys., Vol. 8
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(In Z>^y, e and / are simultaneously integral or simultaneously half-odd
integral.) In any given representation, the reduced matrix elements of
Pmn linking one UIR of 0(4) to another are given by (1.34).

II. Representations of Orthogonal and Pseudo-Orthogonal
Groups in Six Dimensions

Representations of SO'(6) and its Covering Group

In this section we would like to make use of similar methods to find
all UIR of SO(6) and SO (5, 1). The computation of the master analytic
functions proceed along lines very similar to the one sketched above for
SO(5), except that the algebraic computation is twice as long and more
than twice as laborious. In our study of the UIR of 80(5) and $0(4, 1)
in an 0(4) basis we made use of the special circumstance that (the
covering group of) the $0(4) group is isomorphic with the direct
product (of the covering groups) of two commuting $0(3) groups.
However the final expressions (Eqs. (1.28)) for the reduced matrix
elements are in fact given in terms of the 0(4) labels defined by
Eqs. (1.19). Since the C.G. coefficients of $0(5) are not familiar
quantities we shall not bother to write down the explicit reduced matrix
elements of those generators AQμ, 1 < μ ?g 5 of $0(6) which are not in
$0(5). These quantities form the components of a five-vector with
respect to $0(5) and it is therefore sufficient to know the complete set of
matrix elements of any one of them. We choose the component AQ5.
Since AG5 transforms as a scalar with respect to a $0(4) subgroup of
$0(5), its matrix elements are independent of the labels j , m which
occur as the magnetic quantum numbers of the 0(4) representations.
Since a state in a UIR of $0(5) labelled by the two nonnegative parame-
ters e, f requires as magnetic quantum numbers x, y the labels of the
$0 (4) representation and the quantities j} m for its complete specification,
we are interested in matrix elements of the form

( e ' f ' x ' y ' j ' m ' \ A M \ e f x y j m y . (Π.l)

But in view of the fact that A65 is scalar with respect to $0(4), these
matrix elements vanish unless

x' — x y' = y j' = j m1 — m

and for this nonvanishing case they are independent of j and m. The
relevant matrix elements may be denoted as:

< e ' f ' x y \ A M \ e f x y ). (11.2)

It is seen that the only nonvanishing matrix elements are obtained for the
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cases when
(e / ,/ ') = ( e , / ) , (β ± 1 , / ) , (e,/ ± 1 ) .

By a direct computation we obtain:

— ( α + 1) (- 1)

_ — ___
(e + 1)2. (4 (e + l)*-l}{e + !)2-/2}{(e + I)2 - (/ - I)2}

• ]/{(α T IF- "(e'-ϊ-T)"2} {(β^+ 1)^ -72}T(e T 1? - (y^l)2}

"

J/{(α + I)2~ f} "{^-7"2} {/2M7- ΰ2} (Π.3)

All 80(6) representations are to be obtained from an analysis of these
matrix elements.

The GeΓfand-Tseitlin "branching rules" for the /SO (4) "content" of a
UIR (e,/) of /SO (5) are [1]:

e^x^f f—l^y^l — f e ^ / ^ 1 . (II.4)

These assure us that the poles of the quantities within the square roots
may be ignored altogether. We may therefore consider the behaviour of
the polynomials.

E(e) = {(α + I)2 - (e + iγ} {(e + 1)* - β*} {(e + I)2 -(γ - I)2}

and their variation as e and / assume both integral or both half integral
values satisfying e ^> / ^> 1.

0 — e

-»f 7- /S

Fig. 6. MAR diagram for $0(6) for Dκβγ. Shaded portions indicate the relevant
domains of variation of / and e respectively

The UIR of (the covering group of) 80(6) are to be sought by finding
suitable values of α, β, γ and corresponding domains for the state labels
such that the master analytic functions represent a hermitian operator
AQ5. These considerations are faciliated by the use of diagrams.
15*
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Nonnegativity of the polynomials together with reality of the diagonal
matrix element in (II. 3) require that α, β, γ be all real. Recalling that
E (6-^ = 0 implies that e1 -> e1 + 1 transition is forbidden, F(f1) = Q
implies that /j -> /i + 1 transition is forbidden and that e ̂  / ̂  1 we
find that for positive α, β, γ only one class oί representations DXβγ

labelled by the three parameters α, β, γ occur with the branching rule :

The explicit matrix elements are already given by (Π.3). The requirement
on the parameters are that α, β, γ be all nonnegative integers or all
nonnegative half integers.

If any one (or all three) of the three parameters α, β, γ change sign we
get a representation which is inequivalent to the original one unless
(α + 1) β(γ — 1) = 0. AVithout loss of generality we could choose α, β to
be nonnegative and γ to be of either sign if it is nonzero. The representa-
tions D^βγ and /)α j 3 s 2_ y are conjugate representations and can be
obtained by the outer automorphism :

A -> A
μ v ~~^^ -zu μ v

AQμ~> — AQμ l<μ,v^5 (Π.7)

λvhich is equivalent to the operation of space inversion in the carrier
space of 80(5).

Every UIR of SO (6) is thus labelled by three numbers a, β, γ all of
which are integral or all half integral and the first two nonnegative. For

γ > I we find

DΛβv : γ < ! < β Sί e < α . (II.8)

For γ < 1 , we find :
D«βγ:2-γ< f ^ β ^ e ^ x .

These two expressions may be amalgamated into the single expression

D,βr:l+\γ-l\<f<β<e£a. (Π.9)

These representations are conjugates of each other. When γ = 1 we get
self -con jugate representations.

All these representations were found by GEL'FAND and TSEITLIN [1].
The representations with β — γ = 1 have / = 1 and hence, by virtue

of the 80(5) branding rules (Π.4), y — 0 so that these give the "symme-
tric tensor" representations with α labelling the rank.

Representations of 80(5, I) and its Covering Group

We can now carry out the method of MAR and use WeyΓs trick to
find the UIR of $0(5, 1) (and of its covering group). Accordingly we let

A,μ^iA'f,μ Aμv^Aμv l^μ,v<5 (11.10)
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and search for values of the parameters α, β, γ and the domain of β, / such
that we get matrix elements which represent a hermitian operator.
Since

-l) (U.ll)

has to be real if all the quantities α + 1, β, γ — 1 are nonzero, not all of
them can be real; let us choose γ to be complex in such a case. Since the
other matrix elements are, according to (11.10) also simply multiplied by
ί we are led to consider the polynomials

E'(e) = {(e + I)2- (α + I)2} {(e + 1)2-^2} {(β + l)2-(y- I)2} π

^'(/) = {(«+])2-/2}{/2-^}{/2~(7-i)2}. ( )

The polynomials will change their sign only at isolated zeros. For large
values of /, F' (f) is negative and if all the quantities α + 1 , β, γ — 1 were
complex there would be no domain where / could range. Hence at least
one of these quantities should be real; let us choose it to be α + 1 if only
one of the three quantities is real, otherwise let it be the largest of the
real quantities among α + I, β, γ — 1. If β is complex (and γ is already
complex) F' (f) will have only two real zeros, symmetric about the origin.
But the domain so given for the range of variation of / is inadmissible.
(Recall the SO (5) branching rule (II.4) which says / ̂  1.) Hence β must
be real, or else (γ — 1 ) must be zero but this simply is equivalent to
β •=. 0 and γ being complex. Thus we deduce that α, β must be real and
γ complex; reconsideration of (11.11) now tells us that (γ — 1) is pure
imaginary or zero. We now study the possible MAR diagrams system-
atically.

0 β+1 -*-e α+1

0 0+1 -— f α+1

Fig. 7. MAR diagram for the principal series of 80(5, 1)

i) The Principal Series oc ^ β > 0. We begin with the case:

α > β ̂  0 γ=--I + iτ, τ2 > 0 (11.13)

and consider later the possibility of replacing one or more of the in-
equalities by equalities. Again remembering that e ̂  / ̂  1 we find the
allowed domain of variation

P aβτ
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independent of the (positive or negative) value of τ. We may take, without
loss of generality, α and β both integral or both half integral and non-
negative. The representation Pαj8τ and PKβ-τ are conjugate to each other.

For α > / 3 ^ > 0 , τ = 0 w e get a class of representations with the same
domain of variation

P«βo β+ 1 ^ / ί S α + 1 g e < o o
(11.15)

α > β > 0 iτ = γ— 1 - 0 .

These representations are self-conjugate.
For α = β Ξ> 0, τ2 > 0 we get a class of representations which are

simply specializations of (11.14) for α = β\ they are distinguished by the
fact that / is now kept fixed:

P _ / = « + l ^ < 0 0

ct = β^O, r 2 > 0 .

The representations Pα α τ and Pαα-T are not equivalent but conjugate to
each other. For α = β Ξ> 0, τ = 0 we have a specialization of (11.15) for
α = β with / fixed:

P α α o ' / = α+ 1 ̂  e<oo
(11.17)

α = /? ^ 0 it = y — 1 = 0 .

These representations are self-conjugate.
The representations of the principal series are thus defined by three

numbers α, β, τ of which the first two are nonnegative while the third one
may take any real value positive negative or zero. The domain of variation
of e and / (i.e., the branching rules) depend only on oc, β and are:

Pα/3τ : / ? + l ^ / ^ α + l ^ e < o o

α ^ / 3 ^ 0 ; — σ o < r < o o (11.18)

α — β integral 2 β integral .

For r φ 0 the representation P^βτ is not self-conjugate but the conjugate
representation is PKβ~τ. For r = 0 the representations are self-con jugate.

For β > α ̂  β — 1 there are no representations.
ϋ) The Supplementary Series β = γ = 1. For the case that γ = 1 (τ = 0)

we have consecutive zeros of the polynomials E (e) and F (/). From our
previous experience we anticipate new kinds of representations to arise in
such cases. The corresponding MAR diagram is given in Fig. 8. We see
that the range of variation of e is like in the case of the principal series but
there are two distinct ranges for /. There are double zeros at e == — 1
/ = 0 and simple zeros at e = 0, α and / = 1, α -f 1. The allowed range,
2 = / f£ α - f l ^ e < σ o gives a specialization of the self-con jug ate
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representations of the principal series:

α — 1 nonnegative integer .

0 1 2 -

Fig. 8. MAR diagram for the principal series of SO(5, 1)

But, in addition, the states with / = i form a set which cannot be con-

nected to any other states with / > 1. We find therefore the following

class of representations:

Sx: f = 1 α -f 1 ̂  e < co

α — 1 nonnegative integer .

We can find, for the supplementary series, one more possibility: take

α = 0. In this case the range of variation of e, / are:

£ , : / = 1; 1 < e < oo .

λVe may thus write the full set:

$α : / = 1 α - f l ^ β < σ o
(11.19)

α= 0 , 1 , 2 , . . . β = γ = l .

This new class of self-conjugate representations constitutes the sup-

plementary series. The e, f values are all integral and by virtue of the

SO (5) branching rules, / = 1 implies that y = 0 hence the supplementary

series furnishes all the "symmetric tensor" representations of SO(5, 1)

with α labelling the rank.

0 1 2 -*-f

Fig. 9. MAR diagram for the identity representation of SO(5, 1)

iϋ) The Identity Representation oc = β = y = 1. For the principal

series we found that oc = β implies that the range of variation of / was

limited to a single value / = α -f- 1. We now consider the special case
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when oc = β = γ •= 1. There are double zeros at e = — 1 and / =-- 0 and

simple zeros at e =-- 0, 1 and / ̂  1,2. Searching for the allowed domains
of e and / consistent with e ̂  / ̂  1 we find first of all a specialization

of the self conjugate representations of the principal series :

Next we find a special representation of the supplementary series:

8, : f = 1

Finally, since the states with e = 1 are not connected with states with

e > 1, we have the new representation:

(11.20)

This representation is the one-dimensional identity representation.

iv) The Exceptional Series 0 < β < I, γ = 1. In the principal series of
representations we made use of the vanishing of F (f) at / = β to obtain
the range of variation /? -f 1 ^ / ̂  α + 1. And for the supplementary

series we made use of the vanishing of F (f) at / — 0 and / — β = 1 to
show that states with / = 1 formed an isolated set. However, for γ =-- 1,
F (f) has a double zero at / = 0 and we could make use of this zero to
obtain an allowed range 1 ^ / rg α f 1 provided the zero at / = β does

not interfere to spoil this. But this is assured as long as β lies in the open
interval 0 < β < 1. We obtain in this manner the representations of the

0 1 —*-f βf+1

Fig. 10. MAR diagram for the exceptional series of SO(5, 1)

exceptional series:

Eaβ : l ^ / ^ α - M ^ e < c χ )

α nonnegative integral (II.2])

0 < β < 1 γ = 1 .

In these representations e and / are always integral and these representa-
tions are self-conjugate. The case β = 0 has already been identified as the
representation Pαoo of the principal series which is, in turn, the self-

conjugate member of the special class Pα0τ.
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It is to be noted that for β = 1/2, γ = 1, we have an exceptional
representation Eκl/2 in which the parameter α is integral so that e, f take
on only integral values. We have already found a representation of the
principal series with α half integral and β = 1/2 with γ = 1 -f ir for
which e and / take on only half -integral values independent of the value
of τ( — oo < T < oo ) and in particular for τ = 0.

All representations of the exceptional series are self -con jugate. We
note that, here also, the values of these three Casimir operators do not
label the representation uniquely : Pκ 1 0 and $α have the same Casimir
operators; P310, S1 and / have the same canishing Casimir operators. To
distinguish between different representations with the same Casimir
operators we should use nonanalytic labels like the domain of variation of
e, /. As in the case of representations of 80(4, I), the representations with
the same Casimir operators have matrix elements which are the same
analytic function and they are all associated with the same UIR having
the same values of the Casimir operators for the compact group $0(6).

All the UIR with integral e, f are representations of 80(5, 1) and
those with half integral e, f are those of the covering group.

For the convenience of the reader, we list here all the representations
of 0(5, 1) [13], giving in each class the spectrum of representations of
0(5) that appear (the trivial identity representation is omitted).

Paβτ : < x ^ β ^ 0 ; y = 1 -Mτ α — β = integer — oo < τ < oo

β + l ^ / ^ α - j - l ^ e < o o .

$ α : α ^ 0 ; β = γ ^= 1 oc =^ integer

/ = I α j

r l ^ e < o o

EΛβ : α ^ 0 0 < /? < 1 γ = 1 ', oc = integer

[In PKβΊ> oc and β are simultaneously integral or simultaneously half -odd
integral.] In any given representation, the matrix elements of the
generator^ 56 linking one representation of 0(5) to another are given by
the transcription (II. 10) applied to the matrix elements (II. 3).

Discussion

With increasing use of noncompact groups in particle physics, it
would be of interest to be able to deal with their representations in a
direct and straightforward manner. Even when mathematical discussions
of the unitary representations of certain noncompact groups exist, dif-
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ferent families of representation are handled differently. This is in direct

contrast with the uniform treatment presented in this paper. We believe

that the method of MAR brings the theory of unitary representations of

noncompact groups down to the same level of familiarity as the unitary

representations of compact groups.

Elsewhere we have studied several other applications of MAR to other

noncompact groups [11]. The major technical obstacle to the detailed

study of all simple groups is the problem of multiplicity: the same

representation of a labelling subgroup occurring more than once. But this

is a major obstacle to the representation theory for compact groups as

well.

The method of MAR can be traced back to the work of DIRAC [4] and

HARISH-UHANDBA [14] on expansor and exspinor representations of the

Lorentz group. Dirac pointed out that the notion of a tensor could be

extended to tensors of complex rank with an infinite number of com-

ponents. The generalization of Dirac's discovery relates different represen-

tations of the same Lie Algebra. There is another idea due to WEYL [2[

which relates a representation of one Lie algebra to a representation (of

the same dimension) of a different Lie algebra with the same complex

extension. This involves multiplication of suitable elements by appropriate

complex numbers; and is often referred to as the Weyl trick. The method

of MAR may be thought of as a synthesis of the Dirac principle and the

Weyl trick.
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