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Abstract* The edge of the wedge theorem is generalized to the case where one
only assumes the existence and equality of the distribution boundary values of
/_j_ (z) and all their derivatives on some analytic curve Ή in Rn. Here /± (z) are
holomorphic in En i iC, respectively, where C is a convex cone, and ̂  has its
tangent vector in C at every point. Under these assumptions there exists an analytic
continuation f(z) holomorphic in some complex neighbourhood of the double cone
generated by #. A proof is also given of the connection between the existence of
a distribution boundary value and the growth of the holomorphic function near
the boundary.

I. Introduction

The edge of the wedge theorem is an often used tool in quantum field
theory (see [1], Ch. 2—5, and [2], § 27, for proof, discussion, and re-
ferences). This theorem states that given two functions /± (z) of n complex
variables z =••= (zv . . ., zn), holomorphic in the two tubes Rn ±ίC, re-
spectively (C is an open convex cone with vertex in the origin), and
having equal boundary values in the distribution sense on some open
set Ω in Rn, there is a common analytic continuation f(z) of /±(z),
holomorphic in some complex neighbourhood of Ω. (We are not con-
cerned here with the case studied by EPSTEIN [3], where one has two
cones C L and C2 with Cλ r\ (—C2) = 0.) As derivation is a continuous
operation on distributions, existence and equality of the boundary
values of f±(z) on Ω imply the existence and equality of the boundary
values of all pairs of derivatives fty(z) on Ω.

An extension of the edge of the wedge theorem in the case n ^ 2 is
the theorem of the (7-eonvex hull ([2], § 28; [4]), stating that under the
assumptions above the holomorphy domain of /(z) can be enlarged to
contain a complex neighbourhood of the C-convex hull BC(Ω) of Ω.
Here BC(Ω) is the smallest set containing β, such that if the segment
[x, x'] belongs to BC(Ω) then so does the double cone (x -f C) n (x1 — C).
This result is proved with analytic completion techniques (continuity
theorem).

It might be of interest to ask what conclusions can be drawn if we
assume only the equality of the boundary values of f± (z) and all deriv-
atives on some lower-dimensional subset of Ω. The first difficulty is what
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we shall mean by the boundary value on this subset, as a distribution
can in general not be given a meaning except on open subsets of the
same dimension as β. It is a natural requirement that the existence of
a boundary value on Ω should imply the existence of a boundary value
on the lower-dimensional subset in question.

To avoid this difficulty for the moment we assume the boundary
values on Ω to exist as infinitely differ entiable (0°°) functions, uniformly
approached as we go to the real space. It follows from the edge of the
wedge theorem that if the boundary value of f+(z) on Ω is zero, then
/ + (Z)ΞΞ 0. But although it is trivial that if f(z) and all derivatives are
zero (we shall then say that f(z) has an infinite zero or vanishes of
infinite order) in some interior point of the holomorphy domain, then
/ (z) ΞΞ 0, one can give examples of non-zero functions having an infinite
zero in every point of an (n- 1) -dimensional submanifold of the boundary.
In the case n = 1 we can choose ([5], p. 320)

oo

/(z) = / Jzk e-*"008"* sin(^ sinμπ) die , 0 < μ < ~ .
o

This function is holomorphic in Imz > 0 and has a C°° boundary value on
Imz — 0. This boundary function has an infinite zero in the point
Rez = 0, as m

f kN e-kμG0^πsm(k^sinμπ)dk = Q , N = 0, 1, . . ..

If we define g ( z l 9 . . ., zn) = f(zl) . . . f(zn) we get a non-zero function,
holomorphic in the product of the upper half planes, having a C°°
boundary value on Rn -j- ^{0}, and vanishing of infinite order on all
(n-l) -dimensional coordinate planes in Rn.

It can be noted that an application of the construction used in the
theorem of the C- convex hull would here not give any extension of the
original domain of infinite zeros. This remark gives a hint to what
property the relevant subset of Ω should have to make possible a generali-
zation of the edge of the wedge theorem : by forming the C- con vex hull
we should arrive at an open subset of Ω. It turns out that this is actually
the case and that it is enough to work with one -dimensional submanifolds
in Rn. We define a (7-like analytic curve ^ in Ω to be a curve
{x(t)\ 0 < t < 1} in Ω, where all #$(£) are real-analytic and the tangent
vector x' (t) lies in C for every t.

Assume that f±(z), holomorphic in En ±iC, have together with all
derivatives boundary values as y -> 0 in ± C on some (7-like analytic
curve ,̂ and that these boundary values are equal in pairs (in short : the
boundary values on ̂  exist and are equal to infinite order). The main
theorem of this paper then states that there is a common analytic con-
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tinuation /(z) of /±(z), holomorphic in some complex neighbourhood of
the double cone (x(Q) + 0) n (x(l) - 0) generated by # in En. See (II. 10)
for the precise general form of the theorem.

The boundary value on ̂  is here assumed to exist as a one-dimen-
sional distribution in the sense defined in (II. 5). Especially, if the
boundary value exists in the distribution sense on some open set con-
taining ^ then the boundary values of infinite order on ̂  also exist and
are, in fact, infinitely differentiable under rigid translations of .̂ The
generalized edge of the wedge theorem proved here thus contains both
the ordinary edge of the wedge theorem and the theorem of the C- con vex
hull. It is remarkable that this generalized theorem can be proved using
only the same Cauchy representation formula that is used in the proof
of the ordinary edge of the wedge theorem exhibited in [1].

An important role in the developments here is played by the criterion
for the existence of distribution boundary value of a holomorphic func-
tion, stating roughly that the function should not increase faster than
some inverse power of the distance to the boundary in En. Although this
criterion seems to be common knowledge among those working in the
field, ΛVΘ have not found any published proof1. We therefore include a
proof for a slightly more general case (III. 2, Th. 1).

As we remarked above, if the boundary value of / (z) on Rn exists then
also the boundary value on every (7-like analytic curve exists and is
C°°. This implies that we can define the boundary value on a m-dimen-
sional real-analytic submanifold (m < n) of En, provided every point of
it belongs to some 0-like curve lying in the manifold. This m-dimensional
distribution boundary value is infinitely differentiable under rigid trans-
lations of the manifold in Rn. Applying this result to the vacuum expecta-
tion value (Φ0, A (x^ . . . A (xn) Φ0), where xi are four-vectors and A (x)
is a quantized field satisfying the spectral condition, one finds that it
makes sense to average in each xi over some time-like analytic curve
.̂ As a consequence averageing the field A (x) over a time-like analytic

curve gives a welldefined operator in Hubert space, which is infinitely
differentiable under translations of the curve. This is a natural generali-
zation of BOUCHERS' result [6].

The original motivation for the investigation reported here came from
a paper by GREENBERG [10] on the support properties of a field in
momentum space. In case s& of this paper it is shown that if the Fourier
transform^ (p) of a local field has an infinite zero on a hyperboloid p2 = p^,

1 The reference in ([6], Lemma 10) to a paper by TILLMANN [7] is, we think,
inadequate for several reasons, the first one being the fact that [7] only deals with
distributions with compact support. In a later paper [8] TILLMANN has given
a representation formula for a general distribution in Rl but the extension to Rn,
n ^> 2, is probably more difficult (cf. remark in [9], end of 13.8).

13*
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where pQ is a space-like vector, then the field is a generalized free field.
To give a meaning to the vanishing of infinite order of A ( p ) , and also
in the continuation of the proof to increase the region of vanishing,
GREENBERG uses the Garding representation of a causal distribution and
known properties of distribution valued solutions of the wave equation
(see e.g. [11]). These properties are that averaging over a time interval
(or, by Lorentz invariance, over some time-like straight segment) gives
a C00 function in the space variables, and that a zero of infinite order on
a time interval of a solution implies the vanishing of the solution in the
corresponding double cone. Although it seems reasonable to assume that
the same conclusions should be valid if we take a time-like analytic
curve — which is what is needed in GKEENBERG'S proof — instead of
a time-like line segment, it is not obvious how the original proofs should
be modified to cover this case. The results of the present paper provide
an independent proof for case j/ in [10], without using the Garding
representation.

Alternatively, it follows from this paper that any solution u ζ &", the
space of tempered distributions, of the wave equation (or the Klein-
Gordon equation) has the two properties referred to above even relative
to some arbitrary time-like analytic curve. In fact, the Fourier transform
of u has its support in the union of the forward and backward closed
light cones, and u can then be written as a difference between the
boundary values of two functions holomorphic in the forward and
backward tubes, respectively.

The rest of the paper is divided into two parts. In II the necessary
notations are introduced and the general chain of ideas leading up to the
main theorem is given without proofs, for the benefit of the reader who
does not want to go too deeply into the sometimes rather lengthy proofs,
which are found in III.

II. Notations, Survey of Preliminary Results, and Statement of the Main
Theorem

1. The symbols Ω and Σ C Ω denote open connected sets in En.
Q)(Ω] is the space of infinitely differentiable functions with compact
support in Ω, and 2' (Ω) is its dual, the space of distributions in Ω. C is
an open convex cone in Mn with vertex in the origin. A compact subcone
C' of C is a closed cone, vertex {0} included, such that its intersection
with the unit sphere {y = (y^ . . ., yn)\ \y\ = (Σy\)1//2 = 1} in Rn is
a compact subset of the intersection of C with the unit sphere.
Cfi = C r\ {y, \y\ < δ}. In the case n = 1 we assume C = {y\ y > 0}, and
then of course C' = {y, y ^ 0}.
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Oc (Ω) is an open connected set in Cn of the form 0 r\ (En -j- i C) where

0 is an open neighbourhood of Ω in Cn. 0_C(Ω] = 0 r\ (Rn - iC).

Evidently, for every compact subset K of Ω we can find a δ > 0 such

that K + iOδζOc(Ω)9 K ~ iCδcO_c(Ω).

2. Assume f(z) is a function defined and holomorphic in 0^(Ω). If

φ £ @(Ω), then supp φ C K where K is some compact set in β, and with

δ chosen as above

= / i(xl + ίyl9 . . ., xn -f i?/n) 99(x1? . . ., Bn) dx1 . . . cLrn

is defined and continuous for y ζ Cd. It may happen that HmFy(φ)ί

y -> 0 in 0,5, exists in the sense that Fy(φ), y ζ 0^, and the limit value

FQ(φ) together give a function continuous in every 0$. This means that

the limit FQ(φ) is approached uniformly in direction in every C' .

If the limit exists in the above sense for every φ ζ&(Ω) it defines

an element F = FQ ζ Q)1 (Ω), the boundary value of f(z) on Ω. (See III. 1.)

A necessary and sufficient condition for f(z) to have a boundary value

onβis (III. 3, Cor. 1):

For every compact K C Ω and compact subcone C1 C C we can find

δ > 0, M > 0, and non-negative integer m such that

Here δ may depend on K, M and m on K and C'.

3. The ordinary edge of the wedge theorem states that given a pair

of functions /± (z) holomorphic in 0± C(Ω), respectively, and having equal

boundary values on Ω, there exists a common analytic continuation / (z)

of / _ j _ ( 2 ) , holomorphic in some complex neighbourhood of Ω.

As derivation is a continuous operation in @'(Ω), existence and

equality of boundary values of /± (z) imply the existence and equality of

boundary values of any pair of derivatives f^(z).

In the generalized form of the theorem that we are going to prove

one only assumes the existence and equality of boundary values of /± (z)

and all pairs of derivatives on some special curve ̂  in Ω. From this we

infer the existence of an analytic continuation holomorphic in some

complex neighbourhood of an open set B(&, Ω, C) (II. 9) containing ^

inίλ

4. A C-like analytic curve *% in Ω is a mapping of the open unit

interval / = (0, 1) into Ω:t -> α(ί) = (α-, (t)3 . . ., αw(ί)), where all α$(ί) are

real-valued analytic functions in /, and every tangent vector α' (t) ζ 0,

tζl. We can extend this mapping to a holomorphic mapping α(τ),

τ = t -f is, of some neighbourhood J of / in O1 into Cn. Given 0±C(Ω),

J can be chosen so small that the images of J r\ {τ s § 0} are contained

mO±0(Ω).
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5. We shall now define what we mean by the statement that a
function /(z) holomorphic in 0C(Ω) has a boundary value, an element in
^'(/), on the C-like analytic curve ^ in Ω.

Given φ £ ̂ (/), it is evident that for s small positive, say 0 < s < δ' ',
we can find δ and ε such that for an arbitrary subcone C' of G and
arbitrary k > 0

is a continuous function of s and £ when 0 < s ^ <5' and ζ belongs to the
compact set A (Cf

δ, ε, k) = the closure of

It may happen that for every C' the limit value as s -> 0 of this
function exists, uniformly when ζ varies in A (C'δ, ε, k), for some
k = k(C') > 0. We thus get a function F s , ζ ( φ ) } continuous in the compact
set 0 g 5 ̂  δ', C ζ^(C^ ε, &), for every C'.

If this is true for every φ ζ & ( I ) (δ', δ, and ε depend on suppφ, in
general) the limit value corresponding to ζ — 0 is easily seen to define
an element F^ = F0)0 in &' (I), which is called the boundary value of
f(z)on<£.

As in (II. 2) it is possible to give a necessary and sufficient condition
on /(z) for the boundary value on ̂  to exist (III. 3, Cor. 2) :

For every compact K ζϊ, every C' ', appropriately chosen δf , δ, and
ε, and some k — k(C') > 0 we can find M > 0 and a non-negative integer
m, such that

|/(α(τ) + C)| ^ Ms-™, (τ, ζ ) £ [ K + i(0, 50] X ^(^, ε, ft) .

If the boundary values on ̂  exist for f(z) and all derivatives fW (z),
we shall say that f(z) has boundary values of infinite order on &. For this
to be the case we must of course have a ma j oration of the above type
for f(z) and each derivative.

6. Using the criteria in (II. 2) and (II. 5) for the existence of boundary
values it easily follows that if f(z) has a boundary value on some open
real neighbourhood Σ of ̂ , then / (z) has boundary values of infinite order
on .̂ If the distance between the boundary of Σ and ̂  is d > 0 the
limit distribution on ̂  as s -»0, η -> 0, exists even without the assumption
\ξ\ < k\η\; we only need to assume \ξ\ < d and we then get a distribution
Fξ which as element in Q)' (1} is infinitely differentiable in ξ for \ξ\ < d.
("The boundary value on ̂  is infinitely smooth under rigid translations
of the curve ^".) The derivatives of Fξ are the boundary values of the
corresponding derivatives of f(z] (III. 3, Cor. 3).

That the assumption of existence of boundary values of infinite order
on ̂  is a weaker condition on / (z) than the existence of boundary value
on an open set containing Ω can be seen from the function exp(itvjz).
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Here z and w are one-dimensional variables, Ω — R2, C = {(y, v); y > 0,

v > 0}, ^ = l(~~ γ+ *> — -<r + Mί Application of the criteria in (II. 2)

and (II. 5) shows that this function has boundary values of infinite order
on ^ but not on any open set containing the origin.

7. The function /(z) mOc(Ω) is uniquely determined by its boundary
values of infinite order on ̂  (III. 6, Th. 2). To get this uniqueness it is
actually enough to assume the existence of the limit distributions when
we approach the real space along the complex continuation α(τ) of &,
i.e. we assume lim / /(α(£ + is)} φ(t) dt, s -> 0, to exist for all φ ξ ^(/)
and similarly for all derivatives /^(z). The example exp(&[w — z]/z2),
β, (7, and ^ as in (II. 6), shows that this is a weaker condition than
existence of boundary values on <%.

8. The preceding point implies that if we have two functions fί(z)
and /2(z) in 0C(Ω), or both in 0_C(Ω), Λvliich are equal to infinite order
on &, then fτ = /2.

The main theorem we are going to formulate shows what happens if
we have two functions /±(z) holomorphic in 0±C(Ω), respectively, which
agree to infinite order on *&.

The equality to infinite order of the boundary values on ̂  especially
follows if the boundary values of /±(z) exist and are equal on some
neighbourhood Σ of % (III. 3, Cor. 4).

As existence of boundary values on Σ implies the existence of
boundary values to infinite order on Ή (II. 6) it is in the case that the
boundary values of /± (z) on Σ are known to exist enough to check that
the limit distributions on ,̂ defined in the sense given in (II. 7), are
equal to infinite order.

9. With every (7-like analytic curve ̂  in Ω we associate the C-convex
hull B(Ή, Ω, C) of Ή in Ω. This is the smallest open set in Ω such that

a. B contains ,̂ and
b. if x and x' are points in B such that the set

$£03' = (x + C) r\ (xr - C) C Ω , then also SXX>C B .

Thus, if the double cone lim (α(ε) -f (7) r\ (α(l — ε) — 0) is contained
ε —> 0

in Ω, then B is just this set.
10. We can now state the main theorem:
Generalized Edge of the Wedge Theorem. /± (z) are functions holomorphic

in 0±C(Ω), respectively. The boundary values of these functions exist to
infinite order on some C-like analytic curve %> in Ω.

If these boundary values are equal there is a common analytic con-
tinuation /(z) of /±(z), holomorphic in some complex neighbourhood of
B(^, Ω, C). This neighbourhood depends on 0 ± o(Ώ) and B(^, Ω, C) but
not on the functions f±(z).
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III. Auxiliary Theorems and Proof of the Main Theorem

1. We first want to show that the functional on Q) (Ω) defined according
to (II. 2) by F(φ) = lim / f(z) φ(x) dx, y -> 0, actually belongs to 2' (Ω).
It is evident that F is linear it remains to be shown that it is continuous,
or, what is the same thing ([12], Ch. Ill, Th. V) that it is bounded on
bounded sets in 2 (Ω). If B is a bounded set in Q) (Ω) it is also a bounded
set in some &(ΩK), where the closure of Ωκ is compact in Ω ([12],
Ch. Ill, Th. IV). But for functions in 2(ΩK) f(z) defines a distribution
for all y in some Cδί so F restricted to @(ΩK) is the limit as y -> 0 of
a sequence of distributions in Ωκ. Hence F ζ@'(Ωκ) ([12], Ch. Ill,
Th. XIII) and is thus bounded on B.

2. We shall now study the connection between the existence of the
boundary value F or F<# and the growth of the function f(z) as z ap-
proaches the boundary.

We start with
Theorem 1. Consider a function f ( z , ζ ) defined and continuous for

(z, ζ) ζOc(Ω) X JΓ ivhere JΓ is a compact set in some topological space.

For every ζ £ Jf" f ( z , ζ) is holomorphic as function of z in 0<j(Ω}.

Given φ ζ& (Ω) we can find a δ > 0 such that Fy> ζ(φ) = f f (z, ζ) φ (x) dx

is continuous in (y, ζ) ζCδ X Jf\

A. It may happen that the limit value of Fytζ(φ) as y -> 0 in C$ exists

so that F y t ζ ( φ ) can be extended to a function defined in (Cδ \j {0}) x JΓ

and continuous in every C'δ x 3Γ.

If this holds for every φζ^(Ω) the limit Fζ = F0)ζ defines a con-

tinuous function from ζ into Q)' (Ω).

A necessary and sufficient condition for this is:

B. For every compact subset KcΩ and compact subcone C' of C we

can find δ > 0, M > 0, and non-negative integer m, such that

\f(z, C)| ί£ M \y}-™ , (z, ζ)ζ(K+ i[0'δ - {0}]) x JΓ .

Here δ may depend on K, and M and m on K and G'.
3. Before we proceed to the somewhat lengthy proof of Theorem 1

we indicate in the form of corollaries some special cases and simple
consequences of the theorem.

Cor. 1. This is the case when f(z, ζ) is independent of ζ and gives the
criterion for existence of the boundary value F of a function /(z) holo-
morphic in Oc (Ω) (II. 2).

Cor. 2. Here we are concerned with the existence of the boundary
value F<# of /(z) on a (7-like analytic curve Ή.

If we apply Theorem 1, with z = τ and JΓ = A (C'δ, ε, k), to g ( τ , ζ)
= /(α(τ) + C) we ge^ the criterion formulated in (II. 5). (Observe that
C etc. in (II. 5) does not correspond to C etc. in Theorem 1.)
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Cor. 3. Assume f(z) is holomorphic in 0C(Ω) and has a boundary value
on some Σ (^Ω containing a C-like analytic curve *% . Given φ ζ &(I), let I'
be a relatively compact open subinterval of I containing supp φ, and ε > 0
be the distance from the image of Γ on ̂  to the boundary of Σ. Then

Fξ(φ) = ]uΆff(oc(t + is) + ξ + ί η ) φ ( t ) d t , s -> -f 0, η -> 0 in C,

exists and is an infinitely differ entiable function of ξ for ξ < ε, where
dpldξp F k ( φ ] = lim//( ϊ >) (<z(t + is) -f ξ -f iή) φ(t)dt,s-+ + 0, η -> 0 in C.

The value of dpjd ξp Fξ ( φ) for ξ = 0 exists for every φ ζ@(I) and deβnes
a distribution in &' (I) which is just the boundary value of f(pϊ (z) on ^ .
Hence /(z) has boundary values of infinite order on ̂  .

If the distance d between & and the boundary of Σ is positive the above
construction defines a set {Fξ; \ξ\ < d} of distributions in &'(!), infinitely
differentiate in ξ.

Proof of Cor. 3. Given φ^^(I} and corresponding ε. For every
positive ε' < ε the set K' = closure of U {x\ x — oc(t)\ ^ ε'} is com-

pact in Σ.
As f(z) has boundary value on Σ, Cor. 1 shows that for every C' there

are M and m such that

Put z = α(τ) + ξ + iη. If t belongs to L, compact subset of Γ , and s > 0
is small enough we certainly have \y\ > Mls with some M-^ > 0, so

|/(α(τ) + | + ii7)| < Mf s~™ , τ £ L + i(0, δ'} , ||| ^ ε' , 17 £ ̂  .

Application of Theorem 1 (cf. Cor. 2) shows the existence of Fζ as element
in 2' (Γ), continuous in ζ for \ξ\ ̂  ε',ηζ C'δ. For ^ = 0 we obtain the
desired Fξ(φ) Λvhich is of course continuous in ξ.

To prove that Fξ(φ) is infinitely differentiate we note that for
η φ 0 Fξ + iη(φ) is evidently infinitely differ entiable, as we may then
without hesitation differentiate under the integral sign . As the derivative
/(p)(z) has boundary value on Σ (because f(z) has, cf. remark in (II. 3))
we find that limdp/dξp Fξ + ίη(φ)ί η->0, exists as a continuous function
which is approached uniformly in ξ when η -> 0. This implies that Fξ(φ)
is infinitely differentiable.

The proof of the remaining statements in Cor. 3 should be obvious
from the proof already given.

Cor. 4. Assume f± (z) are holomorphic in 0 j_ <?(£?), respectively, and have
boundary values F '± on Σ as y -> 0 in C and — C.

If F+ = F_, then for every φ ££$(!) the functions F±ξ(φ) defined in
Cor. 3 are equal. Especially this implies that the boundary values of f± (z)
on Ή are equal to infinite order.

Proof of Cor. 4. For η Φ 0

Fξ+iη(ψ] - / /(α(ί) -f ξ + iη) φ (0 dt ,
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and as η -> 0

Ft(φ) = ]imF( + tη(φ)
uniformly for \ξ\ < s.

Taking a C°° function ψ ( ξ ) with supple {I ', |ί| < ε} we get

f F f ( φ ) ψ ( ξ ) dξ = lim / /(α(ί) + f 4- iη) φ(t) ψ ( ξ ) dt dξ(η -> 0)

= lim / /(,τ + iη) χ ( x ) dx(η -> 0) ,

where we have introduced coordinates (x = α(ί) + ξ, f) instead of (ξ, t),
and

χ ( x ) = f φ ( t ) ψ(x - «(()) d«
Hence we find

£ = F+(X) = Jf_(χ) = /f _i(?) v(f) if .

As F+ξ(φ) are continuous in f and ψ is arbitrary, we must have F+ξ(φ)

= f-f(φ)
4. Proo/ of Theorem 1. For shortness we shall in the following in

general suppress the dependence on the variable ζ, varying in Jtf", as its
inclusion is in most cases trivial. This depends on the fact that all func-
tions we consider will turn out to be continuous and, C%* being compact,
even uniformly continuous in ζ. E.g. it is easily seen from the Cauchy
formula that as we have assumed f(z, ζ) continuous simultaneously in
z and ζ, then so is any ^-derivative f(^ (z, ζ).

We first formulate a seemingly more special theorem which can be
shown to imply Theorem 1.

Theorem 1'. Assume f(z) holomorphic in some 0^(Ω) lυhere the closure
Γ of the product of the positive half -axis Γ = {y yt > 0} is a compact
subcone of C, i.e. Γ — {0} C 0.

Then the following statements are equivalent :

a. lim //(z) φ(x) dx, y -> 0 in Γδ — {0}, exists for every φ ζ@(Ω),
defining a distribution F ζ &' (Ω).

b. For every compact set K in Ω ive can find δ > 0, M > 0, and a set
(mv . . ., mn) of non-negative integers such that

We first show that Theorem V implies Theorem 1.
Let C be the convex cone of Theorem 1. Every compact subcone 6"

can be covered by a finite number of convex polygonal cones

Cp — {y = Σviy'W, Vi > 0; y'W, & ' = ! , . . . , n, linearly independent
vectors} compact in C. Every C£ can be somewhat enlarged to
Cv = {y = ΣviyW}, so that C^ is compact in C^ and Cv is compact in C.

The inverse of the transformation x = Σw^^ then maps Ω + iCv

one-to-one on some Ω' + il\ It is easy to see that Theorem 1, A (in z)
implies Theorem 1', a (ΪΆW), and Theorem V, b (inw) implies Theorem 1,
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B (in z, and \vith subcone G'^ m = mλ + -f ?τιn). As (7' is covered by
a finite number of C'v we have shown that provided Theorem Γ is true,
statement A_ implies statement B in Theorem 1.

The inverse implication follows in a similar way by mapping Ω + iCp

on some Ω" + iΓ.

We now proceed to the proof of Theorem Γ.

First we note that if /(z) satisfies α. then so does the primitive

Zi
/(-1,0..) /-, ~0\ __ Γ ί(y' y y \ fly'I (Z, Z ) — J f(6ι, Z2, . . ., 6n) ClZi .

Here z° is a fixed point in Op(C).
In fact, writin

where z1 = (z\, z2, . . ., zn) is some point in K + ^(Γ^ — {0}), we see that
when y -> 0 in T7 the first two terms remain in the domain of holomorphy
of /(z) and thus make no difficulty. For the third term we get after
averagemg over φ (x) the expression

2/ι

/ dy( (/ f(xj_ -f ί^ί, z2, . . ., zn) φ(x) dx)
y{

and here the inner integral is continuous in (y[, y2ί - ., ?/w) up to the
boundary so that the outer integral converges as yί -> 0.

It follows by induction that if a. is true for /(z) it is true also for any
iterated primitive /("^ (z, z°), Λvhere p — (pv . . ., pn), pi being non-
negative integers.

Conversely, as derivation is a continuous operation in & (Ω) it fol-
lows that if f(z) satisfies a. then so does any derivative fW (z).

This last observation is used to prove b. => α. We assume 6. to hold
and form the p = (m^ -f 1, . . ., mn -j- 1) times iterated primitive
/(~2}) (z, z°). This function is easily realized to be continuous in K -f iPQ,
and then certainly satisfies a. This is then also true for / (z) = Dp f(~^ (z,z°).

We now go over to the more difficult proof of the implication α. =Φ b.
First we note that every compact K in Ω can be covered by a finite
number of open poJyintervals (sets of the form I± X . . . X In, where Ii is
a bounded interval), relatively compact in Ω and containing closed poly-
intervals also covering K . Each φ ξ & (Ω) with support in K can then
be written as a finite sum of test functions, each having its support in
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one of these open polyintervals ([12], Ch. I, Th. II). We can then without

loss of generality assume that our Ω is an open bounded polyinterval and

that f(z) is holomorphic in every point of Ω -f i (Γδ — {0}) for some <5 > 0.

For simplicity of notation we carry through the proof for n = 2,

putting / = l(z, w), iv = u -f- ίv, Ω = I1 X /2. The case n > 2 is proved

similarly, and the proof for the considerably simpler case n = 1 is also

easily deduced from the proof given here.

We thus assume that f ( z , ι v ) satisfies a. If we take a sequence of

rectangles KζΩκcΩκcΩ, where Ωκ = I[xI'^ then f ( z , w ) and its

distribution limit as (y,v)->0 can for test functions in &(ΩK) be re-

presented in the form ([12], Ch. Til, remark following Th. XXIII)

f ( z , ι v ) = D^Dq

uF(x,u',y,v), where F(x,u',y,v) is continuous in

(z, w) ζΩκ -f ί [ 0 , <3/]/2) x [0, (3/J/2) . [ . . . ) here denotes an interval in-

cluding the left end-point. If we take into account the dependence on £,

F should be denoted F(x, u\ y, v, £) and is simultaneously continuous in

all variables.

Integrating p times in x we find

Λvhere av(u9y,v) are distributions in ^'(I^), depending on the para-
meters y and v.

It is not hard to realize that we can find p functions

φv £ ̂ (/ί), v = 0, 1, . . ., p — 1, such that / xv φμ(x) dx = δμv .

We then get

av(u\ y, v) = f /(-ϊ7*0) (z, w) ψv(x) dx — f Dq

uF(x, u\ y, v) φv(x) dx .

This relation shows that av (u y9 v) is, as distribution in u} continuous in

(y, v) ζ [0, ό/j/2") X [0, ό/J/2). We conclude that //<-». °)(z,w) ψ(u) du is

continuous in z ζ /{ + ί [0, ό/J/2), v ζ [0, ό/J/2), for every ψ ζ @(Iz). The

same thing is true for / /(-P,-«) (2, ^) ^(w) cZw, as follows from an argu-

ment analogous to the one used just in the beginning of the proof.

We now form
p-l

f(-p,-9)(z, w) = F ( x , u\ y, v) + Σ xvbv(u] y, v)

q-l

With ψv ζ <^(/2), v = 0, l , . . . g — 1, satisfying / uv ψμ(ιι) du — δμv we
rewrite

bv (u y, v) = bv (u y, v) -f- Σ ufΛ f bv (u' y, v) ̂  (u') du' ,

p-I

cv(xιy,v) = c v(a;;y, v) -f 27 ^ / cv(x' y, v) φμ(x'} dx' .
μ = 0
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Then \bv} and {cv} are zero on all {ψv} and {φv}, respectively. Therefore
we can write

/<-*.-<» (z, iv) = F(x, u; y, v) -f Σ xv bv(u; y, v)

+ Σ uμ cμ(x\ y, v) -f Σ xvuμdvμ(y, v) .

Applying this distribution equation on φv(x) ψμ(u) WQ find that
dvμ (y, v) are continuous in y, v, and from

cv(x\ y, v) — f f(-v>-Q) (z, w) %(u) du — f F(x, u', y, v) ψv(u) du

we see that cv(x\ y, v) can be assumed to be continuous in x, y, and v.
The analogous conclusion holds for bv(u\ y, v}. Then f (-$>-<*) (z, iv) can be
continued to a function continuous in Ωκ

 J

r iΓό.
The Cauchy integral

±1 x P}'^ C C ?-»'-*> (Z',W') 7 , 7 ,
/(z. w) — -7H — rrr- / / -.— --- ̂ ΓZTT^ - ̂ TY dz dw .; v ' ; (2π^)2 J J (z — 2)^ + 1 (w — w)y + 1 '

where part of the integration includes the real boundary sides of K,
finally gives the maj oration

\f(z,w)\ ^ My-v-iv-*-1 , (z,ιv) ζ K + ^Γ^ , some δ' > 0 .

The proof of Theorem Γ is thus complete.
5. Remark to Theorem 1. Theorem 1', b. is essentially the criterion

given by BOUCHERS ([6], Lemma 10) for the existence of boundary value
of a function holomorphic in the product of the upper half planes.
Theorem 1', b. is a stronger restriction on f(z) than Theorem 1, B,
applied to C — Γ.

In fact, one can show by a proof somewhat more involved than the
proof of Theorem Γ that for a function f(z) holomorphic in some 0Γ(Ω)
the bound Γ, b. is equivalent to the following statement.

For every φ ζ@(Ω), Fy(φ) = f f(z) φ(x) dx can be continued to a
function continuous in y in some /V Thus the boundary value exists
not only as y -> 0 in Γ, but also for y on some part of the boundary
of Γ near y = 0.

6. Theorem 2 (Uniqueness theorem). // /(z) is holomorphic in Oc(Ω)
and if for f(z) and every derivative /W (z)

lim / p) (α (ί + is)) φ (t) dt = 0 , s -> 0 , /or every φ £ ̂  (/) ,

ίλe?ι f(z) = Q throughout 0C(Ω).
Proof. If we put g(τ) = /(p)(α(τ)) and choose a test function

with support in {£; |ί| < ε}, the regularized
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is holomorphic in {τ; ε < t < 1 — e, 0 < s < δ'}> and the limit value 0
as s -> 0, is approached uniformly in t. Schwarz' reflection principle then
implies gβ (τ) ΞΞΞ 0, and taking a sequence of test functions approaching
ό(t) we find g(τ) ΞΞ 0. Thus f(z) and every derivative is equal to zero at
some point in 0C(Ω), so we conclude /(z) ΞΞΞ 0.

Remark. Theorem 2 combined with Theorem 1, Cor. 3, implies that
if / (z) is holomorphic in Oc (Ω) and has boundary value zero on some Σ,
then /(Z)ΞΞ 0 (cf. [1], Th. 2—17, where this result is a corollary of the
ordinary edge of the wedge theorem).

7. We now begin with the proof of the main theorem. For clarity we
give several theorems of increasing generality: Theorem 3 deals with the
case where C contains Γ as a compact subcone and ̂  is a line segment,
in Theorem 4 we generalize to an arbitrary convex cone C, and finally
in Theorem 5 ^ is allowed to be an arbitrary 0-like analytic curve.

Theorem 3. Assume f±(z) holomorphic in 0±C(Ω), respectively, ivhere
C^) Γ — {0}. ^ is the segment {x -= XΌ -f αί, 0 < t < 1, α = (α1? . . ., ocn),
oci > 0}, and the open polyinterval R — II x . . . X In, Iv --= {xv x° < xv < XQ

-j- ocv}, lies in Ω.
We furthermore assume that f± (z) have equal boundary values of infinite

order on *& when s -> i 0, ζ -> 0 in A ( i Γδ, ε, &), some Ic > 0 (cf. (IT. 5)).
Then there is a common analytic continuation f(z) of f±(z) which is

holomorphic in some open neighbourhood of R in Gn. This neighbourhood
depends on 0±C(Ω) and &, but not on f± (z).

Proof. We first prove Theorem 3 under the further restriction that
the boundary values of /± (z) and all derivatives are C°° functions in t,
which are approached uniformly in t in every compact subset of ̂ .

By a change of scale we can assume R to be a polysquare, i.e. having
all sides equal. Evidently the conclusion of Theorem 3 is that the interior
of every compact sub-poly square R' of R having the same centre as R
and sides parallell to those of R is in the holomorphy domain of a con-
tinuation f(z).

In order to prove this we take a fixed R''. As R' is compact in Ω
there exists an ε > 0, such that for every x' ζR' the sets {z |α^ — x\ ^ ε,
0 < ± iji 5S ε, i — 1, . . ., n} are mO±c(Ω), respectively. Choose a positive
κ < 1. Then we will show that there is a ό > 0 (depending on ε and κ)
with the property: if Rδ is a polysquare in R1', sides == δ and parallell to
those of R f , such that the boundary values of f±(z) exist and are equal
to infinite order on the diagonal of Rd (including the end points), then
the interior of RK$ is in the holomorphy domain of a continuation. Here
Rκδ is a polysquare concentric to Rδ, sides = κδ.

Suppose we have shown the existence of a δ with these properties.
Then we can start from the diagonal of E f , where we know that the
boundary values exist and are equal, and fill up this diagonal with an
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infinite number of Eδ:s. In the real part of the region of holomorphy
thus obtained we take a new diagonal parallell to the previous one, and
successively repeat the procedure. For the simplest case n = 2, where
Rf is a square, sides equal to d, it is not hard to see that we can carry
out the extension in N = djδ steps. After these N steps a square, con-
centric with Rr and with sides equal to d — Nδ(l — κ) = dκ, is in the
holomorph domain. Evidently the whole interior of R' can be covered
if such a δ exists for every κ < 1. The same conclusion is easily realized
to be valid also for n > 2.

Now we prove the existence of the above δ. By translation and
rescaling we can achieve that Rδ is the square

{x\ — 1 < xi < 1, & = ! , . . . , n}
the sets

{z\ xλ < 2ε/δ, 0< ±yt< 2εjδ}

are in the holomorphy domains of f ± ( z ) , respectively. On the diagonal
of RQ (including the end points) the limit values of /± (z) and all deriv-
atives exist as C°° functions and are equal in pairs. We keep the original
notations f±(z), though actually we should use new symbols for the
functions obtained after the variable transformations.

Study the function
+ zl u + zn \

+ ι̂ > ' ' 1 +UZ.J
x 1 Γ

n) — -H — - /nl 2πι J du

__L_ Γ
2πi J

,
-f— --- / - - - - du

C+ and C_ are here the upper and lower halves of the unit circle
in the complex ^-plane.

For |̂ | = 1 we find (here z = x + ίy is one-dimensional!)

u + z 2x
1 + uz |1 -f-

If z\ ̂  κ < 1 we thus have

= (1 - «)•

4
Choosing 2εlδ > γ\ ^-, i.e. δ < ε(l — κ)*l2, we find that the argu-

(L — κ)
ments of the functions /± in the integrals above are inside 0±G(Ω) along
C±, except at the points u — ± 1, if z^ ^ κ, ί = 1, . . ., n.

When u approaches ± 1 the arguments of f± approach the end points
of the diagonal of R^. To ensure that the arguments ζ (cf. the statement
of Theorem 3) go to zero in A (± Γ^ ε, k) for the given k we have to
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restrict zt further, so that the condition \ξ\ < k\η\ is fulfilled. A closer

investigation shows that we must impose the condition 4 Σy\

< k2 Σ(l — |^[2)2. Denote by Oκ the set of z- values satisfying this con-

dition and the condition |zz | < κ, i = 1, . . ., n. Oκ is an open set, the real

section of which is Eκδ. It is now rather easy to verify that f(zv . . ., zn)

is holomorphic for z ζ Oκ. To show that / is holomorphic in each 2^ we

have to differentiate under the integral signs. As /± and their derivatives

approach the limit values uniformly in A ( ± Γ^ ε, k), the critical points

u — i 1 do not give any trouble.

It remains to identify /(z l s . . . , z n ) with /±(z) in 0±c(Ω)r\Oκ.

f ( z l , . . ., zn) is then the desired continuation, holomorphic at every point

of Rκβ.

Computing the derivative Dp(= D^ . . . D*") of f(zv . . .) and putting

zτ — zn = t, we find

/ ΊΓ [fc& W'J (ft* •) + <*">]
+

f '"' \P\=Pι+' ' + Pn
CL

0(u) here denotes terms containing lower order derivatives of /+ and

vanishing for u = 0.

For fixed t in (—κ,κ) the function in [] and the corresponding

function in the second integral are holomorphic in u ^ 1, Im u > 0

and Im u < 0, respectively, and their limit values which are continuous

and uniformly approached on the real ^-axis are equal. According to the

classical Painleve's theorem ([1], p. 74) they form a single holomorphic

function in \u ^ 1, and the two integrals in the formula for D p f ( t , . . ., ί)

can be added to give a single closed contour integral. Applying Cauchy's

formula we get the value of the function in [ ] for u = 0, i.e.

Application of Theorem 2 (really, as the limits are continuous we can

apply Schwarz' reflection principle directly) gives

Oκ may depend of the particular functions /± (z) through the value

of k. But as we have found that the boundary value of /± (z) is actually

a function holomorphic in some complex neighbourhood of Eκd) it is no

longer necessary to keep the restriction \ξ\ < k\η\. Thus /(z l 5 . . ., zn) is

holomorphic in {z; |z^| < κ}, and it is then realized that the construction

of the domain of holomorphy of the ' 'global" f(z) depends only on

0±C(Ω) and ̂ , but not on /± (z).
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We have now proved Theorem 3 for the case of 0°° boundary values.
The general case with distribution valued boundary values is reduced

to this case by regularization. With some small ε > 0 take β £ ̂ ((— ε, ε))
and form f± (z) — f f(z -f αί) β(t) dt. This function then fulfills the as-
sumption for the case with (7°° boundary values, if the region are appro-
priately reduced to take care of the smearing out over (— ε, ε). We
indicate these new regions by an index ε. Applying the earlier result we
then find that there exists an analytic continuation f (z) holomorphic in
some complex neighbourhood of Rε. Therefore for every β

t, s -> ± 0, exist for ζ£Rε±iΓδ.

According to Theorem 1 this implies the restriction

|/+(ί+ ατ)| ^ Ms-™, 0 < s ̂  δf, ζζRε + iΓδ.

Given z = x + iy=ζ-{- ατ, i.e. yί = ηi + α^s, we evidently for y ζ Γδ

get η ζ Γδ if we choose s = min^/αe . Then we find

s > Π ̂ ^ , and \t+(z)\^M \Π(«t + ViΓ] j/f " . . . y~« .

Thus, according to Theorem Γ (III. 4) f+(z) (and similarly /_(z)) has a
boundary value on Rε as y -> 0 in ΓQ — {0}. As ε can be taken arbitrarily
small, / ± (z) have boundary values F± on R.

These boundary values are easily seen to be equal. With φ ζ&(Rε)
we get

f fβ(x) φ(x) dx = lim f f±(x -f iy) [f β(t) φ(x - αί) dt} dx

= F±(β*φ).

But the set {ψ = β * 99} is dense in Q) (Rε) (let β (t) approach δ (£)) so
F+ = F_ on &(Rε) and, as ε is arbitrary, on @(R).

To verify that this boundary distribution is actually a real-analytic
function f(x) we have to check that for every test function γ with
arbitrarily small support, suppy c{#; \%\ < ε} the regularized fγ(x)
= f f ( x - x'} γ(x') dxf is analytic ([12], Ch. VI, Th. XXIV). But fv(x)
= limfγ

±(z), y-> 0 in ±Γδ, where fγ±(z) = / f±(z — xr) γ(x') dx, and
fγ± (z) are easily seen to satisfy the conditions of Theorem 3, with C°°
boundary values equal on Ήe. Hence fγ± (z) have a common analytic con-
tinuation. The restriction of this continuation toy — 0 must be just fγ (x).

Thus the boundary distribution is a real-analytic function f(x) which
can be continued to some complex neighbourhood of R. By Theorem 2
this complex extension must be an analytic continuation of /_j.(z). This
then shows that the limit values on ̂  are actually C°° functions, uni-
formly approached, so using the special case of Theorem 3 again we get
a continuation f(z) of /± (z) to a neighbourhood of R, which depends only
14 Commun. math. Phys., Vol. 8
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on the geometry of the problem, not on the special functions f± (z). This
last step is necessary since the original extension of the real-analytic
distribution f(x) to complex z may well give a holomorphy domain
depending on f(x).

8. Theorem 4. Assume f±(z) holomorphic in 0±C(Ω), respectively, and

<g = {x = XQ + at, 0 < t < 1, α ζ C} .
We assume that

B = (α° + C) r\ (XQ -f α - C) c Ω .

If f ± ( z ) have equal boundary values of infinite order on Ή there is a
common analytic continuation f(z) of /±(z), holomorphic in some complex
neighbourhood of B. This neighbourhood depends on 0±G(Ω) and & but
not on /_ j_ (z).

Proof. With C and B as in the assumptions and x a point in B we
can always find a convex polygonal cone C'', such that C' is a compact
subcone of C, and x 6 (XQ + C") n (a;0 + α - 0'). In fact,

x ζ (α° + 0) r\ (x» + α — C)
means

# = #° -j- α'> α' £ C and # = #° -f- α — α", oc" ζC .

It is easy to see that we can choose a convex polygonal cone C', relatively
compact in C and containing α, α', and α". This cone then fulfills the
conditions.

We now make a linear transformation of C' onto Γ. The image of the
point x in B will then belong to the JΓ- convex hull of the image of ^.
The assumptions of Theorem 3 are fulfilled, and transforming back we
find that x is in the domain of holomorphy of a continuation / ( z ) of f± (z).

9. Theorem 5. Assume f± (z) holomorphic in 0± <?(£?), respectively, and
Ή some C-like analytic curve in Ω. B(^>, Ω, C) denotes the C-convex hull
of % in Ω (II. 9).

// f± (z) are equal to infinite order on ^ there is a common analytic
continuation f(z) of f±(z), holomorphic in some complex neighbourhood of
B (Ή, Ω, C). This neighbourhood depends on 0± c (Ω) and B but not onf± (z).

Proof. We first show that to every point x £ ̂  we can find an open
neighbourhood N(x), independent of f±(z), in. Cn, such that there is a
continuation of f±(z) in N(x).

Let x (to) be a point of Ή. As x' (t0) ζ C at least one x\ (tQ) is different
from zero, say Xι(tQ). Then z^ = z^(r) is invertible in some complex
neighbourhood of tQ, giving τ = t0 + γ (%) where γ is holomorphic in
some neighbourhood of x± (tQ) in the %-plane. Introducing new coordinates

£ι = γ (3ι)> ζi = *i- «i(ί0 + rfe))' * = 2, . . ., w, we get a mapping f (z),
holomorphic in both directions, of some neighbourhood N^ of x(tQ) onto
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some neighbourhood N2 of the origin in ζ- space. If Nτ is chosen small

enough it is clear from continuity that we can find a cone C2 in ζ -space,

such that the image of N1 r\ (En ± i C) contains N2 r\ (Rn ± * C2) and

that the image of Nt r\ &, which is a part of the line ζ2 = = ζn = 0,

is <72-like in N2 r\ (En ±^{0}). g± (ζ) = /± (z(£)) are then holomorphic in

N2 r\ (Rn ±iC2), and when Imf goes to zero in ±C2 g± are easily seen

to fulfill the criterion in Theorem 1, Cor. 2, and have thus equal boundary

values of infinite order on the image of JVj r\ Ή. According to Theorem 4

g ±(ζ) have a common continuation g ( ζ ) holomorphic in some neighbour-

hood of the origin. Transforming back to the ^-coordinates we get a con-

tinuation f(z) of /± (z) where f(z) is holomorphic in some neighbourhood

oίx(t0).

Repeating this procedure we get a continuation of f± (z) to a neighbour-

hood \j {N(x); x ζ^} of ̂  . On (7- like straight segments in the real part

of this neighbourhood we can apply Theorem 4, and continuing this

process we finally get a function f(z) holomorphic in some complex

neighbourhood of B{$, Ω, C), That this neighbourhood is independent of

f + ( z ) is obvious, and a moment's reflection shows that it must also be

independent of the special ^ generating B(Ή, Ω, C).
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