
Commun. math. Phys. 8, 132—146 (1968)

C*-Algebras and Mackey's Axioms

R O G E R J . P L Y M E N

Mathematical Institute, University of Oxford

Keceived August 30, 1967

Abstract. A non-commutative version of probability theory is outlined, based
on the concept of a i7*-algebra of operators (sequentially weakly closed O*-algebra
of operators). Using the theory of 27*-algebras, we relate the <7*-algebra approach
to quantum mechanics as developed by KADISON with the probabilistic approach to
quantum mechanics as axiomatized by MACKEY. The i7*-algebra approach to
quantum mechanics includes the case of classical statistical mechanics; this im-
portant case is excluded by the TF*-algebra approach. By considering the 27*-algebra,
rather than the von Neumann algebra, generated by the given C*-algebra A in its
reduced atomic representation, we show that a difficulty encountered by GTJENIN
concerning the domain of a state can be resolved.

1. Introduction

The C*-algebra approach to quantum mechanics, inaugurated by
SEGAL [17] and developed by KADISON [11], has received much attention
since the publication of the paper by HAAG and KASTLER [8], HAAG and
KASTLER emphasized the importance of abstract (7*-algebras because of
the physical equivalence of all faithful representations. On the other hand,
the probabilistic formulation of quantum mechanics, begun by VON NEU-
MANN, has been clarified by MACKEY'S axiomatization [13]. It is shown
in this paper that an important class of abstract G* algebras, called
i7*-algebras, lend themselves to a probabilistic formulation along such
lines.

The key concept in KADISON'S theory of quantum dynamics [11] is
the dynamical system (A, So, t-> Vt), where A is an abstract (7*-algebra,
So is a full family of states of A, and t-> Vt is a weakly continuous, one-
parameter group of automorphisms of SQ (the dynamical group). In order
to discuss bounded observables only, we strengthen slightly axioms 3,6
of MACKEY. We also drop axiom 7, which is ad hoc, and does not express
the structural features of quantum mechanics in the same way as the
other axioms. We call the modified set of eight axioms, obtained in this
way, the essential axioms of MACKEY (see Section 3). A Σ*-algebra of

operators is a sequentially weakly closed 0*-algebra A of operators. That
is, given any sequence xn ζ A which converges to the bounded operator x
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in the weak operator topology, we then have that x £ A. A state / of A
such that / (xn) -> / (x) for all sequences such as xn will be called a σ-state
of A. Now 27*-algebras may be characterized abstractly (see Section 2).
The theory of 27*-algebras and σ-states may be regarded as providing a
basis for a non-commutative probability theory. The main result of this
paper is

Theorem 1. The dynamical system (A, 8Q, t -> Vt) satisfies the essential
axioms of MacJcey if

(i) A is an abstract Σ*-algebra,
(ϋ) $ 0 is the family of all a-states of A.

Let X be a topological space, and consider the Borel structure under-
lying the topology of X. The algebra B{X} of all bounded Borel func-
tions on X is a commutative 27*-algebra (see Section 2). The σ-states of
B{X} are precisely the probability Borel measures on X. In particular,
let X be phase space of a classical statistical mechanical system. Then
each real function in B{X} represents a bounded observable, and each
σ-state of B{X} represents a physical state of the system. Thus Theorem 1
includes classical statistical mechanics in the case of bounded observables.
The 0*-algebra B{X} is in general not the dual of a Banach space,
hence not a PF*-algebra [16]. Consequently the TF*-algebra approach to
quantum mechanics excludes this important case.

Given an abstract <7*-algebra A, E. B. DAVIES [1] constructs a
canonical 27*-algebra A~ containing A. Thus it is always possible to
enlarge an abstract O*-algebra A so that condition (i) of Theorem 1 is
satisfied and it is always possible to extend each state of A to a σ-state
of A~ so that condition (ii) of Theorem 1 is satisfied. In the case where
A is a separable commutative O*-algebra with identity, A~ can be
identified with the 27*-algebra B{X} of all bounded Borel functions on
the spectrum X of A [1].

In Section 2 we discuss 27*-algebras and sketch from first principles
the spectral theory of self-adjoint elements in a 27*-algebra (see
Lemma 2.6). In Section 3 we prove Theorem 1 and derive a corollary
concerning TF*-algebras (Corollary 3.10). In Section 4 we discuss the
v-envelope A~ of a (7*-algebra A. By considering A~ rather than the
weak closure of A in its reduced atomic representation, we show that a
difficulty encountered by GTJENIN [7] concerning the domain of a state
of a O*-algebra, can be completely resolved. The set of all projections in
a 27*- algebra forms a a-complete orthocomplemented lattice. For a thorough
discussion of this fact and of Piron's axioms, the reader is referred to
R. J . PLYMEN [15].

We should like to thank J. T. LEWIS, G. W. MACKEY and E. B. DAVIES for

several very helpful discussions. We should particularly like to thank E. B. DAVIES
for showing us the unpublished manuscript of [1].
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2. On Σ*-Algebras

For the general theory and notation concerning G*-algebras, we shall
make systematic use of DIXMIER'S book [2]. Since it is no restriction to
assume that the G*-algebra A has an identity we shall always assume
our C*-algebras have identities denoted by I. A state / of a (7*-algebra A
is a linear functional on A such that /(I) = 1 and f(x) ^ 0 when x ^ 0.
A state / of A has norm 1, and so lies in the continuous dual A* of A,
Let A be a (7*-algebra acting on the Hubert space H, and let ξ be a unit
vector in H. The state x-> (xξ, ξ) of A is called a vector state, and denoted
cύξ. We denote by έ$(H) the (7*-algebra of all bounded operators on the
Hubert space H. We shall be concerned with the weak operator topology
on &{H), the weakest topology on &(H) such that the mappings
x-> (xξ, ξ) are continuous for each ξ in H. If xn -> x in the weak operator
topology, we shall say xn -> x weakly.

Now let A be a (7*-algebra and denote by J 5 ' the set of all ordered
pairs {xn, x} consisting of a sequence xn ζ A and a point x ζA.ϊί & Q ^
we denote by @σ the set of all states f on A such that for all {xn, x] ζ&
we have f(xn) -»/(#)•

Definition 2.1. 4̂ Σ*-algebra A is a C*-algebra together with a subset
Ή Q J5", called the set of σ-convergent sequences in A and denoted xn -> x,
such that the following properties hold:

(i) if xn -> x then there is a constant K such that for all n we have
\\χn\\ <:#<oo;

(ii) if xn -> x and y ζA then xny -> xy\

(iii) if xnζA is a sequence such that f(xn) converges for all f ζ@σ then
there is some x ζ A such that xn -> x.

(iv) if 0 Φ x £ A then there is some f £ &σ such that /(a ) Φ θ .
@σ is called the set of σ-states of the 27*-algebra A.

Example 2.2. A set A of bounded operators on the Hubert space H
shall be called σ-closed if given any sequence xn ζ A which converges
weakly to x ζ &{H), we then have that x ζ A. Given any set A there is a
smallest σ-closed set containing it, which we call its σ-closure and denote
by σ(A). Let A be a sub-C*-algebra of &(H) such that A = σ{A). A
becomes a 27*-algebra if we define the σ-convergent sequences to be the
weakly convergent sequences. We call such algebras Σ*-algebras of
operators; clearly &(H) is itself a 27*-algebra of operators. By a σ-re-
presentation π of the 27*-algebra A on the Hubert space H we shall mean
a representation such that if xn-+x then π(xn) -> π{x). By a faithful
σ-representation we shall mean a faithful representation such that
π (A) is σ-closed and xn-> x iϊ and only if π(xn) -> π(x).

Lemma 2.3. Every Σ*-algebra A has a faithful σ-representation as a
Σ*-algebra of operators on a Hilbert space.
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The proof of this Lemma is in [1].
Example 2.4. Let X be a space with a given σ-ring of subsets. The

space B{X} of all bounded measurable functions on X is a commutative
C*-algebra in an obvious sense. We say that a sequence un in B{X} is
σ-convergent to u in B{X} if and only if \\un\\ ^ K for some K and all n>
and un also converges pointwise to u. Then B{X} is a 27*-algebra; and
the family of σ-states is exactly the set of probability measures on X.
There is a discussion of this example in [1]. Note that B{X} is in general
not the dual of a Banach space, hence not a TF*-algebra [16].

Return to Example 2.2. Let A be a 27*-algebra of operators on the
Hubert space H.

The set $ 0 of all σ-states of A contains the weakly continuous states
of A. Now the weakly continuous states of the (7*-algebra A have the
form A1α)|l + + λn

ωξn where 0 ^ λ, < 1, ζj is a unit vector in H, and
λx + + λn = 1. Now $ 0 is convex and x Ξ> 0 if /(#) ^ 0 for all /in # 0 ;
hence So is a full family of states of A [11]. The states weakly continuous

oo oo

on the unit ball of A have the form Σ ^nωξn where λn ^ 0, ^7 An = 1
n = 1 Λ = 1

and each ξn is a unit vector in H [3, p. 54]. Thus, each such state of A is
a norm limit of weakly continuous states. Since So is a norm closed
subset of A* (see Lemma 3.4), So contains all the states weakly con-
tinuous on the unit ball of A.

We describe next the spectral theory of self-adjoint elements of a
27*-algebra A of operators on H. The concepts of 27*-algebra and
σ-representation help to clarify this theory. Let a; be a fixed self-adjoint
element in A. Let Ω be the spectrum of x, C(Ω) the O*-algebra of com-
plex continuous functions onβ. Recall that Ω is a compact separable metric
space. Let B{Ω} be the 27*-algebra of complex bounded Borel functions on
Ω (see Example 2.4). There exists a unique representation π of G (Ω) on H
such that π{l) = 1, π{ή = x, where i is the function λ -> λ on Ω. This
representation is faithful. Its image is the sub-(7*-algebra of A generated
by 1 and x, hence is composed of normal elements [2, p. 10]. There exists
a unique σ-representation π~ of B{Ω} on H such that π~ extends π.
The image of π~ is a sub-(7*-algebra of A} and is composed of normal
elements [1]. By writing u(x) = π~ (u) we introduce the functional
calculus of bounded Borel functions in A. Let χM be the characteristic
function of the Borel subset M of Ω, and write EX(M) = XM(X)- Let

oo

(Mn) be a sequence of Borel subsets of Ω, disjoint in pairs, M = U Mn.

%MX + * ' * + %Mn -> XM in the 27*-algebra B{Ω} .

Since jz~ is a σ-representation,

π~ taf,) + + π~ (χMn) -> ̂ r~ (to) weakly .
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Thus
Ex (Mi) + + Ex (Mn) -> Ex (M) weakly .

Thus M -> EX(M) is a projection-valued measure in Ω, cr-additive in the
weak operator topology. Let u lie in B{Ω}. Given ε > 0, there exists a
simple function λ1χMi + + λnχMn in B{Ω} such that

Ik ~ K%MX KXMJ < ε.

Since | |π~ (w)|| ^ H for all w in B{Ω},

\\u(x) - ^ - ( J ^ ) λnE
x{Mn)\\ < ε .

Thus u(x) ~ f u(λ) dEx(λ) where the integral is defined in the norm
topology. In particular x = / λ dEx (λ) so that Ex is the spectral measure
of X

Let now ̂  be a compact real spectral measure in ̂ 4 (i.e. i7 is a projection-
valued measure, cr-additive in the weak operator topology, whose range
lies in A, whose domain is the σ-ring of all Borel subsets of a compact
subset of the real line). Then / λ dE(λ) exists. Let x = / λ dE(λ). Then
x is the norm limit of linear combinations of projections E(M). But A is
norm closed, hence x lies in A. Moreover x is self-adjoint and E = Ex

[9; p. 65]. This establishes the following Lemma.
Lemma 2.5. Let A be a Σ*-algebra of operators. There is a canonical

1 — 1 mapping E -> / λdE(λ) of the set of compact real spectral measures
in A onto the set of self-adjoint elements in A.

3. Mackey's Axioms

MACKEY develops Quantum Mechanics axiomatically as follows [13,
chapter 2]. Let 3ft be the set of all Borel subsets of the real line R. We
suppose we are given two abstract sets Θ and Sf and a function p which
assigns a real number p (x, /, M) in 0 ^ λ ^ 1 to each triple x, /, M,
where x is in (P, f is in £f} and M is in ^ . We assume that p has certain
properties which we list as axioms. Physically 0 is to be thought of as the
set of all observables of our system, and Sf as the set of all states, p (x, /> M)
is the probability that a measurement in the state f oί x will lead to a
value in M.

Axiom 1. p(x, /, 0) = 0, p{x, /, R) = 1
oo

p{x, f,M1\jMz\j ...)= Σ P(%> f> Mn)
w = l

whenever the Mn are Borel sets that are disjoint in pairs. Axiom 1 simply
states that for each x in Θ and each f\n^?

>M->p{x,fy M) is a probability
measure.
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Lemma 3.1. Let A be a Σ*-algebra of operators on H, f a σ-state of
A, x a self-adjoint element of A. Then there exists a unique probability
measure M -> p(x} /, M) in the spectrum of x such that f(xn) =
/ λn dp(x, f, λ) for all n = 0, 1, 2, . . . .

Proof. Let Ω be the spectrum of x. Since x is self-adjoint, Ω is a
compact subset of the real line. Let Ex be the compact real spectral
measure of x, defined on the σ-ring of all Borel subsets of Ω. Let
p(x9 f, M) = f(Ex{M)). Let (Mn) be a sequence of Borel subsets of Ω,

disjoint in pairs, M = U Mn. Then EX(M1) + + Ex(Mn) -> E"(M)
n = l

weakly. Since / is a cr-state, f(Ex(M1)) + \- f(Ex{Mn)) -> f(Ex{M)).
oo

Thus p(x} /, M) = Σ P(x> f> Mn). Thus M -> p(x, /, M) is a probability
n = l

Borel measure in Ω. Now xn = f λn dEx(λ) where the integral is defined
in the norm topology on A. By norm continuity of /,

f{x-) = / λ* d(fE»(λ)) = / λ* ίp(a;, /, λ) .

To prove uniqueness, let p, p' be probability measures in the spectrum
Ω oίx such that / λn dp(λ) = f λn dp' (λ) for all n = 0, 1, 2, . . . . By
the Weierstrass approximation theorem for compact subsets of the real
line, the set of real polynomials on Ω is norm dense in the set of real
continuous functions on Ω. Hence, by linearity and continuity,
f u(λ) dp(λ) = / u(λ) dp' (λ) for all real continuous functions u on Ω.
Therefore p — p'.

Axiom 2. // p{x, f, M) = p(x', f, M) for all f in & and all M in &
then x = x'. Similarly if p(x, /, M) = p(x, /', M) for all x in Θ and all M
in &, then f = /'. Axiom 2 says that two states, to be different, must
assign different probability distributions to at least one obervable and
that two observables, to be different, must have different probability
distributions in at least one state.
Lemma 3.2. Let A be a Σ*-algebra acting on H, So the set of all σ-states of A.

(i) // p(x, /, M) = p(x', /, M) for all f in So and all M in (8 then
x = x'.

(ϋ) // p(x, /, i f) = p(x, /', M) for all self-adjoint x in A and all M
in & then f = /'.

Proof, (i) By Lemma 3.1, f(x) = fλdp(x,f,λ) = fλdp{x',f,λ)
= f(xf) hence f(x — x') = 0 for all / in 80. Now 80 contains the vector
states of A. Hence x — x' = 0.

(ii) f(x) = f'(x) for all self-adjoint x in A. Hence f(x) = f (x) for all
x in A. Thus / = /'.

Axiom 3 (modified). Let x be any member of Θ and let u be any real
bounded Borel function on the line. Then there exists y in Θ such that
p(y, /, M) = p(x, /, u'1 (M)) for all f in Sf and all M in 38.
10 Commun. math. Phys., Vol. 8
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It follows from Axiom 2 that y is uniquely determined by x and we
shall denote it by u(x). Physically the observable u(x) is constructed
from x as follows. Whatever we do to measure x we measure u(x) by
applying the function u to the result of measuring x.

Lemma 3.3. Let A be a Σ*-algebra acting on H, x a self-adjoint element
of A. Let u be a real bounded Borel function on the line. Then there exists a
self-adjoint element y in A such that p(y, f, M) = p(x, /, u~1(M)) for all
σ-states f and all M in &.

Proof. Let v = un with n a natural number. Then

/(*(*)) = /(/ *>W dE*W) = f*>(λ) d(fZxW) = / υ(λ) dp(x, f, λ)
by norm continuity of /. Thus

f(u«(x)) = fu(λ)n dp(x, f,λ) = f λn dp(x} /, M-i(λ))
by change of variable. But f(un{x)) = f(u(x)n) = f λn dp(u(x), f, λ).
Therefore / λn dp(x, /, u~1(λ)) = f λn dp(u(x), /, λ) for all natural num-
bers n. By the uniqueness assertion in Lemma 3.1, p(u(x)} /, M)
= p(x, /, u~1(M)) for each σ-state / and each M in «̂ . Since a; is self-
ad joint and u is real-valued, u(x) is self-adjoint.

Axiom 4. // /2, /2, . . . are members of SP and λ1-\- λ2+ ' * ' = I where

0 ^ λn ^ 1, ίAe^ ίΛere β^ίθ / m ^ such that p (x} /, M) — Σ λnp (x} fn, M)
for all x in Θ and all M in dS. n = 1

It follows from Axiom 2 that / is uniquely determined by the fn and
oo

λn. We denote it by Σ λnfn. I t corresponds physically to a state in which
n = l

we know that we are in the state fn with probability λn.
Lemma 3.4. Let A be a Σ*-algebra of operators on H, and let (fn) be a

sequence of σ-states of A. Let (λn) be a sequence of non-negative real numbers
oo

such that Σ λn= l Then there exists a σ-state f such that p{xifiM)

— Σ λnp{χ> fn-> M) for all self-adjoint x in A and all M in 3$.n=l

Proof. We prove that the set So of all cr-states of A is a norm closed
convex subset of A*. Let (gn) be a sequence in 80 and let gn -» g in norm.
Then gn(y) -> g(y) for each y in A whence g is a state of A. Let {xό) be a
weakly convergent sequence in A, Xj-^x, then x lies in A. We prove
that (Xj) is uniformly bounded. Now (Xjξ, η) -» (xξ, η) for each | , η in i ϊ .
Fix I and consider the sequence of vectors (Xjξ). By the uniform bounded-
ness theorem we have that the sequence of norms (||ϊty!||) is bounded.
This is true for each ξ in H. Again by the uniform boundedness theorem
we have that the sequence of norms (||^ ||) is bounded. Now

\g{xj) -g(x)\£ \g(xj) - gn(xj)\ + \gn(Xj) - gn(x)\

+ \9n(x)-9(*)\
£ 19 - 9nl * + \9n(*i) - 9n(*)\
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since the sequence (x5) is uniformly bounded. Choose n such that
||(7 — gn\\ K < ε/2. Since gn is a σ-state, there exists j0 such that
\9nfa) ~ ffn(x)\ < Φ whenever j > j 0 . Hence \g[xs) - g(x)\ < ε when-
ever / > j 0 . Thus g is a σ-state. Hence So is norm closed.

Return to the Lemma. If λn — 0 for all but finitely many n then
oo

Σ λnfn lies in SQ since 8Q is convex. Now consider λn > Ofor all n. Let
n = l

Pn = (λi/i H 1- Kfn)ί{h H h An)- Then (grΛ) is a Cauchy sequence
in $0. # 0 is complete, hence gn-*g in norm, where <7 lies in # 0 . But

oo

9 = Σ hfn>
n = l

Finally, let x be a self-adjoint element of -4 and put y = EX{M) for

some i f i n # . Then j ; ^/nίy) = flr(y), hence ̂  λnfn(E*(M)) = g(E*{Mj).

Thus

for all self-adjoint a; in 4̂ and all Jf in £8.
Recall that MACKEY begins with an abstract set 0 of observables and

an abstract set SP of states. We realize 0 as the set of self-adjoint elements
of a 27*-algebra A, and £P as the family of all σ-states of A, With this
realization, some concepts defined by MACKEY become well-known
concepts in the theory of operator algebras.

(i) A question e is an observable in 0 such that p(e, /, {0, 1}) = 1 for
all / in S?. e is a question if and only if e2 = e. Thus a question in Θ is
realized as a self-adjoint idempotent, i.e. a projection, in the 27*-algebra
A. The set 2t of all questions is realized as the set ^f(A) of all projections
in A.

(ϋ) Let e lie in ^ and let / lie in £P. Let us put mf(e) — p(e, /, {1}). In
our model, mf(e) = p(e, /, {1}) = / λ dp(e, /, λ) = f(e) hence mf(e) is
realized as the expectation value of e in the state /.

(ϋi) The set So of all σ-states of the Σ* algebra A contains all the
vector states of A. But the vector states define positivity. Thus, with
β, e' in £?{A)j e <£ e' if and only if /(e) ^ /(e') for all / in 80. Hence the
partial ordering defined by MACKEY on J2 is realized as the partial
ordering by positivity on S£{A).

(iv) Let e, e' be in J and e ^ 1 — e'. MACKEY calls e, e' disjoint
questions. In our model, e 5j 1 — e' implies e(l — e') = e hence ee' == 0.
Thus disjoint questions in J are realized as orthogonal projections

Remark 3.5. >3?{A) is actually a a-complete orthocomplemented lattice
(each sequence in J£(A) has a least upper bound and a greatest lower
bound ϊnJ?(A)). But the lattice JZ?(A)oί all projections in the 2?*-algebra
10*
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A is in general neither complete or atomic. For a full discussion of these
facts, and for a full consideration of PIRON'S lattice-theoretical axioms
for quantum mechanics, the reader is referred to [15]. We prove here
that £?{A) is a lattice. Pass to a faithful σ-representation of A as a
27*-algebra of operators on the Hubert space H. Let ev e2 lie in ££{A).
Since ||β1eae-ι|[ ^ 1, the powers of e-^e^ form a decreasing sequence of
positive operators. It follows that {exe%e^n is weakly convergent to, say, e.
Since A is sequentially weakly closed, e lies in A. I t is easy to verify
that e is a projection and that e is the greatest lower bound e1 Λ e2 of ex

and e2. The least upper bound ex V e2 of e1 and e2 is 1 — ((1 — ex) Λ (1 — e2)).
Thus .3? (4) is a lattice.

Let (ew) be a sequence in J such that em, en are disjoint whenever
oo

m Φ n. If e in «S satisfies m/(e) = JΓ mf(en) for all / in ^ then MACKEY

oo

writes e — Σ en.
n = l

Axiom 5. Let (en) be any sequence of questions such that em, en are
oo

disjoint whenever m Φ n. Then the question Σ en exists.
n = l

Lemma 3.6. Let (en) be any sequence of projections in the Σ*-algebraA
such that em, en are orthogonal whenever m =j= n. Then there exists a projec-

tion e in A such that f(e) = Σf (en) ίor a^ estates /.
n=l

Proof. Let the 27*-algebra A act on H, and consider the complete
lattice of all projections in έ$(H). Let e be the least upper bound, taken
in this lattice, of the sequence (en) of projections. Then e1 + + en ~> e

weakly [9, p. 49]. Since A is a 27*-algebra, e lies in A. If / is a σ-state of
A then f{e1) + + f(en) -» f(e). This completes the proof.

Let E be a function from 38 to 1 such that
(i) M r\N = 0 implies E (M), $ (JV) disjoint

( oo \ oo

u MΛ = Σ Ή{Mn)>
(iii) E(0) = 0, ^(J?) = 1.
Then E is called a question-valued measure. If i? has compact support

then we call E a compact question-valued measure.
Axiom 6 (modified). If E is any compact, question-valued measure

then there exists an observable x in Θ such that χM(%) = E (M) for all M in
38) where χM is the characteristic function of M.

I t is easy to verify that a compact question-valued measure E is
realized, in the 27*-algebra model, as a compact projection-valued
measure, σ-additive in the weak operator topology. Thus E is realized as
a compact real spectral measure in A.
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Lemma 3.7. Let E be a compact real spectral measure in the Σ*-algebra
A. Then there exists a self-adjoint element x in A such that χM (x) = E (M)
for all M in £$.

Proof. Let x — f λ dE(λ). By Lemma 2.5, x is a self-adjoint element
in A and E = Ex. Thus χM(x) = EX(M) = E(M) for all M in S8. This
completes the proof.

For reference, we include Axiom 7.

Axiom 7. The partially ordered set £L of all questions in quantum
mechanics is isomorphic to the partially ordered set of all closed subspaces
of a separable, infinite-dimensional complex Hilbert space.

Axiom 8. // e is any question different from 0 then there exists a state
f in Sf such that mf (e) = 1.

Lemma 3.8. Let e be a non-zero projection in the Σ*-algebra A. Then
there exists a a-state f of A such that f(e) == 1.

Proof. Let A act on H. The range eH of e is non-zero. Let ξ be a unit
vector in eH. Let / = ωξ: #-> {xξ, ξ). Then f(e) = (eξ, ξ) = (ξ, ξ) = 1,
and the vector state / is a σ-state.

In order to formulate quantum dynamics, MACKEY considers a one-
parameter group t -> Vt of transformations of £f onto S?.

Axiom 9. For each sequence (fn) of members of Sf and each sequence (λn)

( oo \ oo

Σ λnfn) — Σ λnvt(fn)
for allt^ 0 and for all x in Θ, f in £f, and M inέ%,t-> p (x, Vt (/), M) is
continuous.

If the state of a physical system is / at time tv then it is Vti_tι (/) at
time t2 |Ξ> tv Axiom 9 asserts that each Vt preserves convex combinations
of states; and for each fixed triple x, f, M, the probability p(x, /, M)
changes only slightly in a short time interval.

Lemma 3.9. Let {A, So, t ->• Vt) be a dynamical system, where A is a
Σ*-algebra of operators, and So is the family of all a-states of A. Let (fn) be
a sequence in So. Let (λn) be a sequence of non-negative real numbers whose
sum is 1. Then

(i) t->p(x, Vt(f), M) is continuous for each self-adjoint x in A, each
f in So, each M in &.

( oo \ oo

ΣKU= ΣKVΛU for all real t.
n = l / n=l

Proof, (i) Since the mapping t -> Vt is weakly continuous, t -> (Vt{f))y
is continuous for each / in So and each y in A. Let x be a self-adjoint
element of A, and choose y = χM(x). Now (F t(/)) χM(x) = Ί>(x> Vt(f), M)
hence t -> p(x, Vf(f), M) is continuous for each self-ad joint x in A, each
/ in 80, each M in 08.
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(ii) Consider a single element F of the dynamical group. F is an
affine w* isomorphism of the full family So. F is a continuous mapping
of So onto So, when 80 has the topology induced by the w* topology on
the dual A* of A. Firstly, let λn = 0 for all but finitely many n. Then
(ii) follows since F is affine. Secondly, let λn > 0 for all n. Let
9n = Kh+mm* + Kin, K = hV(h) + λ»F(/ n ) . Then gn-+ f in norm

with / in $0. Hence ̂ /(Aj + + λn) -> / in norm and in the w* topology.
Hence V^gJ^ -f + ΛJ) -> F(/) in the w* topology, since F is w*
continuous. Hence hnl{λλ + + λn) -» F (/) in the w* topology, since
F is affine. Let hn->hin norm with h in # 0 . Then AW/(AX + + λn) -> h
in norm and in the w* topology. Therefore V(f) = h since So is w* Haus-

dorff. Thus hn -> F(/) in norm. That is, ^ Aw F(/w) = F ( ^ A J J , where
n = 1 \n == 1 /

the convergence on both sides is in the norm topology.
Theorem 1 is a consequence of Lemma 2.3 together with the preceding

eight Lemmas.
Each von Neumann algebra A is a Σ*-algebra of operators. Now each

norm bounded increasing net xx in A has a least upper bound x in. A.
States / of A such that f'(x) — hίbf(xx) for all such nets xx are called
normal states of A. The normal states of A are precisely those of the

oo

form Σ Kωξn> where λn is a sequence of non-negative real numbers such

that Σ K— 1J a n d ζn is a sequence of unit vectors in the Hubert space
fi = l

on which A acts [3, p. 54]. Thus each normal state of A is a σ-state of A.
Now von Neumann algebras may be characterized abstractly [10, 16].
SAKAI'S characterization is as follows: An abstract (7*-algebra A has a
faithful representation as a von Neumann algebra if and only if A is the
dual of a Banach space. Such abstract O*-algebras are called W*-algebras.
Now the set of all normal states of A is a norm closed convex subset of
A* [2, p. 337]. Recalling the proofs of Lemmas 3.1 to 3.9 (especially 3.4),
we obtain the following Corollary to Theorem 1.

Corollary 3.10. The dynamical system (A, Sφ t-+ Vt) satisfies the

essential axioms of MACKEY if

(i) A is an abstract W*-algebra,

(ii) $ 0 is the family of all normal states of A.

If / is a σ-state of a von Neumann algebra which is countably decom-
posable (in particular for each von Neumann algebra acting on a separable
Hubert space) then / is normal. This follows from DIXMIER [3], p. 65,
Exercise 9.

In this special case, the normal states are precisely the σ-states. In
general, the author expects that the family of all normal states of a
PΓ*-algebra A is strictly smaller than the family of all σ-states of A.
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Now the normal states of ^ (H) are precisely those of the form

oo

Σ

where λn is a sequence of non-negative real numbers such that Σ λn = 1
n = 1

and ωξn is a sequence of vector states of £%(H) [3; p. 54]. Thus, when
H is separable, the normal states (= σ-states) of 3§{H) are in 1 — 1
correspondence with the von Neumann density matrices [13, p. 80].

Remark 3.11. Recall Lemma 3.8. Let H be a fixed arbitrary Hubert
space. Let e be a nonzero projection in the von Neumann algebra £%(H).
If ξ is a unit vector in the range of e then the vector state a>ξ is normal,
pure, and such that cύξ(e) = 1. Thus in the special case when A = &(H),
there exists a pure, normal state / of A such that /(e) = 1. This is in
general false. For let A be a type 1 ^ factor. Then A possesses no pure,
normal states [4, p. 273]. Each vector state of &(H) is pure, though not
every pure state of £%(H) is a vector state [17; p. 944]. The extreme
points of the convex set 8Q of all normal states of £$ (H) are precisely the
vector states of 08(H) [2, p. 84].

4. σ-Envelope of a C*-Algebra

HAAG and KASTLER [8] argue that, in the (7*-algebra approach to
quantum mechanics, the abstract C*-algebra A is the relevant object,
and not one of its faithful representations. STKEATER [18] uses an
abstract uniformly-hyperfinite (7*-algebra to discuss the infinite ferro-
magnetic lattice. KADISON [11] formalizes a concept of representation of
a physical system (A, 80) and of a dynamical system (A, So, t -> Vt) and
emphasizes considering an abstract physical system as independent of
its specific representations. It is for such reasons that we have stated
Theorem 1 and Corollary 3.10 in terms of abstract Σ*-algebras and
abstract PF*-algebras.

In the following argument, A denotes a fixed abstract (7*-algebra.
We consider the following problem, raised by G. W. MACKEY in con-
versation: Find a canonical <7*-algebra B containing A such that when
A is commutative and separable, B determines and is determined by the
Borel structure underlying the topology on the spectrum A of A. The
point is that in classical statistical mechanics, the set Θ of observables
determines the Borel structure underlying the topology of phase space.
For the Borel subsets of phase space may be identified with the questions
in Θ. We are able to give in this section a complete solution to this
problem. But we first consider two candidates for B.
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(i) Let Q denote the set of all positive linear functionals on A, and
let φ = © Ttf, where πf is the canonical cyclic representation defined by

/. Then φ is called the universal representation of A. Consider the von
Neumann algebra φ(A)~ generated by φ{A). Then φ(A)~ and the second
dual A** of A are isomorphic as Banach spaces [2, p. 236]. We embed A
in ^4** and identify φ (A)~ with ^4**. Then ̂ 4** is a W*-algebra containing
A, but when A is commutative and separable, A** seems to the author
to be too large. Note that each state of A has a unique extension to a
normal state of A**9 and that each normal state of ^4** arises in this way.

(ϋ) Following [2], we define the spectrum A of A as the set of unitary

equivalence classes of irreducible representations of A. The reduced

atomic representation ψ [6, 12] of A is defined as the direct sum of the

irreducible representations ψx of A, taking one from each unitary equiv-

alence class. By abuse of notation, ψ = ®~ψx. Let Hx be the representa-

tion space of ψx. Then we know that ψ (A)~ = ®~& (Hx) [6, p. 549]. If we

identify A with ψ(A) then ip{A)~ is a type I TF*-algebra containing A.
When A is commutative, &(HX) = Cx> the algebra of complex numbers.
Hence ψ(A)~ = ®~CX = TF*-algebra of all bounded complex functions

on A. Thus we lose all the structure of A} a compact Hausdorίf space,
and we cannot recover the Borel structure underlying the topology of A.
This event has the following interesting consequence.

When A is commutative, the projections in ψ(A)~ are precisely the
characteristic functions of all subsets of A. Thus a σ-state on ψ(A)~
induces a probability measure on A such that every subset of A is
measurable. This excludes Lebesgue measure on the unit interval. Now
GuENiN [7], working from the lattice-theoretic approach to quantum
mechanics, considers a W*-algebra of the form φ &(HX), where the
Hx are separable Hubert spaces. We can recover this TF*-algebra from
our own considerations by requiring that A be separable. Then ψ{A)~
= ®Λ&(HX) and each Hx is separable. Yet GUEKIN cannot define a state

as a probability measure on the set of all projections in φ έ%(Hκ), for
he would then encounter the difficulty described above, when the Hx are
a family of 1-dimensional Hubert spaces indexed by the unit interval
[7, p. 275]. To circumvent this difficulty, GUENIISΓ chooses to redefine a
state as a probability measure on a sublattice of the lattice of all pro-
jections in φ &(HX). But the difficulty can be completely avoided if we
consider, not ψ(A)~} but the a-envelope A~ described in (in) of this
Section.

By construction of ψ, each pure state of A has a unique extension to
a normal state of ψ(A)~. Note that ψ is a multiplicity-free representation,
and that ψ is a subrepresentation of φ.
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(ϋi) Let A~ be the σ-closure of A in its universal representation. A"
is called the σ-envelope of A. A~ is isomorphic, as a 27*-algebra, with the
σ-closure of A in its reduced atomic representation. Note that each
state of A has a unique extension to a σ-state of A~, and each σ-state of
A~ arises in this way [1],

Let A be commutative and separable. Then A~ may be identified
with the 27*-algebra of all bounded Borel functions on the spectrum A
of A [1]. Now the projections in AT are precisely the characteristic
functions of Borel subsets oίΛ. Thus a σ-state on A~ induces a probability
Borel measure on A. Thus we completely avoid the difficulty which
GUENIN encountered. A~ determines and is determined by the Borel
structure underlying the topology of A, for the set J£(A~) of projections
in A~ may be identified with the set of Borel subsets of A. The Borel
structure underlying the topology of A is a standard Borel space [2,
p. 357]. Hence, if A is uncountable, the Borel structure underlying the
topology of A is isomorphic, as a Borel space, with the Borel structure
underlying the usual topology of the unit interval [0, 1] [2, p. 357].

Consider finally the general case, A a fixed (7*-algebra. Then <£?{A~)
is in general not a complete lattice, hence fails to satisfy Piron's lattice-
theoretic axioms [14]. But in [15] the author proposes to weaken
slightly one of Piron's axioms, replacing completeness by σ-completeness.
The resulting set of five axioms we call the essential axioms of PIROISΓ.
Indeed if A is a separable type I C*-algebra, we establish in [15] that
3? (A~) satisfies the essential axioms of PIRON. There is a full discussion
of these matters in [15].
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