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Abstract. The Bethe-Salpeter equation describing the interaction of two scalar
particles via the exchange of a third scalar particle with mass μ =]= 0 is in configura-
tion space a hyperbolic partial differential equation of fourth order which will be
studied with the help of the Riemann method. This method yields two Volterra
equations the solutions of which are special solutions of the Bethe-Salpeter equation.
The wave function is a superposition of the special solutions. For the coefficients
one gets a system of two integral equations. The Fredholm determinant of the
system is the generalization of the nonrelativistic Jost function.

1. Introduction

An exhaustive treatment of the Schrόdinger equation has been given
by NEWTON. Crucial for the success of this method is the introduction of
several modified Green's functions leading to Volterra integral equations.
The Volterra equations can be solved by iteration for all values of the
potential-strength. Despite the fact that the Schrόdinger equation is an
ordinary differential equation while the Bethe-Salpeter equation is a
partial differential equation the generalization of this method to the
Bethe-Salpeter case is possible. The Volterra equations in two variables
can be established with help of the Riemann method [2, 3] or formally by
splitting the Green's function into a Riemann function and two residual
terms. The solutions of the integral equations which can be obtained by
iteration are special solutions of the Bethe-Salpeter equation. The
solution with causal boundary conditions is a superposition of the special
solutions. For the coefficients in this expansion we get a system of two
integral equations in one variable. The Fredholm determinant of the
system is the generalization of the nonrelativistic Jost function [4].

In Sec. II we treat the radial Schrόdinger equation. For convenience
we confine us as in the Bethe-Salpeter case to zero angular momentum.
Only those aspects are written down which can be already generalized.
In Chapt. 3 we write down the differential form of the Bethe-Salpeter
equation for two scalar particles with masses m^ and m2 which interact
via a potential. Here we have in mind the Yukawa potential which de-
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scribes the interaction via the exchange of a third scalar particle of mass
μ φ 0 but also other potentials belonging to a certain class are admissable.
Then we make use of the Riemann method by which we get the Volterra
integral equations. The difficulties for getting the Riemann function are
by-passed by the introduction of the Green's function and its decomposi-
tion. The proof that the Volterra equations can be solved in fact by
iteration for all values of the strength of the potential is given in this
paper only for the bound state case. A generalization of this proof to
scattering seems not trivial to us.

2. The Schrodinger Equation

First let us study the radial Schrodinger equation for zero angular
momentum:

with

The potential V(r) may satisfy

The free equation
) = Q (Ib)

has the solutions e~ίjcr and e+ikr or sin&r and cos&r.

Now define to I an adjoint operator m so that v (r) lu(r) ~ u(r) mv(r)
will be a divergence :

v(r}lu (r) — u(r)mv (r) = -r- Wτ (v, u) .

In this case m = I and Wr(v, u) — vur — uvr \ u' = -r- u(r). If u and v

satisfy (la) or (Ib), then Wr(v> u) does not depend on r. Let us consider

f d r ' [ A ( r , r ' ) l ' u ( r ' ) ~u(r')m'A(r,r')]= Wr>(A(r, r'),u(r')) \ (2)
0 r' = 0

where V and m' act on the primed coordinates. Let u(rf) be a solution of
(1 a) and let u (r') tend to u° (rf) for r' -> 0 where u° (r) may be a solution of
(Ib). Further may be

m'A(r,r') = 0
with

A(r,r')\,= r=0, ~A(r,r'}\r'^=-l.
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It is easy to see that in this case

A (r, r') = -£-sin&(r — r')

and

Wr,(A (r, r'), «(r'))|r.- o = W,(A (r, r'), «°(r'))l, - o

because of
w.4 = luQ - 0 .

Further it is
Wr.(A(r,r')ίU(r')W = ' = u ( r ) .

Thus taking in mind l ' u ( r ' ) = λ V (r'} u(r') and mf A (r, r') =^ 0 (2) can be
written as

u(r) = u°(r) + λ f d r ' A ( r , r ' ) V(r')u(r') . (3a)
o

For uQ(r) = sinkr denote the solution of (3 a) by φ(k, r) in agreement
with NEWTON [1]. (3 a) can be solved by iteration for every λ. The proof
for this statement can be found in NEWTON'S paper.

There is another way for getting this Volterra equation. In the scat-
tering theory one usually converts (la) in an integral equation which
incorporates the boundary conditions that the solution of the Schrόdinger
equation without separation of the angular momentum consists of a
plane wave plus an outgoing spherical wave; thus for zero angular
momentum the integral equation reads

ψ(k, r) - sin&r + λ f dr' G(k, r, r') V(rf) ψ(k, rf) (4)
o

where G(k} r, r'), the Green's function, is
oo

' =-^(<9(r-r')β'fc' sinfcr'+6l(r/-r)e"' 'sinfcr).i k ^ v ' v ; 'k
0

(4) can be solved by iteration only for small enough λ [5]. The aim is now
to transform (4) into another equation like equation (3 a), which can be
solved always by iteration.

This is done easily by writing

θ(r - r'} ί— -y(eί

θ(r - r ' ) A ( r , r f ) . (5)

So the Green's function is split into a Volterra kernel and a separable
kernel. It is worthwhile for our further investigations to exhibit how the
splitting can be performed in momentum space :
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We have

- o , y g , . = — -, — , . N 2 - YY — 2 π i θ ( p ) δ(p2 — k2)_ _ > 2 _ _ £2 _ _ ΐ ___ _ _ ^ ε 2 _ £2 V^/ V-T /

and
-j- OO

__ L_ f rfn __ βtPr s mff r __ __ JL fl
I Lv U , i \ o 79 7 ^ \iπ J ^ (p + ιε)2 ~ k* k

— OQ

—- 0(r ~ r') A (r, r'} .
Thus

-r oo + σ

_ , / 7 .. 1 Γ Ί sinpr eil)T' 1 Γ
0(k, r, r ) = - -̂  _/ ^P^n^Γ7ε- = ~ Tπ- J

— oo

f oo

2 Γ d p θ ( p ) δ(p2 - W) eίΊ)T' smpr

= θ(r — rr) A(r, r') — -reik'

For the Bethe-Salpeter case such a splitting in the integral representation
will be the simplest way to get a Volterra kernel. Now, inserting (5) into
(4) we get

oo

1 Γ
ψ(k, r) = sinkr — -r sinkr I dr' eίkr λ V (rf) ψ(k, r')

o

-f λfdr'A(r,r') V ( r ' ) γ ( k , r ' ) .
o

Recalling (3 a) we see that

ψ(k, r) =-- a(k) φ(k, r)
with

CO

a(k) = k - λ f dr' eikr' V(r') ψ(k, r')
o

and so
CO

a(k) = k- a(k) λfdr' eikr'V(r') φ ( k , r ' )
o

or
k

CO

where 1 -f λ f dr' eikr' V(r') φ(k, r') is denoted by /(- k) again in agree-
o

ment with NEWTON.
In a completely analogous manner we can find the other Volterra

equations of NEWTON
oo

) - e±αr +λf dr' A(r} r') V(re) f(^k, r') (3b)
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and the corresponding expansion of the solution *ψ (k, r) in terms of these
special solutions is

with

1 -}- k-1 λ fdr' sinkr' V (r') f(k, r')

1 + k-1 λ { dr' sinkr' V(r') f(-k, r')
o

The crucial points are the steps from (2) to (3 a) and the splitting in (5)
which can be generalized to the Bethe-Salpeter case.

3. The Bethe-Salpeter Equation

3.1. The Equation and its Free Solutions

Let us now consider a system of two relativistic particles with masses
m l5 ma, coordinates xl3 x2 and momenta p1} p2. We write the equation
in its differential form

(QL + w&ι) (D2 + w&l) ψ(%ι, %%) = λV(xl — x2) ψfai, x2)
where

a2 Λ a2

Di =

Following SCHWARTZ and ZEMACH [6] we make a complete canonical
transformation

= PI + PZ
k = f^^Pi ~~ ftiPz ~ ("'Oί ^/ x — x± — x2 — (%Q> r)

where //-,, μ2 are constants restricted by μ± + μ2 = 1 so that

dp1dp2 = dPdk, dx1dx2 = dXdx.

In the center-of-mass frame we can write

p1= (ω1?k), p2= (α>2, -k) ,
where

ω. = 1/mfTk2^
thus

P = (E, o) ^ = ω1 + ω2 .

In the bound state case we have k2 < 0; k — J/k2 = iκ. Further let us
split off with SCHWARTZ and ZEMACH the c.m. momentum writing
ψ(xl, x2) = e~ίPXιψ'(x) and make the phase transformation ψf -> eιvx°ψ'
λvhere v — μ2co1 — μλω2. The incident wave is written as

ΨO(XQ, r) = e ik'r

? independent of XQ .
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Assuming that V (x) only depends on x0 and r = \ΐ\ we make a partial
wave analysis and consider the Bethe-Salpeter equation for zero angular
momentum:

_jιL „ JL _ 2iω a __ kλ /j^ ? ! _ _ - - • a

This is a hyperbolic partial differential equation of fourth order in two
variables. It is convenient to introduce the characteristic coordinates
[2, 3] zί — xQ -f r and z2 = XQ — r so that (6) can be written in the form

where
(zl9 za) = λV(zl, z2) ψ(zv

7̂̂ 7 ~ 2iωι ("a%" + "aSΓ;

Evidently L ̂ L^ = L2LV

(7)

Fig. 1

Because of r > 0 we have % > za.
 zι Ξ ^ an(i ^2 Ξ ^ are ̂ ne boundaries

of the light-cone x2 = x% — r2 = zλz^ •= 0.
The fourth quadrant corresponds to the spacelike domain, the lower

half of the first quadrant to the forward cone and the lower half of the
third quadrant to the backward cone.

The potential V(zl9 z2) will have to fulfill come conditions which will
show up in the further calculation.
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The free equation
LlL2φ(z1, z2) = 0 (7b)

has the following special solutions:

a) two manifolds of solutions to L1 ψ = 0

. ω t . m\ ^

and
fOj. . ml

ω12(g, z1? z2) == £~^ ρ~l(iz\ Q~I ±q

 Zz (8b)

with q > 0 or q < 0.

b) two manifolds of solutions to L2 φ — 0

and

• ω2 . ^oJ22(g5 z3, z2) = e 2 c~ΐί2;ι β ^ 4<? "2 (8d)

with g > 0 or q < 0.

c) two solutions e t l ^ r = e,±l1Γ^~z** oί Llφ =^ 0 and L2φ = 0 which
, T , 1 ι J.J.. N ωl , ^ ι x ω2 , &can be obtained by setting m a ) : g = -̂ - i -x- or in b): g — — —«- i ~o" *

For convenience let us define

1

< M z z ) = - — ( ω ( z z ) - ω ( z z ) ) (8f)

and

Riemann Method

Again let us define an adjoint operator Mi to Li so that uLfl —
will be a diverence :

It is easy to see that

MI = 4 a

 9
1

J.ΓJL o :==: ~r ~^ ίΓ ' — ^ ϊ- COo I ~ϊ\~ ~ " 1 ~̂ ί I — ιC2 a%a22

 2 \ dZi dzz/
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and

£7-1 = v 4 -= — — 2ίω-tVU
V%2

V1 = ~u - 4^~ — — 2ioJlvu

du
U2= v - 4-£— -h 2ιω2vu

d v
V2 = —u 4-~ — + 2iω2vu .

(72/2

Thus

vL2L1u — uM1M2v = vL^L^u) — (L2u) M^v -f (Jf^) £2^ — uM^M^v]

= vL^L^u) - (^w) 7lf2v + (Jf2«;) ixw - uMl(M2v)

so that in the first ease we have

vL^u - uM1MzV = -fa- W 11(0,11) + -fa-Wι2(v,u) (9 a)

and in the second case

with

TF1 1(v,^)= [(4-^-- 2iW l)jD 2w]«; + Jfjϋ [(4-^-4- 2ίω2)w] (lOa)

Tf12(^ M) = (L2u) [(-4^~ - 2^) v]+u [(-4-g^ + 2iωa) Jf^] (lOb)

ΐF 2 1(fl,tt)= [(4"a^"+ 2iω2)L!u] v + Jf2ί;^4-^-- - 2iω^ uj (lOc)

TΓaaίv, w) = (Liu) \(-±~^+ 2iω^) v]+u ["4"a|" ~ 2ί ωι) ̂ ^j (10d)

Now consider

// dzί dz'2[E(k, zi, z2, z'1} z'2) L(L'2u(z'l, z'2)
D (11)

- u ( z ( 9 z ' 2 ) M { M ί B ( k 9 z l 9 z 2 9 z f

l 9 z ί ) ]

where D will be the domain noted in Fig. 2 and R(lc, z1} z2> ^ί? zz) will ̂ e

an integralkernel denoted in the following by Riemann function.
Because of (9 a, b) we can write for (11) :

+ ?dz[ W'ί2(B, «)|4 = z2 + f d z [ W'iz(R, «)|*ί-4; » = 1 or 2

where in W[j (R, u) the differential operators will act on the primed
coordinates.
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Fig. 2

Now let z\ tend to oo and choose E and u so that they meet the
following conditions:

First of all:
M ' M' 7? (If <y v ?' <y'\ — f> Π ^ Q ^l-"-^2 V ' 1' 2' 1> 2/ — ^ ^lOdJ

LIL/2u(z{) z2) = λ V(z[} z2) u(z'lί z2) (14a)

so that (11) on one hand can be written as

CO CO

2 Γ Γ rl?f r/v' fit?' ?'\ 7? (k v ? <?' ?'\ V {?' ?'\ ιι (?' v'\/ι I I (JUaι w/ι</9 \J \6~\ — %) V > 1' 2' 1' 2/ \ 1' 2/ \ 1? 2/

then, for R(k, zl3 z2, z'ι, 4)

ΐ[M = Q (12b)

f{Λ = 0 (12c)

(13d)

(13e)

in z = z1 =

R - 0; JfίJδ = 0; M'%R = 0

and finally for u (z^ , 22)
 :

a) on sj = 4: u(z[, 4) - 0; I^X^, 4) = 0

for z[ ~> oo u(z{, z%) may tend to u™ (z[, z%) where

or b) on z[ = z%: u(z[> z%) = 0; L%u(z[, z!2) = 0

for z[ -> oou(z[, z'2) may tend to u™ (z[, z2) where

(14b)

(z{, z%) = 0 (14c)

(14d)

(z{, z2) = 0. (14e)
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We denote the solution of (14a, b, c) and (14a, d, e) by %(%, z2) and

^aί^u zz) respectively.
Some of the conditions on E are redundant. If they are eliminated we

can state the remaining conditions as a complete mixed boundary value
problem.

With these conditions on jR(&, z1? za, z_[, z£) and with (14a, d, e) on
U ( Z ( > Z 2 ) (12) can be greatly simplified.

Consider the case ί = 1. The second, fourth and fifth term vanish, in
the third term a partial integration yields

ι

J dz'z

The first term yields

where we have used the fact that / dz2

22

z{. Thus, from (12) we obtain u2(z1, z2) —
the equation

R^ u£) is independent of

, z2) and hence from (11)

λ f f dz[ dzϊ, θ(z[ - zϊ)

and analogously with (14 a, b, c) instead of (14 a, d, e) for u considering
(12) for i = 2:

+ λ f / dz{ dz'zθ(z{ - 4) R(k, zlt zz, z{, 4) V(z[, z'z)
Zl Z2

Inserting for Uj° (zlf z2) the free solutions (8e, f) Λve obtain two manifolds
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of special solutions of the Bethe-Salpeter equation

CO CO

ψi(<l> zv z2) =
 UM *ι, 22) + λ f f dzί dz^ θ(z{ — za)

z* z* (15)
• R(lc, zl9 z2, z{, z'%} V(z[, 4) ψi(q, z[> 4)

which will behave as ui (q, z1, z2) for zl -> oo and will vanish as ut (zl9 z2) on
z^t ~ z2. Ί.TL a, subsequent section it will be shown that for a certain class
of potentials and also for the Yukawa-potential these equations can be
solved by iteration.

All this is quite analogous to the nonrelativistic Schrδdinger case.
The (pi(q, zv z2) correspond to the single special solution g9(&, r) and as in

the Schrόdinger case where y)(k, r) = -r. — rr- φ(k, r) we will see that the

wave function ^(k,z1}z2) can be expressed as a superposition of the

ψ(k,zl9z2) - fdqhfak) φ1(q,zί,z2) + f dq fz(q, k)

In the Schrόdinger case it was easy to construct the Volterra kernel
k

A (r, r') and the coefficient -77 — rr- . Both problems are much more diffi-
ΐ(~~κ)

cult in the Bethe-Salpeter case but splitting the Green's function will
help here, too.

3. 3. Splitting of the Green's Function

The Green's function with causal boundary conditions is

/
Q— ip(x— x')

d*plΰh^^^ '
SCHWARTZ und ZEMACH have shown that the wave function defined by
the integral equation

) = eili'Y + λfd*x'θ(k,x9%') V(xf) ψ(k, x') (16)

has the desired behaviour for r ~> oo, namely

with

/(k7 <- k) = -g^ λ f d*x' e-M V(x'} y (k, x') .

For zero angular momentum (16) reads

+ OO -f- CO

ψ(k,x0,r) = sin&r-f λ f f dxQd
-co 0
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where

G(k,x0,r,XQ,r')

+ °° °° _ . / / v

_ 1 Γ Γ _ , e *2M«o— ^oJsinpr sin£>r'

~~"H* J J PQ P Tta)T îTr-- P2 ~ wf + *e] [(po - ω2)
2 - p* - ml + iej

-co 0

and with z{ = #Q -f P', ^2 = XΌ ~ r' where dxQ dr' = -<r cZz{ dz'% we obtain
+ ~

1? 22) = w0(&, 2j, 22) + λff dz[ dz% θ(z[ - 4)
(17)

where we have set G(k, z1} z2, z [ , z%) = -^ G(k, x0, r, XQ, r').

The scattering amplitude for zero angular momentum is
\- oo

O Λ Γ Γ

,k') = —λ J J dz[ dz'z θ(z[ ~ 4) u0(k', z [ , z!2) V(z[, z!>) Ψ(k, z{, z!>)

and on the mass shell we evidently have kf = k.
Keeping in mind the method of splitting the Green's function in the

Schrόdinger case we presume that we have to split from

____ 1 _

too + ωja~2^m« + iε] [(p, - ^~^p2 - m| + iε]

the term
1

and that

+ 00 +00

e~l^°(x°~xo)smpr sinpr'_ 1 Γ Γ 7 j
~~tf J J °̂ :PΊKί7:Γω1"^ε

— oo 0

will be a Volterra kernel and will lead us to the Riemann function. So let
us make the following decomposition:

1
[(p0 + coj)2 — p* — m\ -f *e] [bo ~~ ωzY — pz ~ m% + iε]

2πiθ(pϋ + ωO δ((pQ + ωχ)2 — p2 — m\)
— b ~ ω2)

2 - ί?2 - ml ~~~~

__ 2π^ 0(y0 ~ ω2) ό((y0 — ω2)
2 — p* — ml)

+ W+ω _\£)2_ya_<]

1

to _ω _iεγ_p>_m^

thus

05 r, .τ , = ± ( , XQ, r, xQ, r )

+ A^(k, XQ, r, XQ, r1} + ^(A;5 ^0, r, XQ, r'}
17 Commun. math. Phys., Vol. 7
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with

f f dp0dp
— CO 0

, o. e-^o^o-^o) sinpr sinpr'
co,) ό((ι.0+ ω,)8 - 2>2 - mi) -̂ — -y,_p._>>ίΓ

and an analogous definition for ^42.
Firstly we will show that R(k, xQ9 r, XQ, r') leads us to the Riemann

function.

Introducing the new integration variables qλ = — ̂  — , q2 = — ̂  —

where dp^dp-^ = 2^gx dg2 writing again ^0 -f r = 21? Λ;O — r =• z2 and

taking in mind G(k, zlt z^ z{, z'2) — -^ G(k, xQ) r, X'Q, r') we have
-f oo

,zl9z2,z{,z£ -=-τzϊ- ί ί dq1dq2
4π -V (19)

Yet another representation will be convenient in the following. Intro-
ducing a Feynman parameter like SCHWARTZ and ZEMACH we obtain

ωl

plΊf ? ?' y'\ — _I __ L / fJιι p~2"(Zl + Z*~Zί~Z'*)Ji(tc, zλ, Zι, z2) — 4π2 βj aye*

~ω* (20)
+ CO V '

d ί ί j j e-^fa-2*) e-ttofa-*'*) - (z{ — 2^
• -g^y J J aft ^^2 4̂ ẑ -̂ -=r̂ )T:-ρ2-(̂

— oo

where Q2(y) — y2 — k2.
Evidently R can be written in the form

R (k, zlt z2, z [ , 4) = A (k, zj, z2, z [ , z'2) - A (k, zly z29 z'2> z[)

or (21)

= A (k, zv z2, z[, z2) - A (k, z2, zλ, z[, z2)

and the integral appearing in (20) can be calculated [7] :
CO

Γ Γ e-i<7ι(2ι-2j) e-ig-a(02-4)
J J dqι dq^-—.ε)(q^.ε)^ψ

where J^Q(z) is the Bessel function of zero order.

So we have

A (k, zlί z2, z [ , z2) = θ(z{ - 2j) Θ(z2 - z2)

(20a)
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z;

Fig. 3

and taking advantage of the series for J^ (z) we can write :

(22)
— -

= θ(z{ - Zl) θ(4 - zt)-^ Σ ΛπΓi

with

$ dye

The first term of E, A(k, zv z2ί z[, z%) does not vanish only in the first
quadrant starting from (z1? zz) Λvhile the second term A(k, z^, zl9 z{, z%)
does not vanish only in the first quadrant starting from (z2, z^. On
z[ = z% both terms are equal, hence .8 = 0. Because we consider the domain
z{ > z'2 in JD, the second term contributes only in the hatched domain.
Applying the differential operator M{ or M'% to E we get

i f da
J J "Vi

hence with (20 a) :

M[R(Tc, z,, z,, z{, z'z] = le-
JT-(2- z-<~<) [θ(2ί

• ΛKj/ίί"-"^) 1? -~Zί)) - β («ί - «ϊ) 0 (22 - ^ϊΛ

and analogously we find :

1 ^ ωl / i '_ / \

IfέΛ (ft, zv zt, z{, 4) = τe~ϊ~ ̂  + ̂ -^-^ [fl (Z[ -

(23)

(24)

17*
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Now it is easily seen that E will be identical with the Riemann function
if we omit the θ(z[ — zx) θ(z% — z2) in front of A (k, zl9 z2, z{9 z%). (13b, c)
follows from (22), (23), (24) taking in mind the series of SQ(z) [7]

(13d) follows from (21), (23), (24); (13e) follows from (23), (24).
It is MίM^&(k9zl9z29z{9z^) = δ(z'1~ zj δ(zf

2 - z2) ~δ(z[- z2)
but the second term on the right hand side always vanishes because the
support of the (^-functions is in the inadmissable domain / < 0. Hence
after cancellation of the θ (z[ — z j) θ (z% — z2) in front of A (k, zί9 z2> z[, z'2]
which produce the δ(z[ — z^} δ(z% — z2) also (13 a) will be fulfilled. So it
is shown that

a>!

- J_ f
~ ±E J 2Q(y)

x ά/:
is a solution of the boundary value problem. But this solution is unique,
hence R is the Riemann function.

It may be noted that

/ / dz[ dz!> θ(z{ - z%) R(k, zl9 z2, z{9 z'z) V(z[, z'2]
Zl 22

00 00

= / / dz{ dz% θ(z{ - z'z] R(k, zl9 z2> z{9 z%) V(z[, z%)

Riemann function E and retarded Green's function E are different only
through the θ(z{ — zj θ(z[ — z2) in front of A(k, zl9 z2, z[9 z'^}. So it is
M(M^E = ό(z[- zj δ(zz - z2) while M[M^E = 0.

3.4. Proof of Convergence

Now we can use the knowledge of the Riemann function to prove
that the integral equation (15) can be solved by iteration for all λ. As
potential we take the Yukawa potential

ή ί*

= -V /π2 J
or
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This proof will at the same time exhibit a whole class of potentials for
which the iteration of the integral equation does converge.

Using the integral representation for A(Jc,zvz2) z{, z%)

~ ~

1 r r

^ J J dqι
q2 + ω2)]

and performing the ̂  -integration we get

A (k, Zl, z2, z{, 4) = θ ft - %) 0 (̂  - zt) -±f Σ It (*, *!> «a, «i, 4) (25)
ΐ = l

where

•̂ 1 V"'' ^1' ^2' ^1' %)

/ /v
2l-*2) Γ

J

*-*y(

By the method of stationary phase [8] we can show that for the bound
state case i.e. for k2 < 0 each Iί(k) zl9 z2, z[, z%) can be estimated by

/ 1

hence we can write:

Now it is readily seen that for ̂  < 0 or z2 < 0 the possible upper bound
for the first iteration

dz[ dz'z θ(z[ - 4} \

CO CO

Si / / dz[ d z ' z θ ( z [ - 4) \B(k, zlt zt, z[, 4)| \V(z{, 4)
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does not exist because of the bad decrease of V(zlίz2) as well as the

I _ r- j -singularities oτιz1z2 = 0. Thus the proof can not be established

in the usual manner. A way out is the following:
First we take into account the asymptotic expansion of H^ (z) and

the expansion about z^ = 0 [7], thus decompose V(zv z2) as follows:

V(z1, zt) = V,(Zi, z,} + 72(Zl, 22) + V3(zlt z2)
with

2zl9 z2 =

then we can write for F3(z1, z2) the estimation:

-3/4
1 -f

Then we consider

= 0 (4' - Si) θ (4' - za) A / / dz{ dzί A (k, zl

- θ(zi' - 22) θ(4' - zj) λ dzί ^4 ̂  (k, za > z,,

It can be shown [9] that for RW we have the following estimation:

(26)— ^ 1 I1 -f-

ε > 0 .

Now write

*-c~ i

+ λ f f dz[ dzz θ(z[ - 4) ^(2) (k, zv z2, 4, 4)
«ι Zs

• F(4,4) ^-(^ 4.4); / = i or 2
CO CO

) = A / / d«ί ^4 fl(^ί - 4) £<*>(*,«!, 225 4,4)
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and let us take zl < 0, z2 < 0 for the other cases the proof is not so
difficult so that we may omit it here.

The estimations

\mn(>y ~ \\ — \rrn(v y \ -I- rrWίv v \\
\ψ (ZV Z2)\ — \ψl (Zl> Z2/ ~Γ ψ2\zl> Z2)\

1 +

where1

[ oo -γi

f d z ' F ( z ' ) \ (27b)
z1 4- zz J

1
4-6 1

will now be shown by induction. For n = 0 the estimations are shown in
the appendix.

Firstly because of V2(z1, z2) -f Fgί^, z2)| ^ c ^12;2|~
3/4 we have

CO OO

Γ Γ 1 ^
J J ^i^flizi-z^Yqrgj^^

2j Z2

[
nil

^ J ^dz"F(z")\ .
zϊ + 2"a J

Taking zr = z[ + ^> r' — ̂ ί ~~ ^2 as new variables we can perform the
r' -integration. The integral can be estimated by

00

f rjr' __ ___ _ __ L_ _ __ U'2 __ r'

J ar 1 + \z' + r' i'*-£ 1+ z' - rΊ 1 / 4~ ε '
21-3/4

hence we get
1 + \z' - r'

00 p 00 -jίJ,

• fdz'F(z')\fdz"F(z")\
Zi + Z2 L2' J

[
oo

Γ r/ '

J °̂
Zι +2.

All inessential factors may be gathered in the following in c.
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To estimate φΐ^l(zlί zz) we write

4, 4)
oo oo

oo oo

, zι,za,zί, 4) Tε^

Take z{ > 0 and let a be a number with z2< — a < 0 < a < z{ then

zϊ θ(z[ - 4) Λ<^) (k, z,, zz, z[, 4)

4 0 (zί - 4) R(2) (4, %

f dz'z θ (zj - 4)

, 4) -~ττ
zί - Ίζ

. 4) - t, zί , 0)) -—

Here we have estimated the four terms separately and we have used
(25) and

Evidently the above estimation is correct also for z[ ^ 0. In the same
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manner we get

dz( θ (z[ - 4) R(2} (k, zv z2, z[, 4) -—AΓ^T

^ c "f.

hence

4-+

/ dz' ^ î _ 1 ___l_^ !
J rfZH + |zί|"«- 1 + [*ί| T + \zί ««-• nT

z,
CO OO

f f rJ ?',!•?' ft (-/ ?'\ ___ - _____ l- - -Mi ___ ^Lj j Λ Z i r t z . j P l x i i - i Z a J - j -^iirt-.v Γ+ -^lΓt~ j j^- -χ + [z/ 1 + |̂ f

Again we introduce in the double integral z' = z[ -{- z'2, r' = z[ — z% and
estimate the r' -integral by

σo

/• , , ___ i __ __ 1 _____ i _____ ι__
7 "ll-i/'+r'l1/*-* 1 + |2'-?|i/4-e ί + 2' + r'[ 1 + |2' - rx |

Likewise we set in the other integrals

i + μι/*-« i +

so that finally we obtain

Un+l/« « \ | <: ___fe.ZL?aL

1

(» + !)!

1

"(wΓ+T)ϊ

dz"F(z"}

n + 1
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OO 00

Because of z1 < 0, z2 < 0 it is / dz" F (z") < f dz" F (z"} so we get
Z{ Zi + Z2

the desired bound for φ™ ^ ί (z1? z2) and hence for φn + l (zv z2).
The estimation for \φn+l(zΊ,z2) - φni-1(z1,0) - ψn+1(0^^)\ is done

in the same manner, we have to use here

^ y ? v" ~"\ 7?(2) (ϊc y 0 y" y"\ J?(2Wfr 0 ? ?" ?"\\I/, ώ -^, ^2? /^^ 5 ̂ 9 / — -tt ' ^5 < v j _ ) vJ, Z | , /ϊ/2 / — -Ev v ^ j ^5 ^2' 1 ' 2 / I

1 1

-6 i + |4Ί1/4"ε

The solution of (15) is IIOΛV

φ (zl9 z2) - u3 (q, zli z 2 ) -f Σ ψn (zι>
n - 0

which thus can be estimated by

dz"F(z")

"l" 1 + |%-2 a | 1 + ^ι|1/4-e 1 -

The bad decrease of V(z1. z%} for \z-^z^ -> oo forced us to go to the iterated
kernel R^ (k, z1? ^2? z{, z!2). But having done the estimation for RW and
the above mentioned estimation we see immediately that all potentials
which decrease faster than |z,z9 -

3/4~ε £ > 0 for |z Ί Zo| -> oo and which
I 1 Δ ~ I J- ώ I

are less singular as (z t22)~2+ε, ε > 0 on z-^z2 = 0 admit cruder methods of
estimation. For all other potentials like the Yukawa potential we have to
take into account their special properties like the oscillating function

e—ιμγz^a j£ generally a proof can be established.

3.5. Representation of the Wave Function

We turn now to the remaining terms in the decomposition of

G(k, zv z2, z{, 22)- Proceeding analogously as with R(k, 21? z2, z{, z%) we
get

ffdq1dq2θ(q127^" / / "'ί/l α(/2 V Wl 1" ̂  ̂ ^(/l(/2 — ml)

where we have used the definitions (8a—g).
Similarly

CO

A2(k, zv zz, z{, 4) = — / dq-^~j
•11 J o τn I ί
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From the integral equation (17) we obtain
-f- oo

ψ(kv zl9 z2) = u0(k, zlί z2) -f λ I I dz( dz2 θ(z[ — z2) [A^k, zlt z2, z{, z2)
— CO

L Λ (Is >y >y v' t'\ \ P Cb ~ - vf v'\Λ V (v1 ?'\ inCIs v' v'\
~\ •£*- 2 \ ' 1' 2' 1' ^27 ~T~ -* V ^ j ^1 ^2' 1' 9 / J \ 1 ' 2 / τ \ 5 1' 2/

>o

Λ? _«."". » Λ Γ . / n M

0

q , Z ι , z 2 ) Γ , ( q , k )
LV U

0

Γ
" J

CO CO

-j~ λ f f dz( dz!2 (9(4 - 4) £(&, Zi, z2, z { , 4) F(z{, 4)

where
-:- CO

1 Γ f I f * / ' ' '

00

Remembering the special solutions φi(q) zl9 z2) defined by the integral
equations (15) and putting

/ ωl . k \ I ω2 , k

n (τ- + "2
we see that y>(&, 21; z2) can be written as a superposition of these special
solutions:

00

ψ(k, z,, Za) = φ.(k, zlt zt) +fdq -Mί Δ^ί?
»/ o 77Γ/ / „ ωl \

- -

Thus we naturally obtain the expansion of the wave function in terms of
the special solutions from the decomposition of the Green's function.
The coefficients Γi(q) k) in this expansion also can be expressed easily,
inserting (28) into the definition of Γi(q, k). We obtain

•fdf
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with
-' CO

Kti(q, q') == ~- ff dz[ dz'z B(z{ - z'2) ωf^q, z{, 4) V ( z [ , z'z]
— oo

? = 0 ,1 ,2 .

In the Schrόdinger case we have instead of (29):

a(k) = k- g ( k ) a ( k ) (30)

with

= fdr' eίkr'V(r') φ(k,r') .
o

This is an equation which can be solved readily. In the Bethe-Salpeter
case because of the partial differential equation and the two differential
operators this equation is blown up to a system of integral equations for
the two unknown functions Γi(q,k). Remarkable is also the similar
structure of the kernels Ki3-(q, qf) and g(k).

We have bound states in (30) if the homogeneous equation can be
solved i.e. if a(k) = —g(k) a(k) or f(—k) = 0. In the Bethe-Salpeter case
we have bound states for those k for which the homogeneous system of
(29) can be solved, i.e. the Fredholm determinant of the system is zero.
Thus the Fredholm determinant is the natural generalization of the Jost
function [4].

Instead of (18) we could have made the following decomposition

1
ϊ(Po + ωx)

2 - p2 - mf + ί ε ] [(Po - ω2)
2 - p2 - ml + iε]

2πίθ(—p0 + ω2) δ((pQ — ω2)
2 — p2 — m|)______

[(p0 + ω1 + is)2 - p* — mf] [pQ — ω2 + ίε)2 — p* — m$\

and thus we would have obtained

SΊ (~L y ~ yf yf\ ID / / Λ M y ~' *?'\Jlr- ?-? (If ? V ?' ?* \

with

0 / 7 ' t\ -1 / / U\(q>Z\i Z2) Mil (<l> 2] > 2a)
^ (fe, 21? 29, 2ι. So) ̂  — / dq —--;-/ \-ό 7 0 Vi v i' 2' ι> 2; π j ϊ _8E a>Λ2__k2\

U 2 / 4 /
and

o

S2(4, ̂ 1; zί, z[, z'2] = - / dg f ~y^
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and

B(k, z l t z z , z ί ί z ί ) = ~f^-γ f dye* *l

+ 00

4)

Similar to EE leads to a Riemann function. This Riemann function is
zero outside the domain D' (Fig. 4) and satisfies similar conditions on
the boundary of D' as E on the boundary of D.

Fig. 4

In the same manner we can define special solutions :

• B(k, Zι, z2, z[, z%) V(z[, 4) ψi(ί, z(> 4);
and these integral equations can also be solved by iteration.

Thus we get the decomposition

l*ι-

f>
in terms of the special solutions (
for z2 -> — oo is determined by

, s1? 22). The asymptotic behaviour

g, z l332). Furthermore ψi(q,zl,z2)
have to vanish on zl — z2 as uί(q) zl9 z2). The coefficients Γi(q> k) are the
same as in (28) but the integration now runs from — oo to 0.

Acknowledgment. I would like to thank Prof. Dr. K. MEETZ for many illuminating
discussions and for the critical reading of the manuscript.
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Appendix

In this appendix we will establish the estimations (27) for n = 0 [9]:
Consider:

CO CX3

1 Γ Γ
X d z z A ( k , zv z2) 4, 4) V2(z{, 4) ωn(g, z[, 4)

j = 1 or 2 .
Using the representation (25) for A and writing

where e.g.

we have

Γ Γ I I I f f I f

^ _ _ ^ J J Zl ^yί(Zl>Z2>Zl>Z2Ϊ ί(Zl>Z2>Zl>Z2)

with

Let us study the decrease in z1 : then clearly z1 > 0 but it may be z% < 0.
This is the most difficult case :

The contributions

3/4π / ίzj / d4 gr^zi, zz, zί, 4) /,&, Zj, zί, 4)

can easily be estimated by

where we have used for ^(^, 22, 2;{5 4) ^ne estimation:

which can be read off from the estimation for I i ( k 9 z l 9 z 2 t z /

ί ί z f 2 ) . To
estimate

CO 00

/ f d z { dzz g { ( z l 9 z2, 44) h\(z^ zz, z[, 4)
2! 0

define
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so that by a partial integration in z2 we get
oo Z^= oo

f dz' (z z *' z'}h (z z z f z'} \

259

Γ Γ , f ί d / f \ , ,
- dz-L dz.2 K-^-gr^Z!, z2ί zl9 z 2 ) l h^z^ zZ9 zlf z2].

J J \ v "Ί /
Z! 0

The integrated term vanishes because hi(z1, z2, z{, 4 — 0) = 0 and
gi(zli z2, z[, z!2) tends to zero for 4 -* + °° while lιi remains bounded. By
the method of stationary phase [8] we obtain the estimations

1

so that the remaining double integral can be estimated by
oo oo

c f dz{ \z{ - Zl |-V* μί |-ι/4 f dzϊ TT^L-Ϊ -p- ̂  c \z

Analogously the same decrease in z2 is shown, hence

^

and thus
CO OO

J J dz'} dz'λ θ(z{ - 4) ^(*, z t, ^2. ^ί' 4) ^2(2ί» 4) ^to> 4> 4

With cruder methods and with methods indicated by the estimation for

Ψι + l(Zι> 22)
 we obtain (ΐ = 1, 3)

f fdz[ dz'2 Θ(Z[ - 4)

Hence the same estimation can be derived for

, zv z2ί z[, z!2) V ( z { , 4) %(^ z{, 4); / = 1 or 2 .

Now it is easily seen that we can get the same bounds also for
oo oo

f(z^, 2a) = λ f f dz{ dz!2 θ(z{ - 4) B(k, z1, z2, z{, z'2] V ( z [ , z ! i ) χ ^ ( z { , z ' z ) .
Zι Z2

Thus the estimation (27 a) for n = 0 is proved. The prove for (27 b) runs
similarly.



260 J. HONERKAMP: Bethe-Salpeter Equation

References

1. NEWTON, R. G.: J. Math. Phys. 1, 319 (1960).
2. GARABEDIAN, P. R.: Partial differential equations. London: John λViley & Sons

1964.
3. COURANT, R., and D. HILBERT: Methods of mathematical physics II. New York:

Interscience 1962.
4. See also: NAKANISHI, N.: J. Math. Phys. 4, 1229 (1963). KRAMER, G., and K.

MEETZ: Commun. Math. Phys. 3, 29 (1966). They treat the Bethe-Salpeter
equation in the momentum space with the help of a spectral representation
and get in a similar manner via a system of integral equations a generalised
Jost function.

5. MEETZ, K.: J. Math. Phys. 3, 690 (1962).
WEIKBERG, S.: Phys. Rev. 131, 440 (1963).

6. SCHWARTZ, C., and C. ZEMACH: Phys. Rev. 141, 1454 (1966).
7. BATEMAN II, H.: Higher transcendental functions. New York: Mc-Graw Hill

1955.
8. COPSOK, E. T.: Asymptotic expansions. London: Cambridge University Press

1965.
9. For more detailed calculations see: HONERKAMP, J.: Lόsung der Bethe-Salpeter-

Gleίchung mit Hilfe der Riemannschen Methode. Preprint Universitat
Hamburg.

DR. J. HONERKAMP

Physikalisches Institut
der Universitat
5300 Bonn
Nussallee 12




