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Abstract. An approach to the theory of Lorentz invariant distributions is
developed in terms of covariant spectral representations. The behaviour of singular
invariant distributions under a change of scale is analyzed. It is shown that the
conventional extension of homogeneous singular functions into distributions in
jβ4, followed by a breakdown of homogeneity, is incomplete. Homogeneous ex-
tensions depending on an arbitrary scaling parameter are introduced, calculation
techniques are developed and various formulae having applications in quantum
field theory are derived.

1. Introduction

The aim of this paper is to present a new approach to Lorentz in-
variant distributions in terms of spectral representations which exhibit
the covariant form of the functional, permit to overcome the "origin
of the light cone" difficulties and lead to a considerable simplification
of calculation techniques. Thus, the approach is possibly simpler than
that of Refs. [1] —[5]. On the basis of this formalism we investigate the
behaviour of certain singular invariant distributions under a change of
scale: The conventional way of associating distributions in R* with
homogeneous singular functions by regularization gives rise to func-
tionals which are no longer homogeneous. Such inhomogeneous distribu-
tions (e.g. the propagators (x2 — iQ)~n, n ̂  2) are physically unaccept-
able because the space-time or momentum variables on which they
depend carry dimension. The extension of singular homogeneous func-
tions into homogeneous distributions in R* requires the introduction of
an arbitrary scaling parameter bearing dimension. Then, a breakdown
of dilatation symmetry by regularization can be avoided if a similarity
transformation in space-time is accompanied by a corresponding change
of this scaling parameter.

In Sec. 2 we develop the theory of Lorentz invariant distributions
in terms of spectral representations. In Sec. 3 we analyze the problem

* Supported by the Deutsche Forschungsgemeinschaft.
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of extending distributions from a subspace to the entire J?4 in connection
with scale transformations. Sec. 4 is devoted to a discussion of delta -
functions <5<w> (x2) etc. localized on the light cone and to a comparison of
the various definitions appearing in the literature, all of them being
summed up into an expression depending on the arbitrary scaling
parameter. In Sec. 5 asymptotic and Laurent expansions are derived and
the equivalence of certain extensions is proved. After a brief discussion
of some special algebraically singular distributions in Sec. 6 we study in
Sec. 7 Fourier transforms and analytic functionals in terms of spectral
representation s .

2. Lorentz Invariant Distributions in Terms of Spectral Representations

We denote by R4- the four- dimensional Minkowski space of real points
x — (xv) = (#0, x), x = (α j, #2, £3), with the metric x* = x% — x$ — x2,

3

x2 = Σ x\- When we write f(χ] for a distribution / £ D' (R*) we merely
i

wish to indicate that / operates on test functions φ(x) depending on
x ζR*. f((py denotes the value of the distribution at the element φ(x)

= 9Φo>x)
Definition. A distribution / £ £$' (R*) is said to be invariant under the

restricted Lorentz group L^_ if for any Λ ζ L^+ the relation

Λf(x) {φ(x}} = f ( x ) (φ(Λx)} = /(*) (φ(x)} (2.1)

holds for all φ
Such / Λvill be called "invariant". In terms of the infinitesimal

generators of L\., Mok = x0dldxk + xkdldx0, Mίk = x^ldxk - x^jdx^
(i, k = 1, 2, 3) / is invariant only if MQtkf = Mit1cf = 0.

Definition. Let Λ* be an element of the antichronous component L^_.
Then we define the reflected distribution / by

J=Λ*f. (2.2)

For every invariant /, e.g. f(x) = f ( — x ) , the definition (2.2) is indepen-
dent of the particular choice of Λ*. A distribution / is called even if
/- /and odd if / = -/.

Every invariant distribution / can be decomposed into an even part
fe and an odd part /0 according to

/ = /. + /» (2-3)
where

From Ref. [6] we recall the following theorem.
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Theorem 1. Every invariant f ζ & f ( R * ) whose support is the origin
xQ — x = 0 has the form

f = Σcna
nδ(x) (2.5)

0

ivhere δ(x) = δ(xQ) ό(x) and Π = 32/9&o — A, with constant coefficients

cn and a finite N . I f f ζ 2£' (O4), then N - oo and Em ^\cn\~(2n}\ = 0.

Let s 4= 0 be a real number. Then the invariant hyperboloid x2 = s
is a regular surface in E4. The light cone x2 = 0 has the origin as a singular
point. However, in the space 7?4 — 0 (J?4 minus the origin 0) the hyper-
boloids x2 — s = 0 are regular surfaces for all s ζ Rl. Hence, in R^ — 0
we can introduce a new local coordinate system u = (UQ, ul7 u2, u3) with
uQ = x2 — s such that the Jacobian D(x, u) remains different from zero.
By starting from the formal integral / δ^ (x2 — s) φ(x) dx and passing
to the u variables we obtain the following definition for δ^ (x2 — s) in
R^ — 0 *

δ(x2 — s} (φ(x)y = / 77(0, %, u%9 u3) du± du2 du3 (2.6)

o / x / c ) N / / \ \ / T \ Λ I / ^ ^ ? \^0' ^1? ^"2' ^3/ 7 7 7 m n\
o(n> (x2 — s) (φ(X)) — ( — l r / — ^~^> i duΛdu«du<> (2.7); x r v ;/ x ' J du% |MO = O 1 Δ ό v y

where η(uQ, . . ., w3) = φ(x(u)} D(x, u). We shall extend these definitions
to the whole J?4 in Sec. 4. (We call a distribution "defined in ̂ 4 — 0" if
it is defined on all testfunctions φ (x) whose support does not contain the
origin 0.)

For 5^0, δ(x2 — s) can be decomposed in E4 — 0 according to

(2.8)
= :0 (xQ) δ (x2 — s) -f θ (— xQ) δ (x2 — s)

and this decomposition extends trivially to R^. In R* we define

X, (X -6)- (~XQ) (X ~5), 5 ^ 0 (^9)

With these definitions we can prove the following lemma.
Lemma, a) // φ ζ ^(J^4 — 0), ίΛeτι ίAe meanvalue of φ over the hyper-

boloid x2 — s == 0,

χ (β) = a (a* -«)<?>(*)>, (2.10)

α ίesί function of
β function

χ+(s] = ε(x0) δ(x> - s) {φ(x}} (2.11)

is a test function of @(R\] = 3>(s S 0).
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Here 2 (s ̂  0) is the space of all test functions χ+ (s) vanishing for
s < 0, having their supports bounded to the right and being infinitely
differeritiable for s > 0, with right-sided derivatives at 6' = 0.

Proof, a) Since α:2 — s = 0 is a regular surface in R^ — 0 for all s ζ R1

at least one of the \xv\ tends to infinity if \x*\ —.> oo. Since φ has compact

support, φ(x) ΞΞ 0 for \xv\ > Kr > 0, and there exists a K > 0 such that

η(u) = Q for s>K, i.e., χ(s) = 0 for \s\>K. Furthermore, since

dδ^(x* - s)lds - -<5<w+1)(x2 - s) exists for all n, χ ( s ) is infinitely
differentiate. Then χ ζ D (Rl).

b) For φζ@(R*— 0) the same argument as in a) shows that
χ+ ζ2(R\). To demonstrate that χ+ ζ2l(R\) also for φ ζ ̂ (β4) we note

that the integrand in the following formula (obtained from (2.7) and (2.9))

p (Ύ IL ^o/

- <- "'/
is a regular and odd function of x0 vanishing at XQ = 0, i.e. at |x| = 5 = 0
the integral being convergent and the support of the resulting function

is the one given in the Lemma.

The mapping of four dimensional testfunctions onto one dimensional
test functions furnished by the Lemma enables us to set up spectral

representations for invariant distributions which explicitly exhibit their
invariance properties. To this end first let /(<$) be a locally summable
function identif yable with a regular distribution . Then we can define the

parametric integral

(2.12)

da = /(*) (β)

since the rhs exists for all φ ζS(J?4), taking into account that /(«$) is

summable over all finite intervals. This leads to the following definition.

Definition. If δ(x2 — s) {99 (#)} = χ ( s ) is element of ^(E1) and f(s) ζ
^^'(E1) is an arbitrary distribution, then the parametric "integral" is

defined by

7 /(*) *(& ~ «)
oo

In case of an integrable f(s) the rhs of (2.13) reduces to that of (2.12).
It is appropriate to consider spectral representations for even and

odd invariant distributions separately.
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Theorem 2. Every even invariant distribution fe ^^'(R* — 0) has the
spectral representation

fe(x) (φ(x)} = //.(«) δ(x* - s) ds(φ(x}} (2.14)
- CO

where the spectral function (a distribution) fe (s) ζ 2' (R1) is uniquely
determined by fe(x).

In what follows we shall often omit the test functions φ (x) in relations
such as (2.14). The symbol /0( •) in (2.14) obviously has two different
meanings according to the argument.

Proof. Every fe(x) £ & (R* — 0) of the form (2.14) is even invariant.
On the other hand, for every invariant fe ζ 3}' (R1 — 0) we define the one
dimensional distribution

for every χ(s)ζ^(R1). h(x) is an infinitely differentiable auxiliary
function whose support does not contain the origin and such that
δ(x2 — s) (h(x}y = 1 for all 5 ζ R1. One could choose the support of
h (x) in the way, that the support of h (x) χ (x2) is bounded. The following
arguments show that this is not necessary in virtue of fe (x) being Lorentz
invariant. For the distribution /β (x) defined by

we have
oo

f.(x) {Ψ(X}} = / /.(β) 0(3? - S) (Ψ(X)}
- OO

= /.(«)<*(«)> = /.(*)<*(*)
Hence,

where ω(x) = h(x) χ(x*) — φ(x) and δ(x* — s) {ω(α )) = 0 for all s.
Let us decompose the space R* into overlapping bounded domains Gk

with the following properties : 6r0 contains the origin but does not inter-
sect with the support of ω(x). (This is possible since the support of
ω (x) does not contain the origin and is closed by definition). The domains
Gk, k = 1, 2, . . ., are supposed not to contain the origin. Thus we can
choose an I = I (k) with xl Φ 0 in Gk. Let {ek} be the partition of the unity
belonging to {Gh} and ωk(x): — ω(x) ek(x). Only a finite number of the
ωk(x) are not identically zero. Then we have

f (2-15)

where i(k) φ l(k). The xl have to be expressed in terms of the new
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variables uτ = x2 — s and ut = xt. In Gk we write

with infinitely differentiable σki. Transforming the 3 -dimensional volume
integrals of (2.15) into 2-dimensional surface integrals one deduces from
δ(x2' — s) {&>(#)) = 0 for all s that the akί have bounded supports. On
the other hand, in the old variables we have

<aκ = ΣZMuσkί (2.16)
i

where the Mli are the generators of L]^. Thus

fe(x) <ω(*)> = 2ΣMl(k)ί(k} fe(x) <σfc,(α;)> = 0
*,«<*)

in virtue of the in variance of fe(x).
Thus fe(s) is uniquely determined by fe(x) and independent of the

auxiliary function h(x). This completes the proof.
If φ(x) ζ@(R*) then χ(s) = δ(x* - s) <9?(α)> has the form

χ(*) = M*) + λ2(a)log* (2.17)

where Λ l5 Λ2 ζ ^(E1) and Λ2(0) = 0 (cf. also Sec. 5). As shown in Ref. [4]
the space Jj? (R1) consisting of all functions of type (2.17) can be equipped
with a topology. Denoting its dual by Jtf" (R1) one has the following
theorem.

Theorem 3. Every even invariant distribution fe (x) ζ 3)' (E4) admits the
spectral representation

/.(*)= ffeh(s)δ(x*-s)ds + ΣcnΏ
nδ(x) (2.18)

— 00 0

where fejl(
s) is element of ^'(Rl). feh is not uniquely determined by fe(x):

The "spectral function" feh(s) can be altered if simultaneously the coeffi-
cients cn are changed. Only the restriction fe (s) of feh(s) to & (R1) is uniquely
determined according to Theorem 2.

By means of the second part of the previous Lemma one proves in
analogy with Theorem 2 the following theorem.

Theorem 4. Every odd invariant distribution /0 (x) ζ & (R*) has the
spectral representation

/β(*) = //o(*) β(*β) &(* - *) ds (2-19)
0

where the spectral function /0 (s) ζ & (s ̂  0) is uniquely determined by
f0(x). & (s ̂  0) is the dual to Q)(s ^ 0) and is isomorphic to the subspace
&+ of all those distributions of Q)' (R1) whose support is contained in s ̂  0.
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Let us summarize the preceding results into
Theorem 5. Every invariant distribution f(x) ζ^'(E^) has the spectral

representation

cna
nδ(x) (2.20)

lυhere fehζύ#"(Rl). f e h has a uniquely determined restriction to
and /0 is an uniquely determined distribution of 2' (s >- 0). N depends on
the order of f(x).

In virtue of the above spectral representations the following symbolic
notation is justified. For every even invariant distribution fe(x) we shall
write

/.(*):= /(*2) (2.21)

and for every odd invariant distribution we set1

fϋ(x}:=ε(xϋ}i(xη. (2.22)

Let now /(«$) be a given distribution in Jtf" (s ̂  0). Considering f(s) as a
spectral function we can construct the following distributions :

OO CO

θ(x*) /(.τ2) := f f ( s ) δ(x* - s) ds:= f f ( s ) δ(x* - s) ds (2.23)

ε(xa) f(x*) :=//(«) ε(x0) δ(x* - s) ds (2.24)
0

0 (± *o) / (*2) := 4- [β (^ f (^2) ±

(2.25)

s}δ(x* + s)ds . (2.26)
o

In (2.22) to (2.26) the products of the distributions with step functions
are merely symbolic notations for the well defined quantities on the right
hand side. If f(s) is a given singular function and one wants to construct
an invariant distribution with prescribed support properties having
f(s) as spectral function the above formulas suggest the following pro-
cedure : Extend first / (s) to 2)' (Rl), perform a second extension to 2%" (El)
and apply then the spectral representation. In the following section more
direct extension procedures are discussed.

1 In (2.22), (2.25) the l.h.s. should be "multiplied" by <9(x2). Since, however, these
distributions are Lorentz invariant such factor can be omitted. We shall adhere to
this convenience in all what follows.
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Remark. We have introduced a mapping of invariant four dimensional
distributions onto one dimensional distributions by means of spectral
representations. The same mapping can be generated through a trans-
formation of variables. Let the support of φ (x) be contained in the region
xQ > 0 of jR4. Introducing the transformation Tx — u : UQ = x2, ui — xi}

we define
(Tf) (u) {φ(u}} = f(x) (φ(Tx] \dTxidx\)

= ί(χ) (φ^, #1, #2» ί»3)
 2^o>

As in the proof of Theorem 2 we find that

(3(Γ/)/3«0 <<?(«)> = 2 M o ί f ( x ) (φ(x\ x)> = 0

for i = 1, 2, 3. Thus, Tf is constant in the variables U1}u2, u3 and we
can write it as a direct product :

(Tf) (u) = /(«„) x l u.

Hence in the domain where T is a regular transformation (cf. [6]) it
provides a mapping of f(x) onto a one dimensional distribution /(%). If
ί7 is singular (what happens if the origin is included) an extension
procedure of the type discussed in the next section is to be superimposed.

3. Extension of Invariant Distributions to β4 and Scale Transformation

Two attitudes may be taken towards the construction of singular
invariant distributions in E4. On the one hand, a classical function
singular on the cone may be associated with a distribution defined on a
certain subspace of &(R*) and then be extended to the whole &(R*). Or
else, singular distributions may be generated entirely within the distri-
bution frame by differentiating regular distributions or by analytic
continuation in a parameter.

3.1. Extensions Depending on a Scaling Parameter

Let / (x) be an invariant distribution defined on a subspace 3S C £ΰ (^4).
For example ̂  may be identical with the set of test functions having
the property φ(v) (0) = 0 for v ̂  N, or may consist of all those test
functions such that χ ( s ) = δ(x2 — s) (φ(x)y vanishes sufficiently strongly
at «s = 0. Let E/ be a given extension of / to &(R*}. We consider the
dilatation operator Uα, with a — (αl5 α2, α3, α4), acting on a distribution
g(x) according to

(x) (φ(x)} := g(x) \\IIa,
o

where x\a = (xQla0ί . . ., x<Ja.ό). We confine ourselves to dilatations which
affect all coordinates x in the same way, i.e. we put a = (α, α, α, α),
14 Commun. math. Phys., Vol. 7
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where a > 0 is a constant. (There would be no problem in admitting
scaling transformations depending on x. In that case one had to require
that a(x) > 0 is infinitely differentiable such that a(x] and ]oga(x) are
multipliers.) Uα is well defined in 38' and &'. In general, however, the
extension procedure does not commute with the dilatation, i.e.

UαE/ Φ EUJ.

In particular, if f(x) is homogeneous in the subspace 38 the extension E/
in general is no longer homogeneous. Let us then introduce a class of
extensions Eα/ depending on a parameter a defined by

EJ^U-iEUJ. (3.1)

By definition E-J = E/ and Eα/ is independent of a if and only if the
extension commutes with the dilatation. The group property of Uα

implies that
U^EΛ,/ = Eαα,/ (3.2)

or
U.-IW/ = EaUe./ . (3.2')

Thus by introducing an a-dependent extension we have reestablished
"commutativity" of extension and dilatation if a dilatation of x is ac-
companied by a corresponding dilatation of a. In particular if f(x) is
homogeneous of degree λ in 38 we have (cf., e.g. (4.13), (6.6))

Va.Έaa,f = a'*ΈJ , (3.3)

i.e. homogeneity is preserved also after the extension if a is subject to
the same dilatation as x. We call distributions which are homogeneous on
a subspace 38 and whose extension is α-dependent "pseudo-homogeneous".
Pseudo-homogeneous distributions are in fact associated generalized
functions (associated to the operator U0, cf. [5]). Now, if both a and x
are numerical ratios to the same physical unit, a change in scale of x is
accompanied by the corresponding change in scale of a. Furthermore we
shall see later that pseudo-homogeneous distributions of rational degree
of homogeneity (whose argument may bear a dimension on the subspa.ee
3$) are dimensionally correct on @(R^) only if we ascribe a the same
dimension as x.

If E/ is another extension of / and if E/ = ΈaJ for a special α0 we
have in virtue of (3.2)

E β /-E α β i /. (3.4)

The meaning of EUα/ in the general definition of Eα/ in (3.1) can most
easily be understood in the one dimensional case. Let f(s) be defined on
the subspace 38 of those test functions φ(s) which vanish at the origin
s = 0 with its first N derivatives. Then the most general extension
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E/ of / to &' (R1} is given by

(Ef) (s) (ψ(s)y = f(8\ (φ(s)y + Σ Ψ™(β)cn (3.5)
o

with

0

and cn - (E/) {φn}.
Conversely, with an arbitrarily given set of cn and φn(s) satisfying

(3.5) one can construct an extension of / from^' to^' according to (3.5).
By definition of Uα,

(UαE/) <v(β)> = (E/) (s) (y(sla] α|-ι>

0 0

It seems natural to define EUα/ such that the dilatation operates only
in the subspace &, i.e.

(EUJ) (8) (ψ(s)y := f(8) <?(a/α)α-ι> + Σ Ψ(n) «>)cn

(3-7)

= /(<*) <V (*AO a~l - a~lΣ V(n} (0) φn(s/a)y + Z V ( Λ ) (°)cn
0 0

Eqs. (3.6) and (3.7) coincide if and only if we can choose φn(s) = sn/n\ and
set (Ef) (s) (snjn\y = cn — 0. These special φn(s) have no longer compact
support. In case that f(s) (ψ(s)y exhibits logarithmic divergencies, and
only then, we cannot choose φ^(s) equal to s N / N l . Thus no extension
E/ exists which is independent of the scaling parameter a. The require-
ment that an extension E/ of / commutes with dilatation, determines
uniquely this extension and is apparently equivalent with Gelfand's
canonical regularization [5].

The same considerations are valid in J^' (Rl) and, therefore, hold for
invariant distributions too. We shall see that α-dependent invariant
extensions depend on α2 only. If x is the momentum space variable α2 has
dimension of mass squared. Examples demonstrate that a stands exactly
at the place a cut-off would stand in a singular quantum field theory.
However, a actually is not a cutoff, the theory remaining strictly local.
a might be viewed as an arbitrary finite factor which can be split off
from any cut-off K : K — aKf \ K, K' -> oo in the local limit.

3.2. Constructive Forms of Invariant Extensions

Let f(s) be a function with an algebraic singularity at s = 0 and
locally summable for s > 0. The invariant distribution

0(α?0) /(α:2) :

14*
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is defined only on those test functions φ(x) whose meanvalue χ(s)
= δ(x2 — s) (φ(x)y vanishes sufficiently strongly at s ~ 0. We consider
three possibilities of extending this functional to the whole 2t' (

The first of these is given by the construction (cf. [6])

Here one has first to perform the s-integration for Re (z) sufficiently
large negative, then to continue the resulting function of z analytically
to z = 0 and finally to apply the residue (which projects out the pole-free
part).

Another extension of θf consists in taking the finite part in the sense
of HADAMARD, viz.,

Eα{θ(α0) /(α;2)} := Pf{θ(ίr0) fa(x*)} - Pf / /(s) θ(a:0) <5(x2 - <s)cZs

= Km [ / / (8) θ (XQ) δ (x* -8) da- Iα, ε (x)] (^
e->0 Lα'ε J

where I α t e ( x ) — the "infinite part" of the integral — is by definition of
the form

M,N

μ,v

with c(fίv(x) £S'(J?4), Reμ ^ 0, v a nonnegativ integer, and μ, v not
simultaneously equal zero. I α , ε ( x ) is — if it exists — uniquely determined
by the requirement that the limit in (3.9) is finite. Therefore Pf {θ (XQ) /α(#2)}
is also uniquely determined. The integral in (3.9) is a distribution-
valued function of s. The analogous definition of Pf holds for a number-
valued function /(ε).

We shall see in Sec. 5 that (3.8) and (3.9) yield the same distributions.
Their α-dependence is an immediate consequence of Definition 3.1.

3.3. Differentiation of Invariant Distributions

Finally one can construct invariant extensions by operating with
invariant differential operators on regular invariant distributions. For
two times differentiable functions g(x2) we have (via the chain rule)

Ώg(χ2) = (Dug(u))u = a}* (3.10)

where Du and its adjoint D^ are given by
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The chain rule holds also for δ^ (x2 — s) in J?4 — 0 whre x2 — s — 0 is
a regular surface (cf. [5]). Therefore we have in E4 — 0

D <$ (a;8 -β)=[D, 3 («-«)]„_,,. (3.12)
By means of

x2δ^(x2 - s) - sδ^(x2 - s) - nδ^^^x2 - s) (3.13)

it follows that
- s) - D+δ(x* - s) (3.12 a)

1>(α2 - 5) . (3.14)

Equs. (3.12) — (3.14) hold in R* for 5 Φ 0, in E4 - 0 for all s.
Let 0r(s) be locally summable and two times differ en tiable for 5 > 0.

Define
CO

0(xQ) g(x2) = ! g(8) Θ(x0) δ(x2 - s) ds .
o

By means of (3.12) we obtain
CO

D {θ (x0) g (x2)} = lim f g (s) D+ 0 (x0) δ (x* - s) ds
ε->0 J

= 4 lim e f l f ( ε ) θ(xϋ) δ'(x* - ε) + -- (εg(ε)) Θ(x0) δ(x* - ε) + (3.15)
— M'fc

Although 4:d2(^g(s)>)/ds2' = f(s) in general is not summable, the limit
in (3.15) exists since every distribution is infinitely differ entiable.
Therefore (3.15) furnishes an extension of Θ(x0) f(s). By repeated diffe-
rentiation one can construct more singular distributions.

All what had been said about distributions of type θ (x0) f (x2) is
immediately extended to distributions θ ( — x 0 ) f ( x 2 ) , θ(i^2)/(α;2) and
to linear combinations of these.

oo

Remark. Defining Θ(x0 — ε) g ( x 2 ) := f g(s) Θ(x0) δ(x2 — s) ds, we can
ε

write

- 4 ε g ( ε ) Θ(XQ) δ'(x* ~ ε) -f -̂  (εgr(ε)) 0(x0) δ(x* - ε) -{-

ι
θ W <5 («2 - 5) d 8 \
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in the form

f g(x2) Πφ(x) dx = f φ(x) Πg(x2} dx

which is just Green's formula for the region F6.. — {a;2 ^> ε, a:0 > 0}
(cf. [6]).

In R* — 0 we have a general formula for the invariant derivative. By
means of (3. 12 a) and the spectral representation we have the relation

Of(x) = f(D8fβ(s)) δ(x* -s)ds + (/>β/o(*)) ε(x0) δ(x* - s) ds . (3.16)
-co 0

Here the derivatives are to be taken in the sense of distributions and
therefore derivatives of δ(s) may appear in the integrand. (3.16) remains
valid for the odd part of / (a;) in the whole B*.

If f(s) has an algebraic singularity at s = 0 we determine

0) 1(x<2>}} f°r ^ne ̂ wo extensions defined in Sec. 3.2:
With the residue procedure we obtain in jR4

/o -i
(ό L

[ 00

τ ί m(^Z J \ S
0

0

The last equation holds for sufficiently large negative values of Re (z)
such that the boundary terms coming from the partial integration
vanish and, therefore, holds also for z = 0 by analytic continuation.
Similarly,

[
00 -j

^ f^[sH-«)(τ)*]δ(x*+8)d8 (3 18)

0 J
By means of the Pf concept we derive

Γ oo

ΓΊ fPf \0(x ) f (a?2)]) — lim f f(s] D θ(x } δ(x2 — s) ds — ΓΊ/ (
ε~>0 Lα2ε

Λvhence, integrating by parts,

D{Pf [ Θ ( x 0 ) f a ( x 2 ) ] } = - 4 Pf [α2e/(αae) Θ(XQ) δ'(x2 - a2ε)] +
»0

4Pf Γ^-(ε/(α2e)) 0(^0) δ(x* - α2ε)l + (3.19)
ε— >0 L ̂ ε J

[
00

/
α2ε

- ( s f ( s ) ) θ ( x Q ) δ ( x * - s ) t

The results of Sec. 5 show that (3.17) and (3.19) are equivalent.
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4. Theory of Delta-functions

By means of the spectral representations of Sec. 2 all operations on
Lorentz invariant distributions are shifted to the delta-functions. Thus,
the theory of the latter, especially, the asymptotic expansion of δ(x2 — s)
at s = 0 and the extension of the δ^ (x2)-functions from R^ — 0 to the
whole of R^ deserves particular attention.

According to (2.8) we have for s > 0

\ -i

S~-\d\
• S J

(4.1)

x Γ dn I Φ (}/r* + s, rήl o

Γ I ~j~^ τ= f <
J dsn [ Vr" + β J

where 4πΦ(|/r2 4- 5, r2) = / 99(]/x2-f «§, x) cZi2 is the meanvalue of
x2 = r2

99(0;) over the sphere of radius r. The integral (4.1) diverges as 5 tends to
zero. It has been shown by METHEE [2] that

π
-Piί{0 (x0) δf (x* -s)} = -~δ (x) logs

where Pif is that part of (4.1) which diverges as s -> 0 ("partie infmie").
Since θ(xQ)δ^(x2) exhibits no divergencies in R^ — 0 the cv(x) are
invariant distributions localized at the origin.

From (4.2) it follows that Θ(x0) δ(x2 — s) posses an asymptotic ex-
pansion of arbitrary precision in the function system sμ logvs of the
following general form

OD

θ(*o) δ(*2 - «) - θ W «oW + Σ \β W ^W ^ +
n = ι (4.3)

+ 6 Λ -ιWs n log5].

Here θ (XQ) an (x) is a symbolic notation of a well determined distribution.
By differentiating (4.3) n times with respect to s one obtains

(~l)nθ(x0)δn(x^- s) -

-̂ +^••(1 + 2

+ rc! &Λ-Ϊ logβ 4- wl^ίw + 1) -

+ι
— ^(Z -f 2 - n) + logs] s'+i-rc (4.4)

where ? f r 2 = Γ/
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The infinite part of (4.4) as s -> 0 has the correct structure (4.2) and
the bv are proportional to the cv and so are localized at the origin. The
expansion of Θ(~x0) δ(x2 — s) is obtained from (4.3) by an antichronous

Lorentz transformation since θ(— x0)δ = Q(+x0)δ:

θ(-xQ)δ(x*-s}~ θ(-x0)a0(x) +
(4.5)

+ θ - ^ « ^ 4 - δ -

where Θ ( - X Q ) an(x) = θ(xQ) an(x) and bn(x) = bn(x).

By means of (4.3) and (4.5) we get

β(*0) δ(x* - s) ~ Σ e W OnC*)*1 (4-6)
n = 0

For 5 < 0 we start from the integral
CO

> = 2π(- 1)» [Φ(x0, xz

0 - s) J/^"-7] ̂ 0̂ (4-7)

and arrive at
oo

(4.8)

Λvhere αn(α;) = θ(α:0) αn(ar) -f 0(~x0) an(x).
To determine the distributions an (x) and bn (x) we proceed as follows :

Applying to (4.3) on the one hand the operator Π, on the other hand the
operator D^ and comparing the results we get

Π{θ(*0) an(x)} = 4(w + 1) nan+1 + 4(2n + l)δn

Π6n(») = 4 ( n + l ) ( n + 2)6n + 1.

From (4.4) and (4.2) it follows that 60(a?) = πδ(x)/2 and with (4.9) we
obtain

(x) [Wn+ln\(n+ I)!]-1. (4.10)

Since θ (α;0) δ (xz — s) is infinitely differentiable in E4 — 0 at s — 0 we
have in J?4 — 0 the asymptotic Taylor expansion

CO

θ (xQ) δ (x* - s) - 2? (- ] )w θ W ^(w) (^2) ̂  !

w = 0

Comparing this result with (4.3) we find θan(x) — (— l)n θδW(x*)lnl in
7?4 — 0. Since (as the coefficient of an asymptotic expansion whose
existence has been proved) θ (XQ) an (x) is a well defined distribution in
R* we define in E4

) <J(»>(^)} := (- 1)- n\θ(xQ) an(x) . (4.11)
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In order to construct an α-dependent extension according to (3.1) we
perform a dilatation in (4.3). Noting that θ δ (a2x2 — s) = or 2 θ δ (x* — sja2}
for s > 0 and comparing the coefficients of the respective asymptotic

expansions one finds

U.{θ(*o) ««(*)} = (αV-^K) «»(*) - logα2^-^)] . (4.12)

Since in B* - 0

Uβ{θ(a;0) <5<*>(.τ2)} = (α2)-"-1 Θ(x0) δW(x*) ,

we obtain in virtue of (3.1)

- , .— 0 a=;i -- 22n~l(n — 1)1 \ *> -

With this explicit α-dependence at hand the behaviour under a change of
scale follows according to (3.3):

= («»)— ̂  [β W
We see that Θ(XQ) δ^(x2) is pseudo-homogeneous.

Finally we write (4.3) in terms of Θ(x0) δ(^(x2) and Π"δ(x), viz.

Θ(x0)δ(x*-8)~θ(x0)δ(x*) +

The corresponding formulas for θ(—x0) δ^(x2) and ό^(ίc2) are obtained
in a similar way. ε(x0) δ^ (x2) = Θ(x0) δ^ -\- θ(— x0)δ^ is of course
independent of a and homogeneous.

We are now able to establish the connection of our general delta
function with the corresponding distributions of METHEE and GELFAND
et al. [2], [5].

METHEE has chosen the finite part of (4.4) as an extension of
Θ(x0) δ^ (x2) to R*. That is to say, as s tends to zero we have

(s0) <J<Ό (x2)} = (- I ) » n l [an + (ψ(n + 1) - Ψ(l))bn^]

GELFAND et al. introduced two distributions δ^l(x2) which in terms of
our residue formula may be written as follows

= Res -

I o
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where Φ (τ, ρ) - y (Φ (τ1/2, ρ) + Φ (- τ1/2, ρ)) (see (4.1)), τ - xl and ρ - x2.

With these definitions it follows (ef. [5]) that

and
— n _l „

1)1 ^ 0 ( X ) .
t/in) (γZ\ Λ(n) (γ2\ ___ (— L)n 2π

~ —

We shall show in Sec. 6 that

λ w-ι

Since Res θ (x2) (x2)λ is well defined we obtain

Formula (3.4) permits us to calculate the α-dependence of ~Pi{d^ (x2)}
and δι/2(x2) and to discuss their behaviour under a dilatation.

Some formulas are yet of interest. From (4.9) we find at once

*) + 2 r y r α " ^ ) . (4.18)

Applying the chain rule to (4.3) we obtain

- W (a*) = 2grr

where <700 = —gii= 1. One notices that, once the origin of the light cone
is included, the chain rule is no longer valid. Taking account of
(x2)1 δ(x2 - s) = slδ(x2 - s) for s Φ 0 it follows from (4.3) that

4nni (n 4- 1^ '
(x2)™ &nδ(χ} - -. -- r-H , -,.ΓDn-m(3(^) , (4.20)v y v / ^ — m ) ! ( w — m + l)! v y v y

7?,, m = 0, 1, 2, . . . and

- - _ tv ; α χ ' (n — m)! α v ' x y

Since in the corresponding formulas for ε(xQ) δ^(x2} the terms located
at the origin cancel each other, the same rules hold for this distribution
as if x2 = 0 were a regular surface.

5. Asymptotic and Laurent Expansions, Equivalent Extensions

Let / (s) be locally summable for s > 0 with an algebraic singularity
at 5 = 0. We assume for simplicity that f(s) admits an asymptotic
expansion in sμ logs" of infinite order at s — 0. (For the following it
would be sufficient to require that f(s) has an infinite part, i.e., admits
an asymptotic expansion up to order 0(1).) Hence, as s -> 0

/(β) Θ(x0) δ(x*-s)~Σ Σ β(*o) «!»(*) ̂  lo§m-15 (5-1)
1 = 1 m=*I
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with Reκz < Reκz+1. The Θ(x0)alm are finite linear combinations of the
Θ(x0)an and bn of (4.3) and therefore localized on the forward cone
{x : x2 = 0, x0 ^ 0}. Integrating (5.1) we get

CO

f s-^f(s)θ(x0)δ(xz- s)ds ~
1 co.* (5-2)

^ V1 Γ/Q/ 'v \ n (v\ T? (is 9 m t\~\ -I ft (Ύ \ K (Ύ <?\
— ^£j L^ V O/ ^lm\ I \™l — } > )1 >~ ^ \ O/ \ > i

where

F(κl - z, m, t) = ί sκι~l-z log"1-1^ ds
(5.3)

l \ t- 1)1
^-l

and θ (x0) K (x z) is a distribution independent of t. Observe that the
F(KI — z, m, t) either vanish or tend to infinity as t -> 0. Let us choose,
for a fixed but arbitrary z = z0, an integer L = L(z0) such that all
F (HI — z, m, t) with I > L vanish as t -> 0. Then we have

Θ(x0) K(x; z0) = Pf /a"* /(*) β W <J(«a ~ «) (5 4)

The same L works for all z with Res < Re?0. For t > 0 the expression
in [. . .], (5.4), is analytic for all z with Res < Rez0 and z Φ κz. Since in
(5.4) z0 is arbitrary and we have uniform convergence in all bounded
domains of the z-plane, θ(xQ) K(x\ z} is analytic for all z φ κz. Especially
for z = 0 we obtain, if no κl is equal to zero,

Θ(x0) K(x; 0) = Pf /(ί) θ(a;0) δ(x* - a) ds
t->0 t

(5.5)
00 V '

= A.C. / s~*f(s) Θ(XQ) δ(x* - s)ds.
z = 0 o

A.C. means analytic continuation from the region Re (z) large negative
such that the series in (5.4) — the infinite part — vanishes at t = 0. Let
now κk be equal to zero for a fixed k. Then we get from (5.3)

F(-z9m,t) = (-1) (m- l)lz~m+ (lo^ή/m + 0(z)
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Substituting (5.6) into (5.4), shifting all pole terms of F(κl — z, m, t) with
κk — 0 to the left hand side and passing to the limit z — 0, yields

lim I A.C. / a-* /(*) 0(*0) δ(x* - s) ds + Σ Θ(XQ) akm(x) (m - 1)! z-«|
2-*° L 0 w = l J

[ oo L n k Ίj

/ / ( « ) θ ( * o ) a ( s a - - * ) < Z * + 2; ^βWαin^W*,,™,*) (5-7)ί j r = l m = 1 J

The existence of the right hand side implies that of the left hand side.
We summarize (5.5) and (5.7) into the statement

[
oo -i oo

\ r \ Γ

z J «->o J °
0 J <

Since this equality holds for a = 1 we infer from (3.4) its validity for all
a > 0. Hence

[
OO -J OO

— ίf(s)(—}Zθ(x0)δ(x*-s)ds = Pf f f ( s ) θ ( x 0 ) δ ( x 2 - s ) d s . ( 5 . 8 )
z J \ s / I ί^o J

0 J α2ί

Henceforth we denote the extensions (5.8) by θ(Xo)fa(x2) or by
[Θ(x0) f ( x 2 ) ] a This explicit calculation shows that θfa is not constant in
a if and only if in (5.1) one of the κt is equal to zero, i.e., if Pif{/(s)}
contains one or more terms of the form s~nlogms, n ~- 1 ,2 , . . . ,
m = 0, 1,2, ... .

From (5.7) we see that
CO ttfc

A.C. / 8~* 1(s) Θ(x0) δ(x* -s)ds + Σ Θ(x0) akm(x] (m - 1)1 z~™
0 m = 1

is analytic in a neighbourhood of z = 0 and thus has a Taylor expansion.
The %-th derivative is

Γ

(-!)« A.C./5~ 2

L o ?^fc *j

whose value at 2 = 0 is just [0(xQ) (logw^2)/(^2)]α=:1. We therefore obtain
the following Laurent expansion at z = 0,

Σ ~Γ- [β W (log" *«)
n== 1
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The rhs of this expansion does of course not depend on a since in a

neighbourhood of z = 0 (z =j= 0) [θ(xQ) (x2)~z f(%2)]a is analytic in z and
does not depend on a. Multiplying (5.9) with the Taylor series of (α2)2 and
collecting the z-free terms yields

njc

[θ(*θ) /(**)]„ = [βW /(S8)].-1 - Σ (log""2) β W «*m(*)M (5-10)
m = 1

The preceding considerations also demonstrate the existence of
CO

A.C. / s~z f(s) Θ(XQ) δ(x2 — s) ds with the exception of isolated poles
o

under the assumption that f(s) possesses a well defined infinite part. In
CO

fact, Pf / f(s) s~zθ(xQ} δ(x2 — s) ds generates a construction of this
ί-»0 £

analytic continuation.

The above results are easily extended to θ ( — x Q ) f a ( x 2 ) and

θ(-x*)fa(x*).

6. Distributions of Power and Logarithmic Type

6.1. The Distributions [(logw|a;2|) (#2)λ]α

According to Sec. 4 we have the asymptotic expansions

where b^1(x): = 0.
They have, by means of the results of Sec. 5, the following statements

and formulas as consequences :
The distributions [0 logm|α;2| (x2)λ]a (θ being either Θ(±XQ) or θ(-x*}}

are analytic in the whole /Uplane except for the points λ == — 1, — 2, . . .
where poles arise. For later purposes we need the following Laurent
expansions explicitly

(6.3)

[e(a:0) (a;2)-«-z]0 = - β(ι0) α,,-̂ -1 + [e(x0) (*
2)-n]« = ι + 0(z) (6.4)

-^2) I*"!-- ]„= (-l)»2&n_2 Z-« +

- -
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From (6.3) we obtain

and from (6.5) we get

[Θ (- x*} |3»|-»]β = [θ (- a;*) |aΛ|-«]β = 1 + (_ ι
}

Let us define the distribution [(£2)A]α by

% J \
0

and observe that the poles at λ — —1, —2, . . . of the terms in (6.8)
cancel each other, such that [(^2)A]α is analytic in the whole A-plane and
independent of α. For later reference we need the Laurent expansion

[0 (*0) (logic2) (*2)-M-*L

- θ(x0) an_^ + 0(z) . }

Let us consider (6.6) in more detail: apply (3.3) to it and calculate

This distribution is seen to be pseudo-homogeneous (and, indeed is an
associated generalized function of second order). On the subspace of
test functions whose meanvalue over the light- cone vanishes sufficiently
strongly, this distribution is equivalent to an ordinary homogeneous
function. Hence x may be taken to have dimension of length. Then also
a must be considered as a length and although all three terms of the r hs
of (6.6) appear to have illegitimate dimensional arguments their sum is
dimensionally correct. (Things are similar as in Iog2(x2/α2) = Iog2α:2 —
— 2 logα2 logo;2 -f Iog2α2 ,
which is also an associated function of second order.) This is explicitly
seen by calculating the Fourier transform of [θ(xQ) (%2)~n]a (°f- Sec. 7).

6.2. The Distributions (a;2 ± ίQ)λ and (x2 ± ixQΰ)λ

In the one dimensional case the relation

(s ± iQ)λ := lim s\λ exp|>* arg(s ±iε)λ]
6->0

+ e±ίπλθ(-s) \s\λ
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holds. Thus we define

1 fsλ(^-
z J \ s

0

(6.10)

Note the difference with (6.8). By means of (6.3) and (6.5) we find

[(x2 ± ίO)-»-*]β - T2π^_22~1 + [(x2 ± iO)-«]ββl +

(6.11)
-Σ

where

_ __ _
2 î(^ - i)\ (n - 2)!

and

log (a;2 ± iO) - log|α 2] ± iπθ(-x2) . (6.13)

The a- dependence turns out to be

Γίτ2 + ω)-l - Γί^2 4- ίO)-«l ^ _ _ g g . ,ι(& ±w) jα — \_(x ±. ι\)) Jα = j i 22n~3(n — 1}1 (n — 2)1 '

From (6.12) and (6.14) we obtain

(α;2) . (6.15)

Formula (6.15) also justifies our choice of the extension δ^(x2).
To define the Wightman-type distributions (x2 ± ixQQ)λ we note

that for Reλ > 0

1 — ίxQQ)λ := lim e~iπλ (x2 — (XQ — it
ε~>0 (6.16)

γ \ /T2U i βί_γ2\ | r2|λlΛ0/ v 1 ^ / r </ ^ Λ/ |*c I j .

Iii (6.16) we have separated the factor exp(— ί π λ ) to make the definition
Lorentz invariant. On the other hand we define

(x2 + ixQ0)λ := (a;2 - ixQOλ) . (6.167)

In virtue of the formulas of Sec. 6.1 we see that in (6.16) the poles cancel
and that (x2 ± ix00)λ is analytic in the whole Λ-plane. For λ — — n we
obtain

(x2 ±
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and

(x2 - ix0ΰ)~n - (α;2 + iz0Q)-« - 2πi [".Ĵ  ε(x0) δ(n~^ (α;2). (6.18)

6.3. Differentiation Formulas

By means of the formulas of Sec. 3.3 one easily derives the following
relations

Π[θ(#o) (χ2)λ~\a — 4 A ( λ H- 1) [Θ(XQ) (X2)λ]a (6.19)

f o τ λ φ O , -1, -2, . . .;

(6.20)

w! 22 n~1w!(n - 1)!
and

for 7i -= 2, 3, 4 . . . .

Combining (6.20) with (6.21) we obtain

Π(^2)-n - 4ra(w - 1) (a;2)-*-1 . (6.22)

Let us moreover compile the following formulas

(6.23)

(6.24)

(6.25)

(6.26)

D [0(a?0) loga?2] = 4θ(a?0) (α;2)-1 + 4θ(α:0) ό(x2) (6.27)

D [(x* ± iO)-«]β = 4τι(^ - 1) [(α;2 ± iO)-Λ-i]β =F

82^- liπzΠn-ίδx (6 28)
22n~1nl (n - 1)!

Finally we discuss, guided by an example, the α-dependence of
singular distributions generated by differentiating regular ones. For all
x with x2 Φ 0 we have

α;2) _ 21og£2 + 2]/(2 4" (τι - 1) ! (n - 2) !) . (6.29)

Thus we define

^0) [log2 (a;2) - 21og«« + 2]}/(2 4»(» - 1)! (» - 2)!) ,
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and the α-dependent distribution is according to (3.1) given by

Ea{θ(x0)(a*)-»}
(6-30)_

= 2~4^-l)l(n~2)ΐ Ώ^θ W Klθ§ (X>2))2 - 2 (lo§ ̂ /a2)) +

For n = 2 we find

Έα{θ(x0) (x2)-2} = [θ(*0) (a?)-»]β + θ(a;0) W) . (6.31)

Since in (6.31) the rhs is dimensionally correct we have constructed

another dimensionally correct extension of the function Θ(x0) (#2)~2.

Formula (6.30) shows that the α-dependence is due to the sharp boundary

in a -space (Θ(x0) and singularity). The distribution defined by (6.29) in

terms of generalized derivatives is independent of α because of the

absence of the θ-ί unction although / (x2)~n φ(x) dx exhibits logarithmic
ιe4

divergencies.

7. Fourier Transforms in Terms of Spectral Representations

7.1. Definitions

For φ(x) ξ ^(E4) Λve define

<φ(y) :== f φ(χ)eixy dx = Fφ(x) (7.1)
/ί4

where y = y' -j- iy" is a complex four vector, xy — x^y^— xy. The set

of all functions ip(y) forms the space <^((74); i.e.,

\y*ψ(y)\^CkGχp(b\y't'\) (7.2)

for all k =--- 0, 1, 2, . . . and r — 0, 1, 2, 3. Ck and δ are constants depending

on *ψ. The subspace of 2£ (C*4) defined by those y; which are the Fourier

transforms of φ's ίιomD(R* - 0) is denoted by ^0(04). Uγ(y) ζ ̂ 0(^4)
there holds

f(y*)*ψ(y)dy = 0 (7.3)
JR*

for a l l / -0, 1, 2, . . . .
Let /(α;) t ^'(^4). We define

x)y. ( '

The mapping <$' (R*} onto ^Γ(<74) via the Fourier transform F has a

unique inverse. Since a Lorentz transformation commutes with the

Fourier transform we have the

Statement. J(y) ζ 2£' (C4) ^5 invariant under a real Lorentz trans-

formation if and only if f (x) is invariant under this transformation.

Since in what follows we are only concerned with invariant distribu-

tions, all formulas remain valid for the Euclidean Fourier transformation.

15 Commun. math. Phys., Vol. 7
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We note that

and
Ff- (7.5)

Let / be pseudo-homogeneous of degree λ. Setting Ffa = 1 = Ja = 1 we find

7.2. Fourier Transforms of Delta Functions

As is well known (cf., Ref. [11]), there hold the following relations.

Fδ(x2 -s) = (2π)*AW(y, s) = 2πa5lm{^(

1

1)()/^)/)/J^}, s Φ 0, (7.7)

ί'a(a:a) = -4π(ya)-1, (7.8)

F ε ( x Q ) δ(x* - s) = -*(2π)3 Zl (y, 5) ^ _ (7.9)

<%2) - 2πa^e(y0) A(/^)//*?» * > 0 ,

i^O)"1 . (7.12)

By means of the series expansion of the Hankel function we obtain
from (7.7)

00 / _ _ l\n 7 r /.y2\«-lnn Γ 4 / 2 / y 2 o Ί

- ̂  -t^l^lff log f̂ - Ψ(n} - Ψ(n + 1) + log £ .
w = 1 v ; L J

On the other hand we know from (4.3') that

! (τι - 1)!

(7.13)

Comparison of (7.7') and (7.13) yields

Γ ^ yj._ __ ψ^ _ ψ(^ + ^J ^ (^14)

(Note that "=" is a special case of u~ ".) Similarly we deduce from (7.9)

Combining (7.14) and (7.15) we obtain

-1)1
1)- ίπε(ί/0)J ,

(7.16)
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7.3. Spectral Representations of Fourier Transforms

Let θ (xQ) f (x2) be given by the spectral representation

with l(s]^^e'(Ev) and /(«) = 0 for 6- < 0. We find for the Fourier
transform

{Fθ(x0) /(a*)} <v»(y)> = (2π)~« θ(a 0) /(a:2)

The Fourier operator obviously commutes with the (formal)s-integration
and the assumption /(<s)£Jf is seen to be unessential since both

Θ(x0) δ(x2 — s) (φ( — x)y and F [ θ ( x 0 ) δ(x2 — s)] (ψ(y)y are elements of
ffi . Thus we have with (2.20) the general representation of the Fourier
transform of an invariant distribution / (x) £

(7.17)

On the other hand, every invariant f(y) ζ 2£' (C4-) admits the representa-
tion (7.17) where /0(s) is a uniquely determined element of &' (s ̂  0) and
f e h ( s ) is a distribution from ffl ' (R1). If we restrict the domain of f(y) to
the subspace £Γ0(04), fe(s) is a uniquely determined distribution of
& (Rl). (7.17) has the structure of the K ALLEN -LEHM ANN representation
if y is interpreted as a vector of the space-time continuum. Since f(y) is
considered as an element of ££' (C4) strongly increasing spectral functions
f(s) are admissible.

If fe(s) and /0( s) are functions with an algebraic singularity at s — 0
the most convenient form of (7.17) is given by

2 = 0

(2π)

(7.17')

-if f0(S)(~)ZA(y,s)dS

(The vanishing of the additional polynomial is due to the definition of

15*
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Let us finally observe that the spectral representation in x and ?/-space
of an odd invariant distribution is a special case of the JOST-LEHMAISΠSΓ-
DYSON representation of a local commutator with prescribed support
properties in momentum space. Thus (7.17) may perhaps be extended
into a subtraction-free generalization of the JLD representation.

7.4. Fourier Transforms of Power Type Distributions

To illustrate the power of invariant spectral representations let us
consider a few representative examples of Fourier transforms.

According to the preceding section we obtain for F [ θ ( x Q ) (x2)λ]a the
expression

i
.

~T~ §
. (7.18)

£ 3 = 2 / 2 f ίyO

We have first to evaluate the s-integral in a 2-region where the rlis of
(7.18) is analytic in z (and therefore α-independent). Performing the well
known Hankel transformation we immediately arrive at

F[θ(x0) (α;2)λ]α- Sπ4:λeinλΓ(λ+ 1) Γ(λ -f 2) (y* + i2/00)-A~2 (7.19)

for Λ, 4= — 1, — 2, — 3, . . . . Similarly we obtain (λ Φ — 1, - 2, . . .)

F[θ(-x*) \x*\λ]a= -π4:λ + *Γ(λ+ I ) Γ ( λ + 2 )

In order to get the Fourier transform at λ = —nwe have to compute the
λ-iτee terms in the Laurent expansions of (7.19) and (7.20) around the
point λ= — n. This gives us the Fourier transform for α = 1. The
α-dependent Fourier transform is then easily obtained by formula (7.6).
With

ι + ψ(m+l) + ~

we find

(y*

(7.23)

For n — 2, 3, 4, . . . we have

2 δ

Γ

Γ1



Lorentz Invariant Distributions 217

where

K^Ψ(n-l) Ψ(n) + ~ ψ*(n) - ψ' (n) +

Kz=-Ψ(n}-Ψ(n- 1); log(-ί/2 - ίy00) = log|ί/2| -

Similarly

4n(w - 1)! (» - 2)!

Combining (7.24) and (7.25) we arrive at
Qτr3(_ l\n ε(y2\ (υZ\n-2

jF/~2Wn_±^J _ LL^J-^J _ (726)
* ( X ) - ±n(n- 1)1 (n- 2)Γ * l '

We see that the Fourier operator transforms an associated function
into an associated function of the same order and that these generalized
functions are dimensionally correct only if α has the same dimension as
x or I/y.

Further formulas will be listed in [10].

Acknowledgments. The authors wish to express their sincere gratitude to
Dr. E. PFAFFELHUBEB for many helpful discussions and to Prof. F. BOPP for his
interest in this work. Particular thanks are due to the Deutsche Forschungsgemein-
schaft for financial support.

References

1. SCHWARTZ, L.: Theorie des distributions, I, II. Paris: Hermann 1950/51.
2. METHEE, P. D.: Commun. Math. Helv. 28, 225 (1954); Coll. CNRS, Nancy 1956.
3. BBAGA, C.: Univ. S. Paulo Preprint 1960.
4. GARBING, L., e J. L. LIONS: Nuovo Cimento Vol. XIV, Ser. X (1959).
5. GELFAND, I. M., and G. E. SHILOV: Generalized functions I. New York, London:

Academic Press 1964.
6. GUTTINGER, W.: Fortschr. Physik 14, 483 (1966).
7. PFAFFELHUBER, E.: Univ. Mύnchen, Thesis (1966).
8. GUTTINGER, W., and E. PFAFFELHUBER: Nuovo Cimento 52, 389 (1967).
9. KOHRLICH, F., e C. GORGE: Univ. Syracuse Preprints (1966).

10. GUTTINGER, W., E. PFAFFELHUBER u. A. RIECKERS: Univ. Mϋnchen, Preprint
(1967).

11. Cf., e.g., SCHWEBER, S.: Introduction to relativistic quantum field theory.
New York: Harper & Row 1961.

Prof. W. GUTTINGER
Sektion Physik
Universitat Mϋnchen
8000 Mϋnchen 13
Schellingstr. 2—8




