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Abstract. We study pairs {21, cc} for which 21 is a (7*-algebra and α is a homo-
morphism of a locally compact, non-compact group G into the group of *-auto-
morphisms of 21. We examine, especially, those systems {2ί, α} which are (weakly)
asymptotically abelian with respect to their invariant states (i.e. (Φ\Aocg(B)
— oίg(B) A) ~> 0 as g -> oo for those states Φ such that Φ(ocg(A)) = Φ(A) for
all g in G and A in 21). For concrete systems (those with 21 acting on a Hubert space
and g -> ocg implemented by a unitar}^ representation g -> Ug on this space) we
proλ^e, among other results, that the operators commuting with 21 and { Ug} form a
commuting family when there is a vector cyclic under 21 and invariant under {Ug}.
We characterize the extremal invariant states, in this case, in terms of "weak
clustering" properties and also in terms of "factor" and "irreducibility" properties
of {2(, Ug}. Specializing to amenable groups, we describe "operator means" arising
from invariant group means; and we study systems which are "asymptotically
abelian in mean". Our interest in these structures resides in their appearance in the
"infinite system" approach to quantum statistical mechanics.

Introduction

In the general frame of quantum mechanics the physical observables

are described as self-adjoint operators on a Hubert space J^ and the

bounded observables (corresponding to bounded operators) therefore

generate a 0*-algebra acting on J^. The algebraic approach to field

theory [1, 2] proposes to consider as physical only the local observables

i.e. those corresponding to measurements performed within finite regions

of space during a finite time. These observables are described mathe-

matically as the self-adjoint elements of an incomplete (7*-algebra whose

completion 01, called the quasi-local algebra, is considered as the main
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mathematical entity whose abstract algebraic structure contains the
whole physical information (the choice of a particular faithful representa-
tion being a matter of arbitrariness without physical implications). Field
theory is thus viewed mathematically as the investigation of the quasi-
local algebra 2ί which is supposed to satisfy appropriate axioms of
physical origin (locality, Lorentz invariance etc.). Whilst the physical
(local) observables are described as elements of 21, the physical states are
represented as the normalized positive linear forms over 2ί (states over 21).
In this framework the invariance groups of the physical theory (group of
space and time translations, Lorentz transformations etc.) are homo-
morphically mapped into the automorphism group of the (7*-algebra 21.
The automorphism ccg corresponding to the group element g describes
physically the "shifting by g" of the local observables.

One of the first problems arising in this approach is the investigation
of the translationally invariant states over the algebra 21, those being
natural candidates for the description of the equilibrium states of
statistical mechanics (more generally the states invariant under any
group of physical transformations are of interest) [3, 4, 4a],

In this connection recent studies have revealed that a number of
general results depend upon only a very weak locality assumption about
the quasi-local algebra (entailing only a small part of the structure
required by physics) namely a property of asymptotic abelianness (cf.
Definitions 1 and 2 below) [5, 6, 7, 8, 9, 10]. It seems therefore interesting
to investigate mathematically the systems {21, α} of a C*-algebra 2ί and
a homomorphic mapping α of a group G into the automorphism group
of 2( which possess such an asymptotic abelian property. This is the
purpose of the present paper.

Section I is concerned with general groups G and an abstract notion
of mean of elements of 21. Section I I describes the case of an amenable
group possessing invariant means and discusses the connection between
the above notion and the invariant means over G.

Owing to the delay between the conclusion of this research and the
writing of this paper (due to geographical dispersion of the authors) some
results overlapping with ours meanwhile appeared in the literature
[9,9a].

I. General Case

Theorem 1. Letg-^ Ug be a unitary representation of the group G on the
Hilbert space J^, 21 a C*-algebra acting on J^ such that ocg(A) = UgA U~λ

is in 2t for each g in G. We denote furthermore by EQ the orthogonal projection
in yf on the subspace {ψ ζ j f | Ugψ=ψ for all g ζG}; by 01 the von Neu-
mann algebra generated by 2ί and {Ug\ g ζG}; by P the central carrier of
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Eo in 0%; and we assume that, for all φ ζ Eo ffi and A., B £ 21

Inf \(Ψ\ A • cca(B) - oca(B) • A \φ)\ = 0 . (1)

Then
(i) EQ(MEQ is abelian1 so that Eo is an abelian projection in M and (MP

is of type I with its center isomorphic to E0&E0.
(ii) If ^EQJ^ is dense in Jtf* (or equivalently, QiE0J^ is dense in M*

or if P — I or if T ζ&' ~> TE0 ζ&Έ0 is an isomorphism between von
Neumann algebras) then £% is of type I with its center isomorphic to EQ&E0;
and there exists a normal positive mapping A -> M{A) from !ffl onto its
center determined uniquely by

M(A)E0=E0AE0, AίΘl.

(iii) // E1 is an abelian projection in 0£ with central carrier 1, then Ex

contains a vector cyclic under M (or 2ί, if Eo = Eλ) if and only if 0t' is
abelian and £%' (or E1^iE1) is countably decomposable.

Proof. Since UgA = UgA ϋ^ΊJ\ = BUg with B (= UgA U~ι) in %
the elements of the form Aλ UQΛ -\- - -f- AnUgn comprise a strong-
operator dense subalgebra of M, where A,} is in 21 and gj in G.

As UgE0 =-E0^E0ϋg for g in G9 Eo (A, Uffl + -f AnUJ Eo

~-= EO{AX + + An)E0 so that it will suffice to prove that EQAEQBEQ

= E0BE0AE0 for each A and B in $1 to establish that Eo is an abelian
projection in &.

With φ — Eoy), ψ ζ M7, we have

(Ψ\ E0AE0BE0 - E0BE0AE0 \ψ) = (ψ\ AE0B - BE,A \φ) .

Now Eo lies in the von Neumann algebra generated by the Ug, g in G.
Suppose that it lies in the strong-operator closure of the set of real linear
combinations of fJ/s, g ζG. For each ε > 0, we can choose elements
gj ζ G and real constants λ^j— 1,2, . . ., n, such that

=l(E0- Σ ^Ugffj)Btpl £ εl2\\A*φ\\
j 1

UK- Σ W
0 = 1 j = 1

and

\\(E0 - Σ WB*φ\\ = li^o - Σ hVgΰ)B*φ\ <k εβ\\Aφ\\
7 = 1 ? = 1

where g can still be arbitrarily chosen in G. We then have

\(φ\AE0B~BE0A\φ)\^

< ε + Inf - B

1 This fact and its connection with reduction theory was first noted in [26] i n
the framework of Wightman field theory.
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where the second term on the right hand side vanishes by assumption
being equal to

Inf 1(̂ 1 (A • oca(B') - ocg(B')A) \φ)\ with B' = Σ ^(B) .

Thus Eo is abelian, 9t P is a von Neumann algebra containing an abelian
projection with central carrier the unit and is therefore of type I [12,
Theoreme 1 p. 123]. As E0&E0 is abelian it is the center of its commutant
9t'E{s. Since the latter is isomorphic to 9t'P [12, Proposition 2 p. 19],
E03$EQ is isomorphic with the center of &' P which is obviously also the
center of 9£P.

It remains to prove that Eo is approximable in the strong operator
n

topology by sums of the form £ λj Ug. with the λ3- real. More specifically
? = i

let 3Γ be the strong operator closure of convex linear combinations of the
Uffj) cjj ζ 6r; and let Eg, g <~ G, be the projector with range those vectors
ψ such that Ugψ(= Ug-iψ) = ψ. The mean ergodic theorem [11; Cor. 2
and 4, p. 662] yields the fact that Eg is the strong operator limit of

1 n

— Σ Ug in 3~ as n -> OG. If E and F are two projections Λvhich are the

strong operator limits of operators of ^', then their intersection E Λ F
is such a limit, since E Λ F is the strong operator limit of EFEF . . . EF
(Method of Images) and multiplication of operators is strong operator
continuous on bounded sets. Since En= A En and A Eα is strong

operator limit of finite intersections of the projections Eg, Eo lies in S~.
Thus (i) is proven and the specialization P — I yields the first asser-

tion of (ii). We then obtain the mapping A -> M {A) by composition of the
mapping A £&-> E0AE0 £ 9t'EQ with the isomorphism TE0 £3$'E0^
<-> T ζ&f, both of which are positive and normal. As the range of the
first mapping is the center of 9ί' EQ the range of M is the center of 9t'
(and 91). If Mo is another mapping from 91 to 9t' such that M0(A)
- E0AE0, [M0(A) - M(A)]E0 = 0; so that 0 = [M0(Λ) - M(A)]P
= M0{A) ~ M(A) since P = / and MQ{A) — M(A) ζ ^ Λ 9t'.

Assuming now that ψ0 is a unit vector in the range of the abelian
projection E1 such that &ψQ is dense in Jf, Eλ has central carrier / as
does the projection E on the closure of 38'ψ0. Now E ^ Ev and abelian
projections can be characterized as being minimal in the set of projections
with the same central carrier [25; § 31 p. 332]. Thus E = Ex and ψQ is
cyclic under 91' in Ex 3f. Hence /, the projection on the closure of &ψ0

is an abelian projection in 9ί' [12; Prop. 3 p. 242], so that 9tf is abelian
and is the center of 9t(= 9t"). Thus E1MΈ1 is the center of the abelian
algebra E±0tEx and 91'Ex = E1&E1. Further 9t'{= &t'P) is isomorphic
with E0&EQ and is the range of the mapping M.
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With 01' abelian, we have just noted that 01* Eλ (= E^E-^) is maximal
abelian on Ex 2ft?. If in addition 0t' (or E^E-^ is countably decomposable,
0t'El has a vector ψ1 cyclic for j ^ J f [12; Corollaire p. 20]. Since 0tr\px

is dense in Eλ^f, 0t\px is dense in the range of an abelian projection in
&' with central carrier /. This projection must be /, since 01' is abelian.

Remark. In the foregoing proof, if (1) is valid for a single vector
φ ζ- E024? we have established that φ is a trace vector for Eo0ίEo. If in
addition φ is cyclic under 2ί, then E0£%E0, 0t'Eo and ^ ' are finite von
Neumann algebras.

In place of (1), the assumption that

lnί\(ψ\ Aag(B) - ocg(B)A \φ)\ = 0

for a single φ in E^^f such that the closure of Qίφ contains E0J^, and
all ip ζE0Jί? would suffice to establish (i), (ii) and (iii).

Theorem 1 is especially interesting in connection with ''asympto-
tically abelian systems" defined as follows

Definition 1. // {21, α} is a pair consisting of a C*-algebra 2ί and a
homomorphism g -> ocg of the locally compact non compact group G into the
automorphism group of 21 we call {21, α} an asymptotically abelian system
(a λveakly asymptotically abelian system) whenever, to each ε > 0 (to each
ε > 0 and state Φ over 01) with A, B ζ 21 there is a compact Kc@ such that
giK implies \\Aocg(B) - ocg(B)A\\ < ε (|<Φ, Aoca(B) - ocg(B)A)\ < ε).

Corollary 1. Let g -> Ug be a unitary representation of the locally com-
pact non compact group G on a Hilbert space M'\ 2ί a C*-algebra acting on
&F such that αff (̂ 4) = UgA JJ~X is in 2ί for each g in G and let Eo and, 0t be
as in Theorem 1. The conclusions (i) (ii) and (iii) of Theorem 1 are valid
ivhenevcr {21, α} is a weakly asymptotically abelian system or whenever this
is the case for {21, α| 6r0}, where Go is a non compact subgroup of G.

Theorem 1 is mainly useful for the study of invariant states over
C*-algebras, in the following manner:

Corollary 2. Let Qibe a C*-algebra, g-* ocg a homomorphism of the group
G into the automorphism group of 21, Φ a state over 21 invariant under G
i.e. such that Φ(ocg(A)) = Φ(A) for all A ζ 21 andg ζ G, πΦ the*-representa-
tion of 2ί on a Hilbert space 3/f with cyclic vector Ω, Uφ the unitary represen-
tation of G on 24? determined by

\Ω\πΦ{A) \Ω)= (Φ,A) AζQl

πΦ(ocg(A)) = Uφ(g) πΦ(A) Uφ{g)^ , (2)

ίM the von Neumann algebra generated by the set πΦ(Q{) \j UΦ(G) and Eo

the orthogonal projection in 3^ on the set {ψ ξ_ ffl \ Uφ(g)ψ = ψ for all
<7 6 6r}. Suppose that, for all A, B £21 and all vector states Φ over 21 from J^
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invariant under G

Inf \(Φ, A oLa(B) - ocg(B) ^4>| = 0 . (3)
gζG

Then 0t' and E0&E0 are abelian von Neumann algebras and the mapping
T ζ ^ ' - > TE0 is a ^-isomorphism from 0t' onto E03#E0. Thus, for each
A £ 2ί there is a unique MΦ(A) ζ 0ί' such that

Mφ(A)Eo = EoπΦ(A)Eo, (4)
the mapping πφ{A) -> MΦ(A) £ 0t' being linear, positive and iveak-
operator continuous from πΦ(2l) into 01' and the set {MΦ(A) \ A ζ 21} being
weak-operator dense in 01'.

It is interesting that under quite general conditions, in addition to
the above structure, one has the feature that ^ ' Q 2ί". This is the case
whenever G is amenable and g -> ocg is strongly continuous as will be
shown in Section II below but also in other contexts as shown by

Theorem 2. {21, α} be as in Corollary 1 above ivith {2ί, α} a iveakly
asymptotically abelian system and G locally compact, non compact and
connected. Then M' is contained in the weak-operator closure 21" of 2ί (or
equivalently 2Γ Q 01).

Proof. From [13] some cyclic subgroup Go is not relatively compact;
and from the definition {21, U | Go} is a concrete weakly asymptotically
abelian system with Ω invariant under U \ Go and cyclic for 21. Now Go

has an invariant mean (see section II below) and ̂ 0 , the von Neumann
algebra generated by 2ί and U \ Go is contained in ̂ . Thus 0t' Q 0t$ Q 21".

We note that if 01' C 2Γ one then has 0Ϊ = 2ί" Λ 9Γ Λ U(G). &' then
consists of those elements in the center of 21" which commute with all
Ug, g ζ 6r. In particular the central reduction of 0t (see below) then
yields mutually disjoint representations of 2ί.

A further specialization of particular interest in the study of ground
states at finite temperature [14] has equivalent formulations stated in the

Theorem 3. Let again {2ί, α} be as in Corollary 1 above ivith {2ί, α} a
iveakly asymptotically abelian system, Ω a vector cyclic for !M invariant
under Ug, and 01' contained in 21".

The following are equivalent
(i) Ω is cyclic for 2Γ (or separating for 2ί"J.

(ii) {2C w ϋ(G)}" = 0t.
(iii) 21" n ϋ(θ)' ς 2 ί " Λ2Γ.
Proof. Writing 0tx - {2Γ w U(G)}", (ii) reads 0tx = 0t and (iiί)

0t\ C 21" r\ 21'. Since «^'c2Γ or 2 ί ' C ^ one has 0txc0ί. Therefore (cf.
proof of Theorem 1) E0^1E0 is abelian and since Eo ζ U(G)", E0^τE0 is
a von Neumann algebra. From (i) EQ^EQ is maximal abelian on Eo J f
so that E^EQ = E0&E0. Thus their commutants ^ j i ^ and ̂ ' ^ 0

coincide and ^ Ί = &' or ̂  = & (since Eo has central carrier I). On the
other hand (iii) trivially results from (ii) since 01' = 2ί" Γ\ 2ί' Λ 27(0)' as
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we noticed above. In turn (iii) implies ^ 2 21 and hence that Ω is cyclic
under 0tv Since Ω is invariant under U(G) and each Ug induces an
automorphism of 2Γ, Ω is then cyclic for 21' i.e. one has (i).

We note that the cyclicity of Ω for 2Γ is a property which is conserved
under the central reduction of 0t discussed below. This follows from the
fact that the reduction of 01 is a reduction of 0tx because of equality (ii)
of the Theorem.

The extremal invariant states (Estates) over 21. The states over 21
invariant under G (the 6r-invariant states) form a convex w*-relatively
compact subset of the topological dual 21* of 21. Special interest is
attached to the extreme points of this convex set to which we give the
name of Estates, instates can be characterized in a variety of ways
expressed in

Theorem 4. With the assumptions and notation of Corollary 2 the
following are equivalent for the G-invariant state Φ over 91

(i) for all A,B ζ 2( (Ω\ πΦ(A) MΦ{B) \Ω) = (Φ, A) (Φ, B).
(ii) Ω is the only G-invariant vector of 34? i.e. Eo — EΩ where EΩ denotes

the orthogonal projection in J f on the vector Ω.
(iii) ForallAvA2,Bζ%i

φ\ πΦ{Ax) MΦ(B) πΦ(A2) \Ω) = (Φ, A,A2) (Φ, B).

(iv) MΦ(A) is a multiple of the identity for all A ζ 21.
(v) The set of operators τrΦ(2ί) \J UΦ(G) is irreducible (i.e. & consists

of all bounded operators on M").
(vi) 0£ is a factor.

(vii) Φ is an extremal element of the convex set of G-invariant states
over 21.

Proof. We have, by the definition of Mφ

(Ω\ πΦ(A) MΦ(B) \Ω) = (Ω\ πΦ(A) EoπΦ(B) \Ω) , (5)

thus since Ω is cyclic for πΦ (21) and

<Φ, A) (Φ, B) = (Ω\ πΦ(A) \Ω) (Ω\ πΦ(B) \Ω) (6)

(i) is equivalent to Eo = \Ω) (Ω\ — EΩ. On the other hand (iii) is obtained
from (i) by setting A = A±A2 and permuting A2 with MΦ{B) ζ {%'. Con-
versely we obtain (i) from (iii) by setting A± = A and taking for A2 an
approximate identity in 21. Now (iv) is evidently equivalent to (iii) due
to the cyclicity of Ω for πΦ{Qί). (iv) and (vi) are equivalent because the
MΦ{A), A £ 21, are dense in 01''. (vi) is equivalent to (v) because 01' is
abelian. Finally (vii) is equivalent to (v), for, with E' a projection in
^ ' J ωEΏπΦ ^ Φ = ωΩπΦ and ωE>Ωπφ is invariant under otg. Thus
ωE>ΩπΦ = aΦ and

(π(A)Ω \aΩ) - (π{A) EfΩ\EΏ) - (π{A)Ω \E'Ω) for all A in 31. (7)

Since Ω is cyclic under 2ί, {aI — E')Ω = 0 and, since Ω is separating
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for 01', W = al. Hence W = 0 or / and 01* = {67}. Conversely, if 01 is
all bounded operators and ω is an invariant linear functional such that
0 < α> < Φ, from [16; Lemma 2.2] ω = ωτ ΩπΦ with T' a positive
operator in £%'. Since ^ 7 is the scalars ω = aΦ and Φ is extremal among
the invariant states of Qί.

Decomposition of an invariant state into Estates. With the
assumptions and notation of Corollary 2, suppose, in addition,
that 0t', which we know to be abelian, is generated by its minimal
projections {F?} (i.e. those non-zero projections in 01' which dominate no
other non-zero projection in 0t'). In this case, 0tFλ has commutant
Fλ&'Fλ = {aFλ} on Fλ(J^); so that 0LFλ is the algebra of all bounded
operators on Fλ(<tff). The UgFλ induce automorphisms of 0tFλ and
Ωλ(=FλΩ) is invariant under all UgFλ and cyclic for πΦ(Ql)Fλ. From
Theorem 4, (v) and (vii), Ωλ gives rise to an instate Φλ of Qi, where
Φλ(A) = (πφ(A)Ω'λ I Ω'λ), with Ω'λ -= Ωλ\\\Ωλ\ — noting that fi^φO since
Ω is separating for 0t' being cyclic for 0t.

We have

Φ(A) = (πφ(A)Ω I Ω) = (πΦ{A) (ΣλFλ)Ω\(ΣλFλ)Ω) = Σλ(πΦ(A)Ωλ\Ωλ)

= Σλ\Ωλγ (πΦ(A)Ω'λ \ Ω'λ) = Σλ\Ωλγ Φλ{A) \ (8)

and Σλ\Ωj}\2 = ||Ω||2 = 1. In this way we have expressed Φ as a convex
sum of ^-states Φλ. If Φ = ΣγayΦ'γ with Φ'γ an instate for each γ and
aγ > 0, then Φ'Y(A) = (πΦ{A)TΏ \ TΏ) for some T' in 0ί' by [16,
Lemma 2.2] and all A in 51. Thus i ^ T ' β - bλΩ'λ and Φ; = 27A |6A |^A.
By extremality Φ'y = Φλo for some λ0, \bλo\ = 1, and δA = 0 for all λ φ λ0.
It remains to note that if ΣλcλΦλ = 0, where Σ\cλ\ < oo, then cλ = 0 for
all /I, in order to establish the uniqueness of our decomposition of Φ
into instates.

For this note that ((πΦ(^ x) UfJi + + πΦ(An)Ugt)Ω'λ | βA)

= Φ .ί^x + * 4- An) so that ΣcλωΩ> vanishes on the *-algebra generated

by 7iφ(2ί) and {Ug}. Since Σ\cλ\ < oo, ΣcλojΩ> is normal and vanishes on

the weak-operator closure, 0tt generated by this algebra. Thus

0 = ΣcλωΩ'(Fλ) = cλ for all λ\ and the uniqueness of our decomposition

follows.
With suitable separability assumptions, the analogous argument

using direct integral decompositions of 01 and 3f relative to 0t', yields a
(unique) direct integral decomposition of an arbitrary G-invariant state
of Sί as a "convex" integral of E-states.

II. The Case of an Amenable Group

We first recall a few definitions and results concerning amenable
groups. For a locally compact group G let us denote by ̂ (G), and ^Q(G),
the C*-algebras of continuous complex valued functions on G respectively
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bounded, and vanishing at infinity, with the sup norm || jj^. We will
sometimes denote a function f ζ&(G) by the symbol f(g) where the
roofed letter indicates a dummy variable. A mean over G is a positive
linear form η over the (7*-algebra &(G) of unit norm (i.e. η(l) = 1 where
1 denotes the constant unit function). The mean η is respectively left-
or right-invariant if η{f{hg)} = η{f(§)} or η{f(gh)} = r){f{§)} for all
/ £ ̂ (sO a n d /& £ #. It is (£wo sided) invariant if it is both left and right-
invariant. The existence of a left-invariant, right-invariant or invariant
mean over G are equivalent requirements which characterize a subclass
of locally compact groups which we will call amenable (for the properties
of amenable groups see [17]). Amenable groups can be characterized by
the existence of M-filters as defined in [7; Definition 1]. Every abelian
or solvable locally compact group is amenable. Every compact group is
trivially amenable. However, no non-compact semi-simple Lie group is
amenable [18] (for instance SL(2, B) is not amenable). The Lorentz
group is not amenable. The group of euclidean motions in 3-space is
amenable since each extension of an amenable group by an amenable
group is amenable [17]. If G is amenable and non compact the restriction
of every left- or right-invariant mean to ^0(G) vanishes. In what follows
we denote by 2l§ the linear space of all weakly-continuous, weakly
bounded functions from G to 21 (i.e. for each Φ in the topological dual
21* of 31 and X £ 2ί§, <Φ, X{g)) ζ V(G)).

We note that each X ζ%% is norm-bounded (i.e. Sup |
gζG

finite) from the uniform boundedness principle [11; Chapt. II § 1 p. 49].
We denote by 2ί** the von Neumann enveloping algebra of 2ί (the
topological dual of 21* with its strong topology, see [15, Chapter 12]).

In the three next paragraphs we describe means of vector or operator
valued functions. Then we introduce the notion of η-asymptotic abelianness
relevant to (7*-algebras acted upon by amenable groups which allows us
to derive properties analogous to those of the previous section.

The mapping Mη from 21 to 2ί**. This paragraph deals with averages
of the functions of the type g -> ocg(A), A £ 21, from G to 21 with invariant
means over G. The following lemma first gathers elementary facts on
"vectorial means".

Lemma 1. Let 21 &e a C*-algebra and G a locally compact group. To each
mean η over G there exists a unique mapping fj from 2ί§ to 21** such that

<Φ, ή(X)) = η{(Φ, X{g))} for all Φ ζ 2ί* . (11)

This mapping fj is linear, bounded of norm not exceeding 1 (i.e.
\\ή(X)\\ ̂  IZIloo for all X ζ 2ί |Λ positive (i.e. X(g) ^ 0 for all g ζG
8 Commun. math. Phys., Vol. 6
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implies ή(X) ^ 0) and such that, for all A ζ 21

ή(A) = A (12)

ή(X • A) = ή{X) • Aj ( 1 3 )

(here A, A X and X A are the elements of 2ί§ respectively defined by
A (g) = A,{A- X} (g) = A- X(g), {X • A} (g) = X(g) • A).

If G is amenable and non compact and η is right-invariant, rj(X)
vanishes whenever X vanishes weakly at infinity (i.e. whenever, for each
Φ £21*, (Φ,X(g)y (z&oiG)). If G is amenable and η is right-invariant
then η is right-invariant (i.e. ή(X(gh)) — ή(X(g)) for all g ζG).

Proof. One has

\η{(Φ,X(g))}\<Snp\(Φ,X(g))\^\\Φ\\

therefore Φ ζ 21* -> η{(Φ, X (g)}} is a linear form on 2ί* of norm ^
For positivity, note that η{(Φ, X(g))} ^ 0 if Φ is a state of 21 and
X ^ 0; while (12) stems form the fact that η(l) = 1. For X ζ 2 ί | and
A ζ 21 one has

η{(Φ, A • X(g)}} = η{(Atφ, X(g)}} = (A*Φ, η(X)) = (Φ,Aή(X))

and analogously for right-multiplication by A (we denote by A1 the
transpose of left-multiplication by A and note that multiplication by
A £ 21 in 21** can be defined by double transposition). The last assertion
of the Lemma follows immediately from the definition (11) and the fact
that η I &0{G) = 0. As an immediate consequence we now have

Lemma 2. Let 21 be a C*-algebra, g ζG -> ocg a strongly continuous
homomorphism of the locally compact group G into the automorphism group
of 21 (i.e. g ζG -> ocg(A) is a norm-continuous function of g for all A £ 2(J.
Let η be a mean over G; and let

AdQί. (14)

Then Mn is a linear positive bounded mapping from 2ί to 21** of norm not
exceeding I. If G is amenable and η is right invariant Mη is such that

Mη(at(A)) = Mη(A), Aίϊί,gζG. (15)

Moreover the means Mη(A), A £ 2ί are G-invariant elements of 2ί** in the
sense that, for all g ζG, and each left invariant mean η over G,

aβ(Mη(A)) = Mη(A) (15a)

where ocg denotes the action of G on 21** obtained by double transposition.

Proof. M is evidently linear, positive since ^ 4 ^ 0 implies ocg(A) ^ 0
for all g ζG, and bounded by 1 because ||αα(^!)|| = ||^i||, g ζ G. The in-
variance of M.η for a right-invariant η follows from the definition (14)
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and the last assertion of Lemma 1. For (15 a) note that

<Φ, *a(Mη(A))) = η{<α*(Φ), *§(A)}} =

for each Φ in 21*.
The mapping Mη on the dual space 21*. In the same setting as for the

last proposition we now describe the transpose of the operator Mη, which
we again denote by Mη.

Lemma 3. Let 21 be a C*-algebra and g -» ocg a strongly continuous
homomorphism of the locally compact group G into the automorphism group
of 21. To each mean η over G there exists a unique mapping Mη of 21*
into 21* such that

(Mη(Φ),A)=(Φ,Mη(A))^η{(Φ,^(Λ))}, A £Qί, Φ £ 21* . (16)

This mapping Mη is linear, positive and bounded of norm not exceeding 1.
// G is amenable and η is right-invariant Mη is idempotent and projects onto
the set of G-invariant elements of 21* (i.e. those Φ ζ2ί* such that (Φ, ocg (A)y
= (Φ, A} for all A £ 21 and g ζG). If η is an arbitrary mean and Φ is
G-invariant Mη(Φ) = Φ.

Proof. One has, for all Φ ζ 21* and A £ 21

\(Φ,Mη(A))\ ^ | |Φ| | | |M,μ) | |^ | |Φ| | |μil

therefore Φ ~> Mη (Φ) is a linear mapping in 2ί* for which ||Mη (Φ)\\ ̂  || Φ\\,
Φ £21*. Further, for Φ ^ 0 and . 4 ^ 0 one has 1^(4) ^ 0 and
(Φ, Mη(A)) ^ 0 whence Mη(Φ) ^ 0 and Mn is positive. If ?y is right-
invariant Mη(Φ) is (^-invariant for all Φ ζ 21* as a consequence of (16)
and (15). On the other hand 6r-invariant elements of 2ί* are invariant
under Mη for an arbitrary mean η due to (16) and the definition of a mean.
Thus for arbitrary Φ one has Mη(Mη(Φ)) = Mη(Φ).

We note that, since Mη projects onto the G-invariant elements of 21*,
the fact that Mη = 0 for some right-invariant mean η implies that there
does not exist any 6r-invariant state (= positive linear form of unit norm)
in 21*. Conversely the absence of 6r-invariant states entails the vanishing
of all operators Mη (in 21* or from 21 to 2(**) for all right-invariant means
η over G. A last remark is that, if 21 has a unit, the mapping Mη is of
unit norm (obvious by setting A = / in (16)). But if 21 = β Θ {λl}, with
β a two-sided ideal, the Mη might be trivial in the sense that
Mη(Φ) {A Θ λl} = λ for all states Φ over 21 and all η.

Means in covariant representations. We consider now as in Section I
covariant representations (π, U) of the pair (21, G) and describe means
of such operator valued functions as g -> Ug or g -> Ugπ(A)Ug~

1. We
begin with a lemma analogous to Lemma 1 describing means of operator-
valued functions on G.
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Lemma 4. Let j£? (Jf) be the algebra of bounded linear operators on a
Hilbert space 2tf\ G a locally compact group and 3C the set of functions
g->X(g) from G to J?(Jf) such that g->(φ\X(g) \ψ) is a continuous
function on G for all φ, ψ ζ J^ and Sup ||X(^)|| = ||-X"||oo is finite. To each

mean η over G there exists a unique operator ή from ΘC to J?(Jί?) such that

(φ\ή(X)\ψ) = η{φ\X(g)\ψ)}, ψ,ψζ^. (17)

The operator ή is linear, bounded of norm not exceeding 1 (i.e. \\fj(X)\\ ̂
5j ||X||oo for att X £&")> positive (i.e. X{g) ^ 0 for all g ζG implies
ή(X) ^ 0) and such that, for all A £ Jδf(^f), with notations analogous to
those of Lemma 1

ή(A) = A (18)

ή(A X) = A ή(Σ) (19)

ή(X-A) = ή(X) A.

Furthermore fj(X), I ^ f , is contained in the bicommutant of the range of

Proof. Analogous to the proof of Lemma 1. We have

\η{(φ\ X(§) \ψ)}\ £ Sup \(φ\ X(g) \ψ)\ £ \\φ\\ \\ψ\\

whence, by Riesz's Theorem, the existence of rj(X) of norm ^ ]
follows. Positivity and property (18) are proved as in Lemma 1 and
properties (19) in an analogous manner: one has, for left multiplications

(ψ\ ή{A • X) \ψ) = η{(φ\ AX(g) \ψ)} = η{(A*φ\ X(g) \ψ)}

The fact that ή(X) is contained in the bicommutant of the range of X is
then an immediate consequence of (19).

Proposition 1. Let G be an amenable locally compact group, g -> Ug a
strongly continuous unitary representation of G on a Hilbert space, Eo the
orthogonal projector onto the G-invariant vectors of J4? (i.e. those ψ ζ J^f
such that Ugψ = ψ for all ψ ζ £?). Using the notation of the preceding
Lemma we then have that fj(Ug) ~ Eo for all right or left-invariant means rj
over G.

Proof. We first observe that, due to (19), for each h ζ G and a right-
invariant η

ή(ϋ) Όh = η(ϋ; ϋh) = ή(Uiλ) = η(ϋ) . (20)

By taking means, using (19) and (18) again, it follows that

η{η(ϋ) Uh} = ή(fj(ϋ)) = f\{ϋf = ή(U) ,
2 The above Lemma 1 is essentially identical with Lemma 2 from which it can

be deduced by application to the universal representation of 21. However we prefer
to present straightforward independent proofs.
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thus ή(U) is idempotent. To prove that it is self adjoint we note that,
taking adjoints in (20), Uhή{U)* — ή(U)*, whence we derive as above

η(τihή(U)*) = ή(ή(ϋ)*) = ή(ϋ) ή(U)* = ή(U)* .

Hence ή(U)* is self adjoint and fj(U) is a self adjoint projection such that
Uhή(U) = fj(U)Uh= fj(U), h ζG, i.e. such that its range is contained
in that of Eo. Thus ή(ϋ)E0 = ή(ϋ) and, using (19),

Therefore fj(U) = E0. Finally, for a left invariant η,ηλ given by

)) i s r i g h t invariant and fj{ϋ) = η^ϋ*) = fj^U)*

Corollary. With G,U,J^ and η as in the preceding Proposition and χ a
continuous character of G, fj(χU) = Eχ, the orthogonal projection on the
space of vectors ψ ζ 34? such that Ugψ = χ(g)ψ for all g ξ (?.

Proof. Apply the Proposition to the representation g -> χ(g) Ug.
Lemma 5. With 01 a C*-algebra and g -> ocg a strongly continuous homo-

morphism of the locally compact amenable group G into the automorphism
group of $1, we recall that a covariant representation (π, U) of the system
{21, α} is a pair consisting of a * -representation π of 21 and a strongly
continuous unitary representation U of Gsuch that n (oίg (A))= Ugπ(Λ)Ug~

1

for all A ζ 2ί and g ζG. Using the preceding notation we then have that, for
a left invariant mean η over G,

ή{Uίπ(A)UΓi} = π{Mη(A)} ( = m*(A)) (21)

where the ultraweakly continuous extension of π to 21** is again denoted by
π. The m*(A), A ζ 2ί, are elements of π(%l)" invariant under G in the
sense that

Ugm-(A)U;1 = ?n-(A).

Proof. Equation (21) results immediately from the comparison of

definitions (16) and (17). The rest of the lemma follows from

(φ\ Ugπ(Mη(A))U;1 \ψ)=η{(ωu-ιψ,ϋ-ιφπ\ xs(A)}}

\ψ)} = η{(φ\ πfa(A)) \ψ)}
= (φ\ m%{A) \ψ) .

Asymptotic abelianness in mean. We begin with the
Definition 2. Let {21, α} be a pair consisting of a C*-algebra 2ί and a

strongly continuous homomorphism g -> ocg of the locally compact amenable
group G into the automorphism group of 21. Let η be a right or left invariant
mean over G. The system {21, α} is called an (abstract) ^-asymptotically
abelian system if, for all A, B ζ 21 and each state Φ over 2ί

η{(Φ, A •as(B)-ai(B) J>} = 0 .

If 21 is a concrete C*-algebra acting on a Hilbert space 3P and g -> Ug is a
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strongly continuous unitary representation of G on 3ft? such that ocg(A)
= UgA U~λ for all A ζ2t, g ξ_G, {21, α} is called a concrete ^-asymptotically
abelian system whenever the condition above holds for all vector states Φ
o/2l.

Remark 1. Each covariant representation of an abstract ^-asympto-
tically abelian system {2t, α} yields a concrete ^-asymptotically abelian
system.

Remark 2. For a non-compact amenable group G weak asymptotic
abelianness of the abstract system {21, α} obviously implies ̂ -asymptotic
abelianness for all right or left invariant means η over G.

Remark 3. The set of right (left) invariant means η for which the
abstract or concrete system {21, α} is ^-asymptotically abelian is a
w*-closed (and thus w*-compact) convex subset of the topological dual
space of <€($).

Lemma 6. Let η be a right or left invariant mean over the amenable
group G. The concrete system {21, α} is η-asymptotically abelian if and
only if η{U$A U"1} (which we denote by mη(A)) is contained in the center
of the weak closure 21" of 2ί for all A ζ 2ί. Analogously the abstract system
{2ί, α} is η-asymptotically abelian if and only if Mη(A) is in the center of
21** for all A ζ 21.

Proof. From (19), ή{(Φ, B*ff(A) - *ff(A)B)} = (Φ, BMη(A)~
— Mη(A)By; so that the abstract system {21, α} is ^-asymptotically
abelian if and only if Mη{A) lies in the center of 21** for each A in 21.
Replacing Mη above by mη, we conclude that the concrete system {2t, α}
is ^-asymptotically abelian if and only if mη(A) £2Γ r\ 21" for each
,4 £21.

Theorem 5. Let {2ί, α} be a concrete η-asymptotically abelian system
acting on the Hilbert space J4? with η a left invariant mean over the group G.
We denote by Eo the projector onto the subspace of vectors ψ ζ Jj? such that
Ugψ = ψ for all g ζG and by έ% the von Neumann algebra generated by
Qίand U(G). Then

(i) E0&E0 is abelian with the consequences stated in (i), (ii), (iii) of
Theorem 1.

(ii) // Eo has central carrier I in & the mapping mη of Lemma 6 co-
incides on 21 with the mapping M of Theorem 1 (thus the restriction of
mη to 21 does not depend upon the choice of η within the set considered in
Remark 3 above) 3.

(iii) M and mη coincide also on 2ί" if and only if the conditions of
Theorem 3 are realized or equivalently if the system {21", α} is η-asympto-
tically abelian.

3 This explains why the M could be obtained in [7] by use of an arbitrary
.Λf-filter (most statements and proofs in [7] are — except for the last two sections —
valid for amenable groups rather than only abelian groups).
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Proof. By Lemma 6 we have that mη(A) B — B mη(A) — 0 for all
4, B ζ2l. Now Eomη(A)BEo = Eoη(ϋgAU^)BEo=η(EoA U^)BE0

= E0AEQBE0 from (19) and Proposition 1. We conclude that
EQAEQBE0- EOBEOAEO = 0 Λvhence (i). In order to prove (ii) we
observe that, for A ζ$ί, using (19) again,

mη(A)E0 = E0AE0 = M(A)E0 .

Thus m ί̂̂ L) = M{A), since m^(^l) and M(A) are in ^ ' . To prove (iii)
we first observe that Lemma 6 entails the equivalence of condition (iii)
of Theorem 3, namely 91" r\ U (G)' Q 2Γ, and the ^-asymptotic abelian-
ness of the system {91", α}. However the latter implies that mη = M over
91" using the equation above. Now this last property implies in turn
property (iii) of Theorem 3 since M (21") C &' and mη(Ql") = 91" r\ U(G)'.

Definition 3. Let Qίbea C*-algebra, G a locally compact amenable group,
g -> <xga strongly continuous homomorphism of G into the automorphism
group of 91. A state Φ over 91 is called ^-weakly clustering whenever
η{(Φ, A 0LQ (B))} = Φ(A) η{(Φ, oc$ {B))} for all A, B £ 91 with η a right
or left invariant mean over G. A G-invariant state Φ is called weakly
clustering whenever there exists a right or left invariant mean η over G for
ivhich it is η-weakly clustering i.e. such that

(Φ,A Mη(B))=(Φ,A)(Φ,B). (22)

Remark. For a general state Φ and denoting by the same symbol the
ultraweakly continuous extension of Φ to 91**, ^-weakly clustering can
be formulated as the requirement that <Φ, Mη{Bf) = <Φ, Mη(B))2 for
all self adjoint B ζ 91 (the last condition is known to be equivalent to
(Φ,A-Mη(B))= (Φ,A)(Φ,Mη{B)) for all A £ 91** [see, for ex-
ample, 27, Lemma].

We can now rephrase Theorem 4 in the following way:
Theorem 4 a. With {91, α} an η-asymptotically abelian abstract system

and Φ an invariant state over 91 the following are all equivalent to (v), (vi),
(vii) of Theorem 4;

(i) Φ is weakly clustering.
(ii) Ω is the only G-invariant vector in M*.

(iii) Condition (22) holds for all right or left invariant means over G.

(iv) Mπ

n

Φ{A) = <Φ, A) I for all A ζ 91 and all η such that {21, α} is
η-asymptotically abelian.

III. Examples

A. A System where the Group is compact

Let 9t be the full algebra of n X n complex matrices, G be the compact
group of unitary n x n matrices with Haar measure μ and define
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ocπ{A) = UA U-\ A ζ 21, ϋ ζQ. We then have

so that (cf. Lemma 6) the system {2ί, α} is //-asymptotically abelian.
Remark. If we let H be the direct sum of G and any locally compact,

non compact group, then composing α with the quotient mapping
modulo this group yields a system which is ^-asymptotically abelian for
each invariant mean η over H but not weakly asymptotically abelian.

B. The Algebra of Canonical Anticommutation Relations:
a System which is weakly but not Norm asymptotically Abelian

With 21 the O*-algebra of c.a.r. on L2(Rn) (generated by the smeared
out bounded creation field operators ψ(f), / in L2), let ax be the auto-
morphism of 21 determined by ax(ψ(f)) = ψ{fx), f in L2 where fx{y)
= f(y — x). Then α is a strongly continuous representation of the trans-
lation group of Rn by * -automorphisms of 21. We show first that the
system {21, α} is weakly asymptotically abelian.

We recall that 21 is the linear space sum of 210 and 2t0 where 2Je is the
norm closure of the linear span of monomials in ψ (/) and ψ* (/) having an
even number of terms with 2l0 the same for monomials having an odd
number of terms. From the commutation relations it follows that
lim \\[ocx{A), B]-\\ =0 for each A in 21, and all B in 21, while

lim |[ [<xx(A), B]+\\ = 0 for all A and B in 2l0.
X—>oo

If we show that φ(pcx(A)) -> 0 as x -> 004 for each A in 2t0 and each
state φ of $1, then φ([ocx(A), B)]J) = φB(ccx(A)) — φB(ocx(A), where
φB{C) = φ(CB) and φβ(G) = φ{BC), tends to 0 as x ~> 00 for A in 2l0,
while [ocx(A), JB]_ = [^(^.Q), JB]_ + [ocx(Ae)B]- with ^40 in 2l0 and Ae in
2te. Of course it will suffice to deal with self-adjoint A.

Passing to the representation associated with φ, we may assume that
2ί acts on Jf with cyclic vector Ω and that φ(A) = (AΩ \ Ω). Suppose
that ocXn(A)Ω tends weakly to ψ in ^f where x.n ~> 00 with π. Then

|MI«= lim ( α ^ μ ) β | lim α ^ ( 4 ) ί 3 ) = lim ( lim ( α ^ ^ ) 0
n = co m = co n = co m = oo

= lim (lim 99(α^^) α
n — co Nm = 00

= - lim ( lim ^ α ^ i
n = 00 sm = 00

It follows that y = 0 and that lim (αa 3(^.)β|Ω) = lim φ(μx(A)) = 0.
#->co

4 This fact follows from an argument of R. POWERS (Princeton thesis to appear).
We wish to thank R. POWERS for helpful discussion concerning this example.
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If {21, α} was norm asymptotically abelian, || ψ (fx) ψ(g) — ψ (g) ψ (fx) \\ -> 0
as x -> oo while \\ψ{fx) ψ(g) + ψ(g) ψ{fx)\\ = 0 for all x; so that
\\ψ(fx) ψ(9)\\ -> 0 as #->oo. If fx and g have compact disjoint supports,
however, \\ψ(fx) ψ(g)\\ = ||/|| \\g\\ φ θ if both / and g are non zero. Thus
{21, α} is not norm asymptotically abelian.

In the last examples all Mη are zero, so that there are no 6r-invariant
states (cf. the remark following Lemma 3).

G. The C*-Algebra of a locally compact Abelian Group
Acted upon by the dual Group

With θ a locally compact non discrete abelian group and 6 its non
compact dual group topologized as usual, the (7*-algebra of G is the
algebra ίfo((?) of continuous functions on & vanishing at infinity with
pointwise multiplication, complex conjugation and the Sup norm |l H .̂
For each k ζ Q we define {αfc(/)} (p) = f(p-k), f ζ &0(ΰ), V £ #• Since
^o(^) = 2t is abelian we have a trivially asymptotically abelian system
{21, α}. Now the set A (6) of Fourier transforms of ^-functions on G is a
dense sub-*-algebra of 21 and therefore, to prove that all means on 21 and
on 21* vanish, it suffices to verify that they vanish on A(0). Now for
/ ζ A (ύ) and μ a bounded measure over 0 one has

(μ, Mη(f)) (= (Mη(μ), /» = η{(μXi (/)>} = 0

since {μ, α^ (/)) {— f * μ) is an element of A (6) C Ή$((*).

D. The Twisted Convolution Algebra Lλ(E, σ)
Acted upon by the Translations of the underlying Symplectic Space E

Let E be a finite-dimensional real vector space equipped with a non-
degenerate bilinear form σ. The twisted convolution algebra Lλ{E, a) over
E (see [19]) is obtained by taking the set of Lebesgue-integrable func-
tions over E with its L r norm || \λ and the following *-operation and
product x :

= fz-iσ{ξ>ψ)f(ξ)g(ψ~ξ)dξ, ψtE { }

Lλ (E, σ) is shown to be a Banach *-algebra possessing a unique irreducible
representation up to unitary equivalence. Since this representation is
faithful, the completion Lλ(E, σ) = 21 of LX{E, σ) in the operator norm
is a (7*-algebra which is shown to be isomorphic to the 0*-algebra of
compact operators on the irreducible representation space. Furthermore
the ^-operation and product (23) can be extended to the set Mλ{E, σ) of
bounded complex measures over E by defining, for each continuous
function f on E with compact support
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MX(E, σ) with the || | | r norm of measures thus becomes a *-Banach
algebra in which Lλ{E, σ), identified with the set of measures absolutely
continuous with respect to Lebesgue-measure, is a (two-sided) *-ideal.
Furthermore the definitions (24) are compatible with the extension of the
operation (23) on L±(E, σ) to its (7*-completion St.

We now assign to each u ζ E the *-automorphism ocu of 21 defined by

ocu{a) = δu X a X δ-u a ζ 21 (25)

where δu is the Dirac measure on E at u. Since, according to (24), one
has

u -> ocu is a homomorphic mapping of the additive group of E into the
group of *-automorphism of 21. Further, one easily calculates from (24)
that, for/ eZ^iJ, σ),

{«„(/)} (ψ) = e-2<tf<tt v)/(v) a.e. in ψζE. (27)

We now show that
for each a ζ 21 and each continuous linear form Φ over 21 one has

(Φ, au (α)> -> (Φ, a) as u-^0 (28)
and

<Φ, α u (α)> -> 0 α^ w -> oo , (29)

Since each continuous linear form on 21 is the difference of two
positive forms and since Lλ(E, σ) is dense in 21 it suffices to prove (28)
and (29) for a positive form Φ and for a = /, / ζL^E, σ). Now each
positive form Φ on L^E.σ) corresponds to a function ψ ξ:Lo0{E)\ so
that, by (27), ^

^ <Φ, θu(/)> = / e-*"(»Ύ)f(y>) ψ(ψ) dψ - f^(σu) (30)

where / ^ is the Fourier-transform of the Z/rfunction fφ.
As a consequence of the weak continuity of the mapping u ζE ->

-> αw (α) ζ 21 expressed by (28) it is known that this mapping is also con-
tinuous in the norm topology of 21 [28; 10.2. Corollary]. On the other
hand it follows immediately from (28) that one has the following asymp-
totic abelian property:

α, b

and that, for every mean η on E and all a ζ 21 and Φ ξ 21*

η « Φ , αo (α)» = (Φ, Mη(a)) = <if, (Φ), a) = 0 . (32)

Therefore all means on 21 (or on 2ί*) vanish.

α, b £2ί
as u->oo,φ (31)
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