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Abstract. The Yukawa coupling in two dimensional space time is considered.
A space cutoff is introduced in the interaction term F, so that the renormalized
Hamiltonian Hren is a rigorously defined bilinear form in the Fock Hubert space.
The main result is that Hτen is positive provided the finite part of the renormaliza-
tion terms are suitably chosen. As a consequence, the Schrodinger equation
(ίd/dt — Hren)Φ = 0 can be solved.
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§ 1. Discussion of the Results

We study the energy operator in a model of Quantum Field Theory.
The model consists of bosons and fermions interacting with a Yukawa
coupling. We consider this model in two dimensional space time and we
introduce a space cut-off in the interaction energy F. Thus we write

V = f:Ψ*(x) Ψ(x) : Φ(x) h(x) dx , (1.1)

for h a function which is zero when |*τ| is large. (The limit, h -> 1, would
remove the space cutoff.) We studied the same problem in [2]; hereafter
we refer to this paper as I. We showed that the renormalized total energy
operator

i7 r e n = Ho + V -T (infinite counter terms) (1.2)

was rigorously defined as a bilinear form on a domain Q) x Q), with @}
dense in Fock space. The counter terms depend on two parameters, and
these parameters take on infinite values. The parameters can be changed

* This work was supported in part by the National Science Foundation,
GP — 6165.
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by any finite amount and the resulting new Hτen will still be a rigorously
defined bilinear form. Such a change will be called a finite renormaliza-
tion.

We wish to show that the bilinear form Hΐen is positive. We can
show this only after a finite renormalization has been performed.

Theorem A. There are constants δQ and (for δ >̂ δ0) co(δ) such that
the bilinear form

Hf - # r e n - δ f : Φ2(x) : h*(x) dx + c I (1.3)
is positive if

δ>δa, c^co(δ). (1.4)

In this theorem δo=δo(h) and cQ(δ) — co(δ, h) depend on h. As
h -> 1, δo(h) -> σo and cQ(δ0(h), Jι) -> σo. For h fixed, the theorem gives
us a great deal of information. With the help of Friedrich's extension
theorem we obtain

Theorem B. Suppose δ ^ δQ and c ^ co(δ). Then there is a positive
self adjoint operator whose bilinear form is an extension of H''.

We call this positive operator Hr also. The spectral theorem gives us
Theorem C. Suppose δ ^ δQ and c ^ cQ(δ). The Schrόdinger equation

has
φ{t) = e~ίtH' φ(0)

as its solution.
E. NELSON suggested using this approach to Theorem C.
We remark that if the coupling constant is small (depending on h)

then we can choose δ0 = 0 = δ. In the relativistic Heisenberg picture
(h = 1), influence propagates at a finite speed. Thus the existence of
solutions to the Heisenberg equations of motion is a local question, and
one can use Theorem C to construct possible candidates for solutions
to the relativistic Heisenberg equations. See also remarks in the intro-
duction to I.

Theorem A does not by itself imply Theorem B because there are
positive bilinear forms which do not come from positive self adjoint
operators. For example the bilinear form

7,0-/(0)17(0)

defined for / and g continuous on [0, 1] does not come from a self adjoint
operator on L2([Q, 1]). Thus we need to improve on Theorem A. Let Fτ

be the operator

Fτ = f μ{Jc)τa*(k)a(k)dk +

+ / ω(pY[b*(p) b(p) + b'*(p) V(p)1 dp
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introduced in I. In I we split the interaction energy V into two parts,

v=v1+v2

and we proved that Hf — F 2 is a symmetric densely defined operator
and that F 2 is infinitely small with respect to Fτ, 2" 1 < τ < 1. Our
improvement on Theorem A follows.

Theorem A'. Assume the hypothesis (1.4) of Theorem A. Then

H'-2-1Fτ (1.5)

is positive if τ is near enough to one, x < I.
Proof of Theorem B. We assume Theorem A'. The bilinear form

H' — F 2 is closable. In fact H' — F 2 is a symmetric operator bounded
from below (by I and Theorem A') so the statement follows from [3,
p. 318]. Also F 2 is bounded with respect to Fτ and Fτ in turn is bounded
with respect to H' - F 2 by I and Theorem A'. Thus E' = H' - F 2 + F 2

is closable ([3, p. 320]) and Theorem B follows ([3, p. 322-323]).

§ 2. The Method of Proof

The remainder of this paper will be devoted to the proof of TheoremA'.
In formal perturbation theory or in the rigorous treatment of very simple
models one constructs a unitary equivalence of the total energy H'
with the free energy operator Ho,

H'U=UH0. (2.1)

Since Ho is positive (in momentum space it is multiplication by a positive
function), H' is seen to be positive also. The unitary transformation tells
us much more than this. If we set

ά(k)= ϋa{k) ϋ-1

d* (k) =Ua* (k) U-1, etc.

then the operators d(k), ά*(k'), etc. satisfy the same commutation and
anticommutation relations as the annihilation and creation operators a,
α*, etc. We regard α*, a as creating or annihilating free particles and
α*, a, etc. as creating or annihilating physical particles. Furthermore
H' can be obtained by substituting a for a etc. in the definition of Ho.
In fact

H'^fά*(k) μ(k) d(k) dk + f ω(p) [6*(p) b(p) + 6r* (p) b'(p)] dp . (2.2)

We used an approximate version of (2.1) to define H', but this
equation does not seem to be helpful in showing that H' is positive.
Instead we use an approximate version of (2.2). There is a formal expres-
sion for a, etc. in terms of powers of F. The zero and first order terms are
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given by
SΓV

ά(k)=:a(k)+-—-+••• (2.3)

- , (2.4)

and there are similar expressions for ό, δ*, b' and £'*. In essence our
method is the following. We substitute part of the first two terms from
(2.3), etc. in the right member of (2.2). The resulting bilinear form ΈL"
is obviously positive. Also E" is approximately equal to H\ so the
proof is completed by obtaining a bound for H' — H"'.

Before giving the approximate expressions for the operators which
create and annihilate physical particles, we introduce some definitions.
Let

(Jc) (2.5)

τ(φ) (2.6)

(2.7)

In this definition we suppose that 2~x < τ < 1 and that τ is close enough
to one so that μ and ω are always positive. We recall from I, Sec. 4 the
definition of Ξ as the region in the pv φ2 pl&ne for which

\η\ ̂

We introduce an operation Γ which is an approximate inverse to adjEΓ0.
We do not make the simplest possible choice of Γ. Instead we choose a
Γ which will simplify some later computations. If

Qί = f

(i = 1, 2) is defined as in I, Sec. 1, then we set

Qi(Ξ) = f qidkdp1dp2

Ξ

Qi(~Ξ) = fqίdkdp1dp2.

The infinite mass renormalization is associated with Qι(Ξ). Let

ΓQi(Ξ) = f (OJJL + cog)-1 qi dk dφ1 dp2

Ξ

ΓQi(~ Ξ) = f (ωλ + ώ2 + μ)-1 qi dk dfa dp2
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The operator Γ Vx is a polynomial in the operators α, α*, etc. Thus the
functional derivatives

srv1

, etc.δa*(k)

have an obvious meaning. For example

δa*(k) J ^ x 2^ ^lVri? .P2' ^i ϋ via/ ϋ l ^ ; u<P\U'P2

if g2 ( 1̂? |?2' )̂ = ?i (Pi> ̂ 2' )̂ α* W ^* (̂ 1) ^'* (̂ 2) a s i n I Actually /* V1

is linear in the boson operators, in the nueleon operators and in the anti-
nucleon operators. Thus

and there are similar formulas for the b(pY& and b'(p)'s. Of more im-
portance to us is a related formula. We set

W, = V^Ξ) = Q1(Ξ) + Qt(Ξ) + QX(Ξ)* + Q,(Ξ)*

Wi=Q1(~Ξ) + Q1{~Ξ)*.

W=V1(Ξ)+Wa.
Then

fω(p) [b*(p) -§^ - ^ b(p)] dp+ (2.8)

This formula has only formal significance, since V1 (Ξ) is not an operator.
To obtain formulas with a rigorous meaning we use the cutoff operators
Wρσ, etc. introduced as in I, Sec. 1. The parameter ρ is a lower cutoff on
the fermion momenta. Because of this cutoff, fermions do not appear in
Wρσ with momenta of magnitude smaller than ρ. The parameter a is a
pair, a = σb, σfi and this cutoff is an upper cutoff. Thus the boson in Wρσ

has a momentum at most σb in magnitude and the fermion momenta are
at most σf in magnitude. We choose later a large fixed value for ρ we
will let σ ~> oo. This will introduce an error W — WQ which can be
estimated easily.
5 Commun. math. Phys., Vol. 6
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We define

δΓWρσ

δb*(p)

bσ>{p) = b *(p) + δy{v)

hΊ \-h'( δΓWQ<y

As an approximate expression for Hf ~ 2~1Fτ, let H" (σ) be the
result of substituting α*, etc. for α* in the definition of i ί 0 . Thus

# " (σ) = f ά* (k) μ(k) dσ(k) dk+ (2.9)

+ / ω(p) $*(p) Up) + 6*σ*(p) b'σ(p)] dp

^Ho-\- WQσ + 2nd order terms . (2.10)

To obtain the second equality, we used (2.8). The terms of second order
in (2.10) are second order in the coupling constant, or in other words in
V. They will be dominated either by εFτ + KI or by the (finite) cutoff
renormalization counterterms. This is a little surprising since these
terms in (2.10) are fourth order in α*, α, etc. while Fτ and the counter-
terms are of second order in α*, a, etc.

§ 3. Estimate for the Error Terms

If we substitute

etc. for ά*(k), etc. in (2.9) and then expand we get H'{(σ) represented as
a sum of terms of order zero, one and two in the coupling constant. The
sum of the zero order terms is exactly Ho and the sum of the first order
terms is exactly WOQ. This is precisely the content of formula (2.10). The
error Vσ — Wρσ can be estimated easily by use of I, Sec. 2.4 and I,
Sec. 4.

Lemma 3.1. The operator B(σ) = Vσ — Wρσ is infinitely small with
respect to Fτ, uniformly in σ. Thus if ε > 0 there is a K = K(ε) which does
not depend on σ such that B(σ) is dominated by εFτ + K(ε)I.

Proof. By the definition of W,

Vσ - Wea = Via + {W, - WQσ) + Q2a(~Ξ) + Qia(~Ξ)* .
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The terms V2σ and Q2σ(~ Ξ) were treated in I, Sec. 4. It follows that the
adjoint Q2σ(~ Ξ)* i s a ^ s o infinitely small with respect to Fτ. The term
Wa — Wρϋ has an L2 kernel which depends continuously in L2 on σ and
which converges in L2 to a limit as σ-> oo. By the corollary to Theo-
rem 2.4.3 of I, Wσ — Wρσ is dominated by εFτ + K(ε, a)I. Because of the
continuity properties of the kernel, K{ε, a) can be chosen to be continu-
ous in σ and to approach a limit as a -> oo. It is thus bounded uniformly
in a.

Next we consider the second order term in (2.9) which comes from
the meson integration. There is only one such term and it is

- w * * - (3J)

This expression is not Wick ordered, but it can be written as a sum of
four Wick ordered terms. The totally contracted term, one of these four,
contributes to the constant renormalization counter term. This term has
the form clρσ(~ Ξ)I, where

clρσ(~Ξ) = f XgafiieO! -f ω2 + fi)~2 &I2 dp1dp2dk

and where χρσ is the appropriate cutoff function.
Lemma 3.2. The operator (3.1) has the form

clρσ(~Ξ)I + B(σ)

ivhere R(G) is an operator which is infinitely small with respect to Fτi uni-
formly in σ.

Proof. Let R1(σ) be the term in (3.1) which contains no contractions
(beyond the given meson integration), and let R2(σ) — R(σ) — #i(cr).
The two terms in R2{a) each contain a fermion contraction. Let

and let
R^σ, k) = S1(σi k) S^σ, k)* .

Then
R^σ) = / R^ctydk .

In the same fashion we can write

^2(σ) — f ^2(cr? k> P) dk dp
where

R2{σ, k, p) = S2(σ, k, p) S2{σ, k, p)*

82(σ, k,p)= f χρσ(ώ1 + ώ2 + βQc))'1 μ(k)V* [q^k, q, p) b*(q) +

+ q1{k,p,q)b'*{q)]dq.
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The kernel of S1{σ,k) is μ1ί2(ώ1 + ώ2 + β)~ιqιχQσχ(~ Ξ), where
χ(~ Ξ) is the function which is equal to one off Ξ and is equal to zero
on Ξ. The limiting function (as σ -> oo) is not in L2, but its product
with ω~τl2> is in L2,

Thus we can find a smooth function 6ι

0 = so(k, plt φ2)
 n ° t depending

on a such that

χ{~ Ξ)\\2 < 8

for large σ, and we can also require that s0 have compact support. Let
S0(k) be the operator

#o(£) = / ^o(^ ^ P Pz) δ * (ίPi) & /* fe) dVi dV2
Then

fifo = //8fo(i)i8fo(fc)*d*

is infinitely small with respect to Fτ) by /, Theorem 2.4.2. Also

Ri(σ) -S0=f [S^σ, k) - S0(k)] S^σ, k)* dk

+ fS0(k)[S1(σ,k)*-Sa(k)*]dk.

Let slσ(k, pv p2) be the kernel of S1(σ, k). We estimate the integrand
in the first term as follows:

\\(Fτ + I)~V* [S^σ, k) - S0(k)] S^σ, k)* (FT + 7)-V»|| g

g const. ||ωΓr/2(βiσ(*, . , .) - so(k, . , .))||a | |ωΓ f t«i β(*, , O 2 .

because of /, Theorem 2.4.3 and the remarks following it. There is a
corresponding estimate for the second term. We integrate over k in
these estimates and use the Schwartz inequality together with identities
such as

\J \\ωl SiσK^, » ;||2 aK/) ' — \\ωl 5lσ| |2

This gives us the bound

||(J?T + /)-V2 (R^a) - So) (Fτ + /)-V2|| g

g const. | |ωf r / 2(5 l σ - 50)||2 | |ω^ τ / 2 5 l σ | | 2 +

+ const.| |ωf τ / 2so | |2 ||ωΓτ/2(51(J - so)| |2,

and so Bλ (σ) — So is bounded by

const.ε(| |ωΓ r / 2* l σ | |2 + 1) (Fτ + /) .

The estimates on B2{o) are similar since the kernel of S2(σ, k, p) is essen-
tially the same as the kernel of Sx (σ, k) if each is considered as a function
of three variables. This completes the proof.
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Next we consider second order contributions to (2.9) from the fermion

(for example, nucleon) integration. First we consider terms of this form

which are also linear or quadratic in W2. These terms are not Wick

ordered, but they can be written as a sum of Wick ordered terms. One of

these terms is totally contracted and so it has the form of a constant

multiple of the identity. The constant is

c2ρσ{~Ξ) = / χρσθh(ω1 + ω 2 + β)~2 \q±\2 dpxdp2dk .

This term contributes to the constant renormalization counter term. The

remaining terms are not all infinitely small with respect to Fτ (because

some terms are quadratic in the boson operators a and α*), but they can

be dominated by a multiple of F% -f /. This multiple is small if ρ is large.

Lemma 3.3. The second order terms in (2.9) which come from the

nucleon integration and which are linear or quadratic in W2 have the form

c2ρσ(~Ξ)I + R2(σ, ρ) .

Here B2(σ, ρ) is an operator and B2(σ, ρ) is dominated by o(l) (Fτ -f I)

where o(l) is a constant depending on ρ but not on a and

o (1) -> 0 as ρ -> oo .

We remark that there is an analogous lemma concerning the anti-

nucleon integration in (2.9). The constant term becomes

c 3 ρ σ (~i3)/= /% ( ? σω 2(ω 1 + ω2 + μ)~2 \qx\
2 dk dp I .

Let R3(σ, ρ) be the sum of the remaining terms and set B(σ, ρ)

= B2(σ, ρ) ~f i?3(σ, ρ). Evidently

3

Σ CiQo{~ Ξ) - / χ^fa + ω2 + β)-1 M* dk dp
i= 1 ~Ξ

and this is a good approximation to

ca{~Ξ) - f χa(co1+ ω2 + μ)-1 \qλ\
2dkdp .

We also define

cσ(Ξ) = / χσ(ω1 + ω2 + μ)~x \qx\
2 dk dp

and recall that

cal = (cσ (Ξ) + ca (~Ξ))I

is the constant renormalization counter term for our cutoff Hamiltonian

HΐQn(σ).

Lemma 3.4. There is a constant K depending on ρ but not on a such

that

do=\ΣciQa{~Ξ)-0a(~Ξ)\<K.
i
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We summarize our progress to this point by rewriting (2.9)

Π"(σ) = H0+ Vσ + cΰ(~Ξ)I-

Proof of Lemma 3.3. Let χ(Ξ) be the function Λvhich is identically
one on Ξ and identically zero off Ξ. First we observe that the functions

S3 = (ω, + ω2 + μ)-i ωψ*>-Yqxχ{~Ξ)Xeo

Si = {<Γh + ωj-1 ωψn')-yq1χ(Ξ)χQO

β6 = (ω, Λ tSϋ)-1 ωί 1 / 2 ) -^ 2 2(£)χ f i σ

are in L2 for some y > 0 and their L2 norms are bounded uniformly in
a. Also their Lz norms tend to zero as ρ -> <x>, uniformly in a. Consider
a term in R2 which is quadratic in the α# (= a or α*) and quadratic
in the δ'# also. This term or its adjoint has the form

/ dpiίf sx(k, Pl, Pi) μv*a* (k) V* {Pt) dk dp2) x

X (fsj(l,pvp')a#(l)b'(p')dldpl),

and 7' ^ 3. We apply /, Theorem 2.4.3 to the integrand for each value of
φλ and conclude that this operator is bounded by

const. (Fτ + I) f dp±{f l ^ 2 dk dp^)1/2 (/ ]^ | 2 dl dp')1!2 <

< const. (Fτ + /) (/ I5J2 dk dpλ dp^ (f | ^ | 2 dl dpL dp')1/2

= const, llsjj Ĥ  ll (Fτ + /) .

This proves the lemma as far as the fourth degree contributions to B2 are
concerned.

Next consider a term in B2 which is quadratic in the α^ and contains
no fermion operators. This term has the form

ps (/ Sl (k, Pl, p2) [?Pa* (k) dk) (/ sz(l, pv p2) a (I) dl)

and as before this term is bounded by

const.||sj ||53|| (Fτ + I) .

Finally consider a term which is quadratic in the b'^ and Λvhich
contains no meson operators. This term or its adjoint has the form

/ dk dpλ(f s2(k, pv p2) ώfb'*(p2) dp2) (/ Sj(k, pλ, p') b' (pr) dp')
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and as before this term can be bounded by

const. ||52|| IK II (Fτ + /) ,
for j S 3.

Proof of Lemma 3.4. The difference between cσ(~ Ξ) and

cρσ(~ Ξ) = f XQO^! + ω2 + μ)- 1 IgJ2 d& d ^ dp 2

is bounded uniformly in a because of the rapid decrease in the factor
h(η -f lc) which appears in qv We compute

3

Σcίρσ(~Ξ)-cQσ(~Ξ)
i = 1

= (3/4) / (o)l + ωl + ^ ) (α>x + ω 2 + μ)" 1 (ωx + ω2 + μ)'1 χQσ\qtf .

This integral is bounded uniformly in σ.

§ 4. Estimates for the Error Terms, Cont'd

It is clear that the operator H" (a) is a positive bilinear form. The
bilinear form

H' - 2 - ^

is the form which we are trying to show to be positive. We have made
some progress in showing the relation between H" (σ) and Hr — 2~1Fτ,
see (3.2). It remains for us to examine the integral in (3.2) and to show
that it can be dominated by

[δmo - δ) f :Φ*(x):h*(x) dx + ca(Ξ) I + ε(Fτ + /) . (4.1)

This will be done in § 5. In order to facilitate this we modify and simplify
(4.1) and the integral in (3.2). These changes introduce new error terms
and in this section we show that the new terms can be dominated by a
small multiple of Fτ + /. It is precisely in order to keep this multiple
small that we choose δ and ρ large.

We let Ξρσ be the set

{pvV2ζΞ:2ρ^ \ξ\ ^ 2σf} .
Let

:Δΰσ(Ξ): = 2 / (1 + |f |)-i :Φσ(k) Φσ(l): h(η - k) K(-η - I) X
Ξρa (42)

X (k)V2(l)V*dξddkdl

where Φ(k) = a(k) + a*(—k). Also we let Λρσ(Ξ) be the corresponding
integral in which the Wick product :Φo{k) Φσ(l): has been replaced by
an ordinary product.

Lemma 4.1. Let

ό = 41n(2ρ+ 1) (4.3)
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Then the first two terms in (4.1) can be written in the form

Aea(Ξ) + P(σ) + eσI (4.4)

where eσ is a number bounded uniformly as σ->αo, P(σ) is an operator
bounded by o(l) (Fτ-\- I),

o(l) -> 0 as ρ -> σo

and o(l) ίfoes noί depend on a.
Proof. Let

5 = (1 + HD-V^-i/Syξ^ _ k) .

Then μ~ys ζL2 on the set ~ Ξ, for any y > 0. Let (~ Ξ)Qσ be the set

:g \ξ\ g
and let

:/lρσ(~S): = 2 / :(fΦa(k)s(pvP,,k)dk)x (4.5)

X (/ Φσ{l)s(pvp2,l)*dl:dξdη .

Now the sum :zJρσ: of (4.2) and (4.5) is just the first term in (4.1). In fact
the integrands in (4.2) and (4.5) are identical because of the identities
φσ(—l) = φσ(l)* and h(— a) = h(a)~. Furthermore the first term in
(4.1) is an integral with the same integrand. This follows from the de-
finitions of ξ, η and δma; see I, Sec. 3.5. P{o) is defined to be (4.5). We
use formula (2.4.7) from Theorem 2.4.3 of I to bound each factor in the
integrand of (4.5). We conclude that (4.5) is bounded by

const. / \\μ

The coefficient of (Fτ + I) is small uniformly in σ? as ρ -> oo.
We have shown that the sum of the first two terms in (4.1) is equal to

:ΔQa(Ξ): + P(σ) + ca(Ξ)I.
Let

eσ = cσ(Ξ)-2 f fil + lξD^μ-^nkη + ktfdξdηdk. (4.6)
1*1 ̂ t f » Ξ

Q a

The second term is the fully contracted part of Δρσ(Ξ) and is thus
exactly the difference

:Δea{Ξ):-ΔQσ(Ξ).
This proves (4.4).

Let S be defined by formula (1.1) of I and recall that £ 2 = 4 -}- O(\ξ\~2)
in Ξ. Then eσ is bounded by two integrals. The first integral contains the
effect of the differing regions of integration in the two terms of (4.6). The
other integral is

/ /
1*1 S"» Ξ

Qa
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This integral is bounded uniformly in a because

|4(1 + If I)"1 - K + ω2 + μ)^S*\ g const. [\ξ |~3 + 4μ( l + \ξ |)~2]

in S1 and because

(i + | l | ) - 2 | £ j 2

is in Lλ on Ξ. This completes the proof.
Again we let

* = (i + |f|)-1/sy"1/aίfo-*)
and we let

ZQc(v) =J - 2 sgnf β(^, ft k) b* ( f t) Φσ(fc) d& dft .

The next lemma simplifies one term in the integral in (3.2). There is an
analogous lemma dealing with the other term in the integral.

Lemma 4.2.

The operator P1(σ) is bounded by o(l) (Fτ + I),

o(l)-»0 as Q-^oo

and o(l) does not depend on a.
Proof. Let

Then Fρσί̂ p) and Zρσ(p) each have kernels dominated by a multiple of
\s( , p, )| on the set Ξ. The kernels of YQO{p) — %Qσ{p) a r e much smaller
and are dominated by multiples of

t(Pl,p, h) =

For some γ > 0 the functions ω£ί and ω^vs are in i>2 on Ξ. Moreover

2P1(σ) = / [Yeσ(p) - ^ρα(p)]* y ρ 0(p) dp +

Thus P x (σ) is dominated by

const.(N + I)f \\ωlχ(ΞQa) ί( , p, ) | | 2 1 1 ^ ^ ( 2 ^ ) β( , p, ) I U ^

by I, Theorem 2.4.1. However this operator is bounded by

const. | |ω^(£) ρ σ ί | i 2 \\ω^χ{ΞQσ)s\^ (Fτ + /) .

The coefficient of Fτ + I tends to zero as ρ -> oo, uniformly in σ. This
completes the proof.

Let



74 J. GLIMM:

and let P2(σ) ̂ e the e r r o r term arising from the simplification of the
other term in the integral in (3.2).

§ 5. Completion of the Proof

We have shown that the positive bilinear form H" (σ) is given by the
formula

H"(a) = 2ΪO - (3/4) Fτ + Vo + cσ(~Ξ)I +

+ 2-i f Zβa{p)* ZQa(p) dp +

+ 2-ιfZ'Qσ(v)*Z'Qσ(v)dp +

4- B(σ) + R{σ, ρ) -f Px(σ) + Pa(or) + dal.

The bilinear form we wish to show to be positive is H' — 2~ιFτ, where
H' is defined by (1.3). We let

H'(σ) = Hmn(σ) - δ f :Φa{xf: h*(x) dx + c/ .

The bilinear form of ΐΓ'(a) converges to the bilinear form of H', so it is
sufficient to show that H' (σ) — 2~1Fτ is positive. According to Lemma 4.1
and the definition of HΐQιι((y)}

H'(σ) - 2~iFτ =-H0~ 2-ift + Va + cσ(~Ξ) 1 +

( + )I

if ρ and δ are related by (4.3). We assert that

Δβσ(Ξ) £ 2-i f Zta{p)* Zea{p) dp +

+ 2-i f Z'ea{p)* Z'tσ(p) dp .

If ρ and δ are sufficiently large it will follow from our estimates of the
error terms B(σ), R{a, ρ), etc. that

H"(σ) ^ H'(σ)-2-1Fτ + KI

for all σ. Here ρ, δ and K do not depend on σ. If c is sufficiently large,
c ^ Co(δ), then

0 ^ H"{σ) < Hf{σ)-2-1Fτ.

Thus the theorems of this paper will be completely proved once we prove
(5.3).

We will prove a proposition more general than (5.3). Let s = s (pv p2, h)
be in L2 and let

8{Vl,φ2)^js{Pl,Pi,k)Φ{k)dk (5.4)

<S(2>«) = / Hΐ>v P* k) Φ(k) b*{Pl) dkdΆ. (5.5)

Proposition 5.1.

/ 8 fa, p2)* 8 fa, pz) dp, dVi ^ f S(p2)* 8 fa) dp2. (5.6)
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Proof. First we observe that both sides of (5.6) are operators defined
on the domain SfN of N, since

1/ 8(Pi> ft)* 8(Pi> ft) dΆ dp2 (N + /)-i| | g

and

WfS(p

by I, Theorem 2.4.1.
In order to prove

f S(Pl

ί ) *

(5

S(P,

.6) it

2) J

)dp2

will

8(Pl

<

(N +

const. /

= const. || <s

I5(ί>i>ft> )lli

I ) - 1 ! ^ const. ||s|f

be sufficient to

>ft)* lp^ 8(p

prove that

ύ*8{P*) (5.7)

for almost every p2. Since p% is held fixed we may write s as a function
of two variables, s(p, h) = s(p, p2, h), and we omit writing the p2

dependence of operators (5.4) and (5.5). With this change, (5.7) becomes

/ 8{p)* S(p) dp^ 8*8 . (5.8)

Each side of (5.8) depends continuously on the function s. Here the
topology on s is the L2 topology and the topology on the operators in
(5.8) is the weak topology of bilinear forms defined on @N x £#N. Thus
it is sufficient to consider the case in which s is a finite sum,

and each j i and each gό is in L2 (and is piecewise constant, for example).
Let

Then {Φ1? . . ., Φj] is a commuting family of unbounded normal opera-
tors. The Φ/s have a simultaneous spectral resolution

dEλ, λ = λv . . ., λj, and Σoc^Φj ~ f Σoίjλj dEλ .

Also the fermion operators commute with the spectral projections Eλ.
We can compute

S = fΣtfi(p)b*{P)Φidp

= f(fΣίfί(P)W*(p)dp)dEλ

and
S*S = f(J ΣfλtfM b*(q) dq)* (/ Γ,A,/,b) b*{p) dp) dEλ .

The equalities above are asserted to hold only on a suitable dense domain.
It is a general property of fermion operators that
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In fact this follows from the anticommutation relations

b(q)b*(p) + b*(p)b(q) = δ(p - q) .
Thus

S*S^f(f\Σjλjfj(p)\*dp)dEλ.

We interchange order of the p and λ integrations. We then use the
formula

/ ΨiW φ2(λ) dEλ = / ψl(λ) dEλ f φ2(λ) dEλ

to place a spectral integral in each factor. This gives us the inequality

8*S <: / (/ ΣtλifΛp) dEλ)* (f Σ^Uiv) dEλ) dp

= f 8{p)*S{p)dp

and this proves the proposition.
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