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Abstract. The solutions of the Einstein field equations are studied under the
assumptions that (1) the source of the gravitational field is a perfect fluid, (2) the
divergence of the conformal (Weyl) tensor vanishes, and (3 a) either an equation of
state exists such that p = p{w), φ being the pressure and w the rest energy density,
or (3b) the rest particle density is conserved. Under assumptions (1), (2), and (3a)
it is shown that the space-time is conformally flat and the metric is a Robertson-
Walker metric. The flow is irrotational, shear-free, and geodesic. Under assumptions
(1), (2), and (3b) it is shown that either the line element is static or the fluid has a
very special caloric equation of state. Conditions for a static solution to exist are
examined, and it is shown that the Schwarzschild interior solution satisfies these
conditions as does the Einstein universe. The Schwarzschild interior and the Einstein
universe are the only conformally flat, static solutions obeying (1), (2), and (3b).

1. Introduction

In this paper we shall discuss the space-times satisfying the Einstein
field equations when the source of the gravitational field is a perfect
fluid and which are such that the divergence of the conformal (Weyl)
tensor vanishes.

It is a consequence of the latter condition that the four-velocity of
the fluid has vanishing rotation and shear. In addition, the derivatives
of the rest energy density w in directions orthogonal to the four-velocity
vanish. If the fluid obeys an equation of state, that is, if the pressure is a
function of w alone, it then follows that the particle paths of the fluid
are geodesies. Thus the assumptions that the divergence of the conformal
tensor vanishes and that an equation of state holds imply that the flow
is geodesic, irrotational and shear free [1], As is known, these conditions
in turn imply that the space-time is conformally flat, and that the metric
is of the Robertson-Walker type [2].

If the assumption that an equation of state holds is replaced by the
assumption that the particle density is conserved, it follows that either
the rest energy density of the fluid is constant, or the entropy is constant,
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or the fluid satisfies very special thermodynamic relations. In case the
entropy is constant, an equation of state holds, and the metric is a
Robertson-Walker metric. In case the rest energy density is constant,
the metric is a static one, and the three-space orthogonal to the four-
veloeity is a restricted one. If the energy density is constant and the
space-time is conformally flat, then the metric tensor is that of the
Schwarzschild interior solution or of the Einstein universe.

We shall adopt the convention that the metric tensor gXβ
(α, β = 0, 1, 2, 3) have the signature ( h + +). The Riemann tensor
will have its sign determined so that the Ricci relation becomes

2va.[βγ] = vσR%βγ (1.1)

where we use the notation

f[*β] = γ(f«β — fβ«)

and

f(ocβ) = γ(focβ + fβoc)

We define the Ricci tensor as

and then the Einstein field equations become

R R kT (1.2)

where Jc is Einstein's gravitational constant. The stress-energy tensor is
assumed to be that of a perfect fluid and hence

Tμv = [^(1 + β) + P] UμUv + VQμv

= (w + p) uμuv + pgμv

with

w = ρ ( l + ε) (1.4)

where ρ is the rest particle density, p the pressure, and ε the internal
energy which is a function of p and ρ. For different fluids this function is
different. The vector uμ is the matter four-velocity vector which is a
time-like unit vector and hence satisfies

uσuσ=-l. (1.5)

We have omitted the cosmological constant A in the field equations. It
may be reintroduced by replacing p by p + A and w by w — A.

As is well known the contracted Bianchi identities
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imply the equation of motion

{w + p)A« =(w + p)u*.ou
a = -ptσh

σ« (1.6)
where

hσx = gaa + %*%« (1.7)

and also imply the equation

(w + p)0 = (w + p)uσ.σ = -wyOuσ . (1.8)

The vector ^4α will be referred to as the acceleration vector, and the
scalar θ will be called the dilitation.

In many physical problems Eq. (1.2), with the right hand side given
by Eq. (1.3), are insufficient to determine the space-time and the motion
of the matter in it. To obtain a complete description of the problem
these equations must be supplemented by an additional equation. It is
customary to use two forms of this additional restraint :

1. To require that the matter satisfy an equation of state. That is,
to require that

p = p(w) (1.9)
or

2. To require, as in classical hydrodynamics, that the rest particle
density be conserved [3], That is, to require that

{Qu°),a = 0 . (1.10)

It follows from Eq. (1.4) that

dw = dρ(l + ε) + ρ dε .

We may express dε in terms of the temperature T and the change in
entropy 8 by using the relation [3]

Hence

dw——^-(w-ί

Γp)JrρTdS (1.11)

and Eq. (1.8) becomes

(w + p) (ρuσ).σ + ρ TS,σu° = 0 . (1.12)

If particle rest mass is conserved, Eq. (1.8) is equivalent to

8ισu° = 0. (1.13)

The rotation and shear associated with the fluid motion are defined
as follows [4]: Write

ua;β = ωaβ + σaβ + y ΘKβ - Λκuβ (1.14)

where
QJXβ = U[σ.τ]hσ

uh
τβ (l l^)

17*
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is called the rotation tensor, and

7(7 7-j /} 7 /Ί I Λ\

is called the shear tensor.
The vorticity vector associated with the velocity vector uμ is defined

as [3]:

^ = (~g)~2 εμvστuσ;τuv={-g)~2 εμvστωστuv

Λvhere g is the determinant of the metric tensor and εμvστ is the com-
pletely antisymmetric tensor density with ε0123 = 1. On multiplying this

equation by (— g)2 εμ0ίβγ and summing, we obtain

(-g)2vμεμaβγ = 2uΆu{β.γ] + 2uβU[y.Λ] + 2uγu[cc.β].

It then follows that
_ JL_

The vanishing of vμ implies the vanishing of ωβγ and conversely. Hence
if ωaβ = 0, uμ is proportional to the gradient of a scalar.

The conformal (Weyl) tensor Oα/3

στ is defined in terms of the Riemann
tensor, the Ricci tensor, and the scalar curvature R by the equations [5]

1
Ώccβ _ rizβ , 2/?K Ml i 4- —-— Rr)xP ill?)

- t t στ — ^ στ \ ^-J-Ll [σu τ l ^ 12 σ τ \ ' ' J

Λvhere Baβ is the traceless part of the Ricci tensor:

It β = lί*β — -j- O^ii (l.lδ)

and as usual,
Λα/3 _ Aα λ/3 _ Λα Λ/5c σ τ — u σu τ u τu σ .

The conformal (or Weyl) tensor is traceless on any contraction:

O α V = 0 . (1.19)

The parts of the Riemann tensor are distinguished in the following
manner [6]: Let us define the "hook" operator by

1 1
J}\J Tp T> στ \J T? ~fp T?στ (λ yCW

where
1

-E'ccβγδ — g Suβγδ VJL"^J-J

1 1

Note that we are using g2 and not (—g)2, so that Baβyδ is a pure imagi-
nary tensor. Define T α ^ σ r and $α / S

σ τ by
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Then:

= $ocβγδ

β = — Fccβγδ

Hence Sκβγs and Taβγδ are, respectively, the self-';dual" and anti-self-
"dual" parts of Rΰίβγδ under the double hook operation. C0,βγδ is the
traceless part of SCCβγδί and hence is distinguishable in an algebraic way
from the R term.

The three algebraically distinct parts of R*βvδ

9 as listed in Eq. (1.17),
could be arbitrarily specified in relation to one another were it not for
the fact that the Bianchi relations connect them differential]y. This
connection is expressed by noting that the Bianehi identities, which
are

Ώotβ i T>«β j _ Ώocβ _ A /-j ort\

are equivalent to

These equations may be written as

C*%δ;a - 2φ«[γδ^δ]).σ + -~(Rδ«%ό).σ = 0 . (1.23)

Hence we m a y write t h e Bianchi relat ions as [7]

;δ] (1.24)

which is simply Eq. (1.21) rewritten. It is this last form of the Bianchi
equation which is most convenient when we insert the assumption that
/Ίxσ A
^ yδ σ ~ U.

2. Evaluation of the Conformal Divergence

When the Ricci tensor and the scalar curvature are evaluated from
the field equations, Eqs. (1.2) and (1.3), and the results substituted into
Eq. (1.24) one obtains

* [(w + p) u«u[γ + y wδ«[γ] ;δ] = C«°γδ.σ (2.1)

Next, one may use Eqs. (1.6), (1.8), and (1.14) to write these equations
as [7]

k^C^γs.a = {w + p)ux ωγδ + u*wt[δuγ] + y wfσh
σ

[δδ
x

γ] +
(2.2)

+ (w + p) {ωΰC

[d +

Contract this equation with ux and uγ to obtain

3 (2.3)
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If Eq. (2.2) is contracted with v? we obtain

k^C^γs.aU3 =γuxw>σh
σ

γ + y (w + V) (ωα

y + a%)

or

k-1KQC^γδ.σu
δ=γ(w + p) (ωα y + σαy) . (2.4)

Hence we have
ω«β = 2k^{w + ̂ ) - 1 ^ ^ [ α 0 σ ^ ] ρ ; r (2.5)

and
σaβ = 2A-1(w + ί > ) - % ρ ^ ( α ^ ) ρ ; r . (2.6)

Equations (2.3), (2.4), (1.6), and (1.8) contain all the information in the
Bianchi identies. (Compare SZEKEKES [8].) I t is evident that the neces-
sary and sufficient condition for a space-time satisfying Eqs. (1.2) and
(1.3) to have a conformal tensor with vanishing divergence is that the
fluid motion be irrotational and shear-free and that

wyσh
σ« = 0 (2.7)

hold. If, in addition, the fluid obeys an equation of state where ~γ— 4= 0,

or if p = constant, it follows from Eq. (1.6) that the fluid particles move
along geodesies.

The two assumptions, vanishing divergence of the conformal tensor
and the existence of an equation of state, imply that

ua;β=γθKβ. (2.8)

We shall show later that it is a consequence of this equation and the field
equations that the metric tensor is that of a Robertson-Walker cosmo-
Jogical space [9, 2].

The vanishing of the divergence of the conformal tensor implies that

uΛ β = γθhΛβ + F9Xh
τ

Λuβ (2.9)

where
F = log(w + p) (2.10)

and θ is given by Eq. (1.8).
We close this section with the derivation of two equations we shall

find useful. The Bianchi identities, Eqs. (1.22), imply

C^yo^EvW - (R«Y - — Rδ^Y^ Eyδ*β (2.11)

where Ea$yδ is given in Eq. (1.21). Make use of the Ricci identity and
the hook operator of Eq. (1.20) to write Eq. (2.11) as

- 2 ^ ^ t

; σ r = iσ r0^α^τ. (2.12)

For a fluid-filled model, Eq. (2.12) becomes

Pτ.aτ =(w + p)uauTC^«°PT . (2.13)
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The second equation of interest will be an expression for uouτC*°Pτ.
To derive it, notice that for a perfect fluid

uσu
τBσ«τβ = uσu

τCσ«τβ -f -|- (w + 3p)h"β . (2.14)

By the Ricci identity

uau
τRσ«τβ = {u*.τβ - u*.βt)uτ = {u«;τu

τ);β - u«.τu
τ.β - u«;βτu

τ . (2.15)

Hence

UaUτGσ\β + 4 (w + 3p)h«β = (u".τu
τ).β - wα

;τ%
τ

; i8 - wα.^τw
r. (2.16)

We may substitute from Eq. (1.14) into these equations and thus express
the right hand sides in terms of ω, σ, θ, p, and w. If in the resulting
equation we set oc — β and sum, we obtain an equation which reduces
to the Raychaudhuri equation [10] when p = 0. It is:

1
~2-k(w + 3p) = uσu

τBσ

τ = — (w + p)~x (P;σΛστ + P,σu
σθ) -f

3 '

Λvhere to2 = ωστωστ, σ2 = σστσστ.
When Eq. (2.17) is substituted into the expanded form of Eqs. (2.16)

we obtain

uauτC*σPτ = {w + p) (^-p.στhhP +

(w + ) 2 ( h σ W rwtτhW - p,σw,Λh

2(w + p)-2 (ptoP>χha*hxβ --jPyσP,rhστh«ή + (2.18)

When the divergence of the conformal tensor vanishes, Eqs. (2.17)
and (2.18) reduce to

~k(w + 3p) - -Fστh
στ - [ y θ2 + θ,τu

τ + θi^τ^
τ] (2.19)

and

^ σ ^ T O σ α

T ^ = - (Fστh
σ«hτ

β -γFστh°τh*β} (2.20)

respectively, where

Fστ = i^ ; σ τ - ^ , σ ^ , r = (u; + p)-1 p,aτ - 2(11? + p)-2p,oP,r

using î 7 as defined by Eq. (2.10).
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If, in addition, an equation of state obtains, then

and

Faτh°«K<β= -±θ(u°FtO)h«β

Faτh°τ=-θ(uσF>σ).

Equations (2.19) and (2.20) reduce to

γk(w±3p) = - ( y θ 2 + θ>ΰuή (2.21)

and

C«β=ΞUσu
τCa«τβ = 0 (2.22)

respectively.
Thus the existence of an equation of state and the vanishing of the

divergence of the conformal tensor imply that Eq. (2.22) holds and that

ό'β^UaUΌVθ'^^0 (2.23)

as follows from Eqs. (2.13). These two conditions in turn imply that

Caa

τβ = 0 . (2.24)

That is, the space-time must be conformally flat. The proof that
Eq. (2.24) is a consequence of Eqs. (2.22) and (2.23) rests on the following
identity

(2.25)

which holds when uQuρ =j= 0 and is a consequence of the fact that the
conformal tensor is self-dual under the double hook operation (compare
HAWKING [1]).

3. The Field Equations when an Equation of State Holds

We now turn to a discussion of the field equations. We first discuss
dv

the situation when S = constant or p = p(w), -x— φ 0 and w is not a

constant throughout space-time. We shall of course assume that the
divergence of the conformal tensor vanishes. We have already seen that
these assumptions imply that the space-time is conformally flat and that
the four-velocity vector is irrotational, shear-free, and geodesic. Hence,
we have as a consequence of the geodesic character of the flow

ωα/5 = Y K ; r - uτ.σ) h\hτ

β = Y (uΛ]β - uβ;u) = 0

and

u*;β ^ T θh«β =-~r(w + P)"1 w,oUσhaβ . (3.1)
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We may therefore choose a function t so that

uμ=-t,μ. (3.2)

The function t will be the zero'th coordinate function. Other coordinates
yi

) i = 1, 2, 3, may be chosen so that the metric components goi are all
zero and g00 = — 1 [5]. The components of the matter velocity have the
values

wα = ( - 1 , 0 , 0 , 0 ) ; wα = (1, 0, 0, 0) . (3.3)

And as we mentioned, w and p are functions of t only.
In these coordinates Eq. (3.1) reads

(w + p ) u i ; j = - γ w g i j (i, 7 = 1,2, 3 ) . (3.4)

However, the derivatives of uί are given in terms of the Christoffel
symbols by

Hence
2

(9a)'19ij = - 3- iw + V)~xw = func of t only (3.5)

and the dot denotes the derivative with respect to t = x°. Consequently,

where the kio are functions only of the spatial coordinates if.
The function 9ΐ (t) has been defined so that

(w + p)-1™ = -3<R-i<3i . (3.6)

This equation is equivalent to Eq. (1.8).
To find kij(ylύ) we must turn to the field equations. It is relatively

straightforward to show that the spatial components of the Bicci
tensor are

Ru = W&k^ + 2 9 v ^ + *RU (3.7)

where the quantity 3iί^3 is the Ricci tensor formed from k^.
We make use of the field equations in the form

Ru = k (Tu - y T°aWk^ = y k(w - p) <X?kis (3.8)

to show
3 i ^ = kij(-CR&--2(k2 + ~kW(w - 2>)) . (3.9)

Since ^ z j and 3J?^ are independent of t, we must have that

tRij = 2CJca, C = const. (3.10)

In other words, k{j is the metric of a space with constant curvature.
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In summary, gΛβ has the form

W) (3.11)
where k{j is the metric of a space of constant curvature. The field equa-
tions of general relativity allow us to express w and f in terms of 91 and
C as follows [11]:

<p = -k-1^-2{29191 + & + C) . (3.12)

This metric is the Robertson-Walker cosmological metric [9, 2].

4. Field Equations when (ρuσ);σ = 0

In this section we examine the field equations under the assumptions
that the conformal tensor has zero divergence and the rest particle
density is conserved. Equation (1.11), in the light of Eq. (1.13), becomes:

ρwfσu
σ = (iv + p)ρ,σu

σ

or:
ρθ=-ρtau

a. (4.1)

The vanishing of the divergence of the conformal tensor implies that
Eq. (2.9) holds. That is,

uΛ.β = γθKβ + FtTh\uβ. (4.2)

In particular, ωα/3 = 0 and ux is proportional to the gradient of a scalar.
That is, functions α and φ exist such that

ccuμ = φf/Λ . (4.3)

We may choose our coordinates so that φ = x° and such that
gQi = 0 [5]. In such a coordinate system

hij = 9ij> *ot = Sroi = O, hoo = O. (4.4)

The requirement that uμ be a unit vector leads to the condition that

It is a consequence of Eq. (4.3) that

oc)σh
σ

τ^(xFtσh
σ

τ (4.5)
where, as in Eq. (2.10),

F = log(w4-2>)
and we have used

wiah
a

μ = 0 .

In the coordinate system we are using Λ^ = $V Hence, we may
integrate Eq. (4.5) to give

logα = ίτ + k(x°)
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where k is a function of x° alone. Thus

and we may redefine the variable x° so that

!7oo=-(w + P ) - 2 = - β - 2 f l . (4.6)

In this coordinate system we have

nΛ= -(w; + p)-M o

α = -e~Fδ\ (4.7)

u*= (w + p)δ«0=^ eFδcc

0.

We now turn to Eq. (4.2). If either α or β equals zero in these equa-
tions, the equations are satisfied as a consequence of Eqs. (4.6) and (4.7).
We are then left with the equations

ui;j= -u0Γ°ij = γ{w + p)gi}= - y ρ ρ " 1 ( ^ + P)9a

where the dot denotes the derivative with respect to a;0, as follows
from Eqs. (4.1) to (4.7). Hence we must have

2

or
0u = r a / 8 M a * ) (4 8)

where the k{j are functions of the variables x1, x2, x3 alone.
The solution of the field equations is thus reduced to a discussion of

the functions w(x°), ρ(x°, xk) and the tensor kίj(xk). Since the thermo-
dynamic variables w, ρ, and p may be considered as functions of two such
variables, we may treat all thermodynamic variables as functions of w,
the rest energy density, and 8, the entropy. These are convenient
variables for our purposes, since in the coordinate system given above

and 's = 0

as follows from Eqs. (1.13) and (2.3).
Hence, for any thermodynamic variable such as ρ or p we have

f=fυ>W'> / f ί = / s ^ , < ; f , i = f s w S . i W

Λvhere the subscript w or 8 denotes the partial derivative of f(w, S) with
respect to the indicated variable.

We now turn to a discussion of the field equations. It may be verified
that these equations may be written as

^oo = (w + P)~2 \{u> + P) & ~ T ώ 2 ~ FiiQ"]
1 (4.9)

= γk(w + p)~2 {w + 32?)
and

Ru = *Ru + FiS-γ[w (w + p)-wηgij = ~k(w - p)ga (4.10)
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where 3E{j is the three-dimensional Ricci tensor formed from the gi:},

Fu = FUi-FtiFtS (4.11)

J? = log (w + φ)

and the bar denotes the eovariant derivative with respect to the metric gu.
We may also rewrite Eqs. (4.9) and (4.10) in terms of the metric lcu.

We obtain

y *H -
i ( 4 1 2 )

and

1 (4.13)
i ( 2 8 i

where /f?:i is the Ricci tensor formed from kίjy

ί7 +

The double bar denotes the eovariant derivative with respect to k{j, and

We may write Eqs. (4.12) and (4.13) as, respectively:

^ k ( 3 ) ( + ) ύ * ( + )

r /
+ {w + p)-2 ρWS^S,, [(w + p) (^-

and
Ku = Aku - BSUS + CS^S,, • (4.15)

The quantities A, B, and C are

A =γk(w-p)ρ-y3- A'

w (w + p) - ̂  ιΰ* + Y k(w - p)] - y S^'ρ^[y w (w + p) - ̂  ιΰ* + Y k(w - p)] - y S^'ρ^ρ. + (4.16)

B = ps (w + p)-i + y ρ sρ-1- = PogρV> (W + ?)"],

(4.18)
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The tensors K{j and ktj and the function 8 which enter into Eqs. (4.15)
depend only on the variables xi (i — 1, 2, 3). Hence the coefficients
A, B, and C must be restricted in their dependence on x°. We shall
now examine the nature of this restriction. We observe that by using
Eq. (4.14) to eliminate w, the quantity A may be expressed as a function
of wy the thermodynamic variables w and S, and the quantities

Δ2S = k^SUj

and
Δ18=k^8ii8ij

which are functions of x1 (ί = 1, 2, 3) alone. We have

JL 2 \
p)*)

4/l g/ 1 1 1

^ 3 / J l ° \ ρ ^ 3 ρ2 ^ 3 ρ (w + p) ^ (w + p) {w +
Hence we may write

A = wΛ

where A is a function of the same quantities that enter in A.
When Eq. (4.15) is differentiated with respect to x° we obtain

since k{j and hence Kiό are independent of x°. This equation may in
turn be written as

w{λhu - BwSι{ij + Cw8ti8}j) = 0 (4.19)

since B and C are formed from matter variables.
It follows from Eq. (4.19) that either

w = 0 (4.20)

and hence the metric tensor gμv is static, or else

BvSnt^Λkt,+ 0*8^8,,. (4.21)

We shall treat the static case in the next section. We now assume that
Eq. (4.21) holds. Then if

Bw = 0 (4.22)
we must also have

Cw = A - 0 (4.23)

since hij must be non-singular. Now we may write

C - - Bs - J52 + 2ps

2(w + p)- 2 . (4.24)

Equation (4.22) implies that
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The first of Eqs. (4.23) and (4.24) imply that

w + p = f*(8)g*{w) (4.25)
hence

ρ = f** (8) g** (w) . (4.26)

It then follows from the expression given above for A that we must
have

kw - y ώ 2 = α^** (w)2/3

where α is a constant. Thus the dependence of w on t may be determined
once the function g** (w) is known.

If the caloric equation of state of the fluid is such that Eqs. (4.25) and
(4.26) do not hold, Bw φ 0, and we may write Eq. (4.21) as

8Ui = B%u^Aku + Bw-WwSfiSfj (4.27)

and Eq. (4.15) becomes

Ku = (A - BB^A) hu - {BBw^Ca - C)8ti8,t. (4.28)

Again we may differentiate Eq. (4.28) with respect to x° and find that the
coefficients of kiό and 8ti8}j must be functions of xi alone. In particular
we must have

Hence
C = k{S) + S(S)B (4.29)

where k and / may be arbitrary functions of the entropy 8. In view of
Eq. (4.24), Eq. (4.29) may be regarded as a differential condition on B
and (w -j- p).

Equation (4.27) then becomes

£,,<,= <φ)fc<i + ΛS,Λ, (4.30)
Λvhere

A = <*BW (4.31)

and α is a function of xi (i = 1, 2, 3) alone. The latter equation may be
regarded as a first order differential equation for w as a function of x°
since it contains w and terms which depend on thermodynamic variables
as well as terms involving Δ%8 and ΔX8.

If the caloric equation of state of the fluid is such that Eq. (4.29) is
satisfied, Eq. (4.28) becomes

Kit = (A - Boc) Ίcu - k(8)8ti8j . (4.32)

In order that Eqs. (4.30) and (4.32) admit solutions for the hiS and the
function 8, the integrability conditions of Eq. (4.30) must be satisfied.
These come from [12]
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since the curvature tensor of a three-space is expressible in terms of the
Ricci tensor and the scalar curvature of such a space [5]. If we substitute
from Eq. (4.32) into this equation we obtain

(4 Bk

When one computes the left hand side of this equation from Eq. (4.30)
one obtains the equation

Hence we must have

α i = - [ } ( 4 - B(x)-~kΔ1S - /α] Stj = D89 s .

Then it follows that the coefficient of S} 3 must be a function of S alone
and hence α must be a function of S. Equations (4.30) and (4.31) may
be used to determine Δ2S as a function of ΔλS and thermodynamic
variables after w(x°) is determined. The quantity Δ1S may be deter-
mined as a function of the thermodynamic variables alone from the
requirement that D is a function of S.

Thus we see that ώ φ O and ^ { Φ θ can obtain only if there are
restrictions on the kind of matter present. The case for which Bw = A
= Cw = 0 is similar to the static case w = 0 which will be discussed in
the next section. In case Bw Φ 0 and a general caloric equation of state
holds, so that Eq. (4.29) does not obtain, we must have

That is, 8 is a constant. Hence the fluid obeys an equation of state of the
type discussed previously, and the metric tensor of space-time is of the
Robertson-Walker type.

We shall not discuss the restricted fluids any further but shall turn
to a discussion of the static case.

5. The Static Case

We have seen that this case is characterized by the condition

for in this case all thermodynamic variables are independent of x°: They
depend on x° only insofar as they depend on w. Hence, w + p and ρ are
independent of x° and it follows from our previous work that gμv = 0 in
the coordinate system used above.

It is most convenient to work with the field equations in the form
given by Eqs. (4.9) and (4.10). These equations become

i-k(w+3p) = -(FιiS-FtiF9jW (5.1)
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and

~k(w - p)gi} = »Bit + FUj - FfiF,f (5.2)

where the bar denotes the covariant derivative with respect to the giό

and
F = \og(w + <p). (5.3)

It follows from these equations that
3RU = ~{FUj - FtiFJ - gij[gst(F[st - F,,F,t) + 2kp] (5.4)

and
3j? = -4,g^(FHj-FtiFtS) - 6kp = 21cw . {5.5)

Since w = constant, the scalar curvature 3ϋί is constant.
It follows from Eq. (5.4) alone that the contracted Bianchi identities

become

*j-±δ*,*B)ii = Fti[k(w + 3p) + 2g'*(Fl8t-Ft8F,t)] = 0 .

Hence Eqs. (5.4) imply (5.1) and (5.2) when Ftj =J= 0. The case Fti = 0
corresponds to the Einstein universe, a special Robertson-Walker
metric [13].

Equations (5.4) may be written as

*Rit- \ *R ga = - (-F,„ - F,{F,,) - y kpgtl. (5.6)

Look on Eq. (5.6) as a differential equation for F. The integrability con-
ditions for the function F are

*Lί 4 y uv|&]

= -F$8[2δ'u

since 3i? is a constant.
The nine Eqs. (5.7) contain only five equations independent of the

condition
s ^ J I ( = 0 (5.8)

for they may be written as

Zi} = ZH= sMiklmE*™} = 2F,m*BkiiEΛ*<» (5.9)
where

βίjk = g~2 £ί3k

and εij7c is the completely antisymmetric tensor density with ε123 = 1;
g is the determinant of gi!}. We must also have

{f'Zu = 0 (5.10)

as a consequence of the symmetry of 3Bi:}. That Zi} is symmetric follows
from Eq. (5.8).
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Thus, in order that Eq. (5.9) admit a solution for Fim we must in
general have two equations satisfied by the coefficients of Ftm in these
equations and the Zijt These equations may be written as

»S"Zit = »Λ» ΊtiHnΈP"", = 0 (5.11)
and

*R\ *R**ZU = ^B^R^ *BmmE*m

ό = 0 . (5.12)

The remaining three equations in Eqs. (5.9) may be written as

Au=-Ft88'u (5.13)
where

and
8\ = (3£2 - 2*R*t*R\) δ\

Equations (5.11), (5.12), and (5.13) are equivalent to Eqs. (5.9). From
Eq. (5.13) it follows that if Ak = 0 the rank of Su

v must be less than
three. It may be shown that this implies that 3Ri

j have at least two
equal proper values; that is, that the three-space with the metric gi}

have two equal principal curvatures. Note that if g{j is the metric of a
space of constant curvature, so that 3Ri

j has three equal proper values,
then Eq. (5.9) is satisfied for arbitrary Fyi.

The three-space with metric tensor gίό must therefore have (a) a
constant scalar curvature and (b) a Ricci tensor which has zero diver-
gence and which satisfies Eqs. (5.11), (5.12), and (5.13) in order that it
be the space x° = constant in a static space-time with vanishing diver-
gence of the conformal tensor with a fluid present. We shall not discuss
these three-spaces further, but will consider the special case for which
the static space-time is conformally flat.

It then follows from Eq. (2.20) that

= y Fρτh
QτKβ (5.14)

where

and the semi-colon denotes the covariant derivative with respect to gμv.
In view of the fact that Ft 0 = 0 and the line element is static, Eq. (5.14)
becomes

3 K-1- \st ± , s * , */
F. jp w . = JL (]?. ^ _w F Λ a8t

x \ιj ± ,1-*- ,3 3 K1 \t ± * * y

Equations (5.1) and (5.2), the field equations, become

\ (5.15)

and

»!*„ = -§-**!;&,. (5.16)
18 Commun. math. Phys., Vol. 5
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Thus the three-space with metric tensor giό is a space of constant cur-
vature. In this case, Eqs. (5.9), the integrability conditions for Eq. (5.15),
are identically satisfied. That is, Eqs. (5.9) introduce no restrictions on
t h e # w .

Since F — log {to + p)

we may write Eq. (5.15) as

Y[ij = ~lc(3-2wY)gij (5.17)

where
Y=e~F= {w + p)-1 . (5.18)

In order to solve Eq. (5.17) for Y, we introduce a coordinate system
x1 = r, x2 = θ, xz = φ in the three-space such that

gn = R*(R* - rη~\ glt = g13 = cM = 0 ,
(5.19)

g22 = r2, and g33 = r2 sin2θ
where

A wi?2 - 3 . (5.20)

The solution of Eq. (5.17) is straightforward. The result is that Y is a
function only of r and is given by :

Y =~kR2-A{B*-r2)2

where A is a constant. The four-dimensional metric is then given by
Eq. (5.19) and

goi = O (i = 1, 2, 3)

This is the form that TOLMAN gives for the iSchwarzschild interior
solution [13].

If the constant A is taken to be zero, we have

and the solution given above reduces to the Einstein universe [13].

6. Discussion and Conclusion

Modern methods of treating gravitational radiation rely heavily on
algebraic statements concerning the conformal tensor. In a vacuum
region, a conformal tensor satisfying an algebraic condition

H&py»,gμ,) = o (6.1)

has many properties in analogy with electromagnetic radiation [14]. For
example, a pure radiation field is expected to obey

paβ nor _ Γ)

which is characteristic of a Petrov type Null space-time.



Space-times Containing Perfect Fluids 255

The final identification of algebraically special conformal tensors with
gravitational radiation has not been made, however, since the effect
of matter on algebraic type is not well known. With this qualification in
mind, the following very interesting question may none-the-less be asked:
Which algebraic types of conformal tensor are compatible with which
types of stress-energy tensor ? In other words, if a conformal tensor is
desired which satisfies an equation such as Eq. (6.1), is it possible at
the same time to find a Tμv which satisfies some equation such as

h(T.β,9μ,) = 01 (6.2)

Since Tμv and 0α^y($ are algebraically distinct, there is no difficulty
in satifying both Eqs. (6.1) and (6.2) at a point. The Bianchi identities,
however, link these two tensors by a differential relation. Hence there
is difficulty in satisfying algebraic conditions on the stress-energy tensor
and the conformal tensor over a region as may be seen from a theorem
due to SZEKEKES [8]: A type Null conformal tensor (non-zero) is im-
possible in a dust-filled model. Note that a dust-filled model is equivalent
to the algebraic statement [3]

T<O(T°v+Qda

v) = 0 (6.3)
where ρ is positive.

The theorems in this paper show that, in contrast to the type Null
case, a zero conformal tensor is compatible with a fluid. A zero con-
formal tensor, however, greatly restricts the dependence of the fluid
variables on spatial and on time variables.

In fact, we started not with the vanishing of Caβγδ, but with the
vanishing of the conformal divergence:

C«σ

γδ;σ = 0. (6.4)

That Eq. (6.4) restricts the stress-energy tensor has been shown before
[15]. Here we have shown that Eq. (6.4) in the presence of a perfect
fluid satisfying either an equation of state or conservation of mass
requires either that the space-time be static or that it be a Robertson-
Walker metric — or that the special thermodynamic relations discussed
in Section 4 hold.

If, in addition to Eq. (6.4), the space-time is conformally flat, then,
in the absence of the special caloric relations of Section 4, there are two
cases: First, the non-static case consists of the Robertson-Walker
solutions. Second, the static case consists of the Schwarzschild interior
solutions. Other conformally flat models, in which the conservation of
rest particle density does not necessarily hold, are being studied by
PLEBANSKI [16].

In conclusion, let us repeat our postulates. (1) The algebraic postulate
of vanishing conformal divergence, Eq. (6.4), was made. (2) We postulated
18*
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that the material in the model be a perfect fluid, an algebraic postulate.

(3) We postulated that either (3a) an equation of state, p = p{w), hold,

or else (3b) the rest particle density ρ be conserved, (ρuσ).σ = 0.

The postulates were used to give the form of the metric coefficients.

If case (3 a) holds, or if case (3 b) is supplemented with the postulate of

conformal flatness, it was shown that the results are models more

familiarly derived from isotropy postulates. These models are the

Robertson-Walker metrics and the Schwarzschild interior solutions

respectively.
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