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Abstract. The connection between analytic continuation of group representa-
tions and analytic continuation of their matrix elements is discussed, together with
some related problems concerning the group-theoretic nature of the $-matrix, and
the asymptotic behavior of the special functions of mathematical physics.

I. Introduction

So far in this series we have dealt with analytic continuation at the
"infinitesimal" level, i.e., we have considered "analytic continuation" of
Lie algebra representations, trusting to the known relations between Lie
algebra and Lie group representations to provide us (at least implicitly)
with corresponding facts about continuation of group representations.
Needless to say, it is at the group level that the most interesting applica-
tion to physics are to be found: For example, the "special functions" of
mathematical physics occur as matrix elements of various group re-
presentations. The general problem of reducing the tensor products of
representations into irreducible components and generalized "Wigner-
Eckart" theorems is of prime importance for the application of group
theory to elementary particle physics.

The interesting problems concerning analytic continuation of group
representations and their matrix elements lead to additional degrees of
complexity beyond those we have encountered, since questions of analysis
and geometry as well as algebra appear. For example, one of our central
problems can be described as follows: Suppose for each value of the para-
meter λ, t-> Uλ (t) is a one-parameter group of unitary transformations
of a Hubert space H. Consider two elements Ψ, Ψ' of H and the matrix
element.

One can ask various questions about the analyticity of this function of
t and A, and its asymptotic behavior as t and/or λ go to infinity. For
example, as we will show, the asymptotic formula:

Pι (z) ~ constant Xzι as z -> σo
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158 R. HERMANN:

that plays such an important role in high-energy behavior of the scatter-
ing amplitude is a typical case. (See [11], Chapter 14 for work on this
problem from a slightly different point of view from that presented here.)

The ideas of ΌASHEN and GELL-MANN [2] concerning the "infinite
momentum" limit also are of this nature, although we shall not be
explicitly considering this case in this paper. The formula

lim Pί(cos4-)==

of INONU and WIGNER [13] is also in this pattern.
In addition to these concrete problems there is also much work to

be done in developing the relation between analytic continuation of
group representations and group cohomology, a subject pioneered by
NIJENHTJIS and RICHARDSON [16]. (Note that the relation between group
cohomology and Lie algebra cohomology has been developed by W. VAN
EST [3]). Again, there is an interesting and useful interrelation between
various abstract questions and concrete problems that appear in physics.
In fact, there is a situation here that is almost unparalleled since the
nineteenth century: interesting physical questions suggest interesting
mathematical ones, and conversely. We shall present topics in this paper
that proceed in the direction of elucidating these connections.

II. General Facts about Matrix Elements

Let G be a group, H a Hubert space, and ρ a representation of G by
operators on H. Denote elements of H by Ψ, Ψ', etc., the Hermitian
inner product by (Ψ\Ψ'y. (We use the physicist's rule:

<Ψ\λΨ')=λ(Ψ\Ψ')

for each complex number λ. λ* denotes the complex conjugate.)
For fixed elements Ψ, Ψ1 of H, the function g -> <Ψ'|ρ(g)Ψ) = f{g)

is the matrix element corresponding to Ψ and ψ'. In [11], Chapter 9, one
will find a short discussion from a slightly different point of view of the
relation between the matrix elements as functions on G and the represen-
tations themselves. (This, in essence, is the theory of "induced represen-
tations.") Let ρ{g)* be the adjoint operator to ρ(g)

{Ψ'\ρ(g)Ψ)=<ρ(g)*Ψ')Ψ).

Since (AB)* = B*A* for operators A, B, we must define the "dual"
representation ρ* by G by operators on H via the formula:
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Then

This formula provides the connection between the matrix elements of ρ
and those of ρ*.

Let K be a subgroup of G. Suppose Ψl9 . . ., Ψn are elements of H that
transform among themselves by ρ(K), i.e.,

QWΨ^σjMΨ, for kζK

(1 ^ i,j, - . . n; summation convention in force.)
k-> ((?ij(k)) is an n x n matrix representation of K that we will

denote by a. Let στ be the transposed representation, i.e.,

(στ(k))H = σ(k-\}.

Let ί(g) = QM, • • , L(S% with fM = (Ψ'\ρ(g)Ψi) . . . . Regard f

as a map. G -> Cn.
For & ζ K

= σji(k)(Ψ'\ρ(g)Ψi}

= ^ (*-%/* to).
Hence,

f ( ^ ) = σΓ(Z;-i)f(δf), (2.1)
i.e., / is a cross section of the vector bundle on the homogeneous space
GjK determined by the linear representation k->στ(k) of K. (See [11]
for background on vector bundles.) We shall denote the space of cross
sections oί this vector bundle, i.e., the space oί mappings G-> Cn satis-
fying (2.1), by Γ(στ). Note in particular, that if n = 1 and σn (k) = 1, then

i.e., f determines a function on
Now, hold Ψj, . . ., ψn fixed, and consider ψf -> f as a mapping

# -> Γ(στ). Note that it is antilinear, i.e., sums go into sums, but

λΨ' goes into λ*f .

There is a representation of G by linear transformations on Γ(στ):
The transform of f : G -> Cn by an element ^0 ζ G is the function

12*
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i.e., the vector ρ* (g0) Ψf goes over into the transform of / by g0. Summing
up, we have proved:

Theorem 2.1. Suppose ψly . . ., Ψn are elements of H transforming
under the subgroup K by an n x n matrix representation σ. Then the cor-
respondence

defines an antilinear map H -> Γ(στ) that is an intertwining map with
respect to the given linear action of G on H and the left translation action of
G on Γ(σ*).

Theorem 2.1 sums up many of the special properties of "matrix
elements" of representations that are useful in physics. Often it is
further possible to express the matrix-element functions /: G -> Cn as
products corresponding to certain product-subgroup decompositions of
G. As an example, let us consider the case where K is a compact, sym-
metric subgroup of G, with G semisimple and connected, i.e., G = K Θ P,
with

[K,P]cP, [P,P]CK.

Let A be a maximal abelian subalgebra of P, and let A be the con-
nected abelian subgroup of G generated by A. Then, it is a general
theorem [9] that:

G = KAK .

(This means that every element g ζ G can be written (not necessarily
uniquely) as a product k1ak2, with kvk2ζK, aζA). In case
G — $0(3, R), this is just the Euler angle description of rotations, so it
may be regarded as a generalization of the Euler angle construction for
an arbitrary semisimple Lie group.

Then,

fi(h"h) - <Ψ'\Q(h) QiP) ρίkJΨt)
= (ρ(k1)*Ψ'\ρ(a1)ρ(k2)Ψi)

Now, we can decompose the action of ρ* (K) on H. For example, suppose
(Ψμ) are elements transforming as follows:

(I ^ μ, v, . . . 5 C m ; summation convention on these indices). Put:

Then,

PUff) = H
Thus, we see that the matrix elements are determined by:

(a) The decomposition of ρ (K) and ρ* (K) into irreducible representa-
tions.
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(b) The matrix elements restricted to the subgroup A, which may be
expected to satisfy certain differential equations.

Since this sort of straightforward description of the matrix elements
should be familiar to the reader who has studied special representations
of special groups, i.e., 0 = 80(3, R) or G = 80(2, 1) or 8L(2, C), we
will leave it at this point.

III. Integral Representations for Matrix Elements

We will continue to review certain general facts about matrix ele-
ments that are merely general versions of calculations well known in
special cases. Let us continue with a representation ρ of a group β o n a
Hubert space H. In the last section, we supposed that H was given
abstractly. Let us now suppose that it is determined as a space of cross
sections of a vector bundle on which G acts. Consider a vector bundle

π\E-+M .
(M is a manifold, π(E) — M. For each p ζ M, the fibre π~1(p) is a com-
plex vector space.) Suppose G acts linearly on E. (This means: G acts as
a transformation group on E and M; with gπ(v) = πg(v) for g ζG,
v ζ E. Transformation by g maps the vector space π~x (p) linearly onto
π'~1(gp), for each p ζ M.) Let Γ(E) be the space of cross sections. The
action of G on M, together with a multiplier system m (g} p) determines a
representation ρ of G in Γ(E).

ΈoτΨζΓ(E), gζG, pζM,

Q(g) (Ψ) (P) = ™(g, P) gΨig-'p) (3.1)
For g ζG, p ξ M, m(g, p) is a linear map of the fibre π~λ (p) into itself. It
satisfies the functional equation

MgQgi,p) = ™{g& p) g*™>{gi> gό1p)go1 f o r 9o>9 f β , τ ζ M . (3.2)

(In fact this is just the relation necessary to have ρ(gogi) — £?G7ol£(ί7i))>
i.e., ρ is a representation.)

Let us make Γ(E) into a Hubert space in the following way: Suppose
given, for each p £ M, a Hermitian inner product (,) on the fibre π~λ(p).
For Ψ, Ψf £ Γ(E), p -> (Ψ(p), Ψf (p)) is then a function on M. Let dp be
a volume element for the manifold M. Define:

(Ψ\Ψ'} = f(Ψ(p),Ψ'(p))dp. (3.3)
M

The conditions that the representation ρ be unitary are worked out in
[10], Chapter 9.

It is now obviously a routine matter to work out an integral represen-
tation for the matrix elements:

<ρ(g) (Ψ) \Ψ') = f (ρ(9) (Ψ) (p), Ψ'(p))dp (3.4)
M

= f(m(g,p)gΨ(g-ip),Ψ'(p))dp.
M
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As a simple illustration, suppose G is semisirnple, non-compact,
M = Q\Ή, where H is one of the "boundary homogeneous spaces" of
FURSTENBERG [6, 8, 11], Γ(E) is the space of complex-valued functions
on M, i.e., the vector bundle E is just the product M x G. Choose
m(g, p) as follows:

m(g,p) = Jg-i(p)λ

where Jg (p) is the Jacobian of the transformation p-> gp with respect to
the volume element dp, λ is a fixed complex number. Then

(ρ(g) Ψ\Ψ') = JJ?λΛr) Ψig^vr Ψ'Wdp •
M

Now, one basic property of these boundary homogeneous spaces is that
K, the maximal compact subgroup of G, acts transitively on them. Thus,
we can suppose dp chosen as the unique (up to a sealer multiple) volume
element which is invariant under K, i.e.,

Jk(p) = l for kζK,τζM.

In particular, if Ψ(p) Ξ= 1, then

ρ(Jc){Ψ) = Ψ for all Jc £ K

and the matrix element

is a function on the symmetric space G/K, i.e.,

(ρ(gk)(Ψ)\Ψ'}=(ρ(g)Ψ\Ψ') for

Then, we have:

M

This explains why the spaces of the type M are called "boundary
homogeneous spaces" for the symmetric space GjK. An important class
of functions on GjK, namely the matrix elements of the "class 1"
representations of G, i.e., these in which K has an invariant vector [9],
are exhibited in a natural way as integral transforms of functions on M.
(Of course, there is also a geometric motivation: They appear as parts
of the boundary when the spaces GjK are compactified [4, 10]). These
remarks take on a special importance for physics when one understands
that most of the special functions of mathematical physics appear as
matrix elements with respect to representations of a relatively small
number of groups.

It is important to notice also that these considerations are not
restricted to unitary representations of G. Thus, we may start off with
a representation ρλ of a real Lie group G on a Hubert space H, with the
representation depending on a parameter set λ. The matrix elements
are then functions on G, depending also on the parameter λ. Let Gc be
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the eomplexification of G, i.e., the real parameters of the group are con-
sidered as complex, and G is a subgroup of Gc. (Technically, one proceeds
as follows: Let G be the Lie algebra of G. Let Gc = G -f i(* be its eom-
plexification as a Lie algebra. Consider Gc also as a real Lie algebra of
twice the dimension of G, and with G as a subalgebra. A eomplexification
of G is a Lie group Gc whose Lie algebras is Gc, containing G as a subgroup
in such a way as to give use to the given imbedding of G in Gc. An
arbitrary Lie group may not have a eomplexification in this technical
sense although of course all the "classical" groups do, i.e., 80(n, R) ->
->80(n,C), 8U(n)->8L(n,C), 80(p, q) -> SO{p + q, C), etc. Let us
suppose that the representation ρ may be extended to a representation
ρ of Gc on the same Hubert space. Then, the matrix elements
g -» (ψf I ρ (g) Ψ} will be complex-analytic with respect to the complex
analytic parameters for Gc if the following condition is satisfied.

ρ(iX) = iρ(X) for X £ Gc . (3.5)

Of course, this condition implies that the representation cannot be ex-
tended to be unitary on Gc. Conversely, 3.5 can be used to extend ρ
from G to Gc. Even though ρ may be "integrated" to give a global
representation of G, the extended representation of Gc may not necessarily
give such a global representation of Gc: This is a group-theoretical
reflection of the fact that the matrix elements may have singularities
when an attempt is made to analytically continue them to all of Gc. At
any rate, Nelson's theory of "analytic vectors" [15] does guarantee
that ρ can be extended to a neighborhood of the identity in Gc, which
means that the matrix element

<Ψ'\ρ(g)Ψ}

may be defined when g is sufficiently near the identity in Gc. Unfortunate-
ly, there seem to be very few examples of this phenomenon worked out
explicitly in the literature to serve as a guide to a thorough analysis. We
will work out the case G = 8L(2, R) in Section 10.

IV. Legendre Functions and the Gell-Mann Formula

It is well-known that the Legendre functions appear as matrix
elements of representations of 80(3, R) and its noncompact real form
80(2, 1). The "Gell-Mann formula" works particularly well for these
groups; we will now show how it gives information about their matrix
elements:

Let G be the Lie algebra of 80(3, R). It is generated by elements
X, Y, Z, satisfying

[Z,X]=Γ; [Z,Y] = X [X,Y] = Z.
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(For example, in the physicist's notation, Z = Jz, X = Jx, Y = Jy

where J = (Jx, Jy, Jz) is the angular momentum vector.) The Casimir
operator is

Δ = X2 -f Y2 + Z2.
Consider a finite dimensional representation ρt where A has the value
—1(1 -j- 1). Then, ρ(Z) has the eigenvalues —il, . . ., iZ, with correspond-
ing eigenvectors Ψ^χ, . . ., Ψ^.

The functions

# ( f ) = ( Ψ 0 \ ρ ι ( Έ x V t X ) { ψ , ) } - l < j ^ l , (4.1)

are essentially the Legendre polynomials. (At least after taking account
of normalization, and putting z — cos£.)

In [12 part I], we have indicated a way of exhibiting these representa-
tions by starting with a representation of one of its contractions, namely
the group of rigid motions in the plane. Its Lie algebra is generated by
elements Z, X\ Y\ with structure relations:

[Z,X']=Yf; \Z,Y']=-X' [X', Γ'] = 0.
Let Φ(Z), Φ(X'), Φ(Y') be an irreducible realization of these structure
relations by skew-Hermitian operators on a Hubert space H. X'2 -f Y'2

is a Casimir operator; we will normalize the representation Φ so that

Φ(X' 2 + 7 / 2 ) = - 1 .

Put

Then, these operators satisfy the structure relations for 80(3, R), [12],

Part I, page 260. Let us compute the value of the Casimir operator :

[Z2, X'] = ZY'+ Y'Z
= 2 7'Z-X',

or
ρλ(Z) = Φ(Z'(A-1/2)+ Y'Z),

ρλ(X2) = Φ(X'*(λ - 1/2)2 4- Y'Z Y'Z +(λ- 1/2) x

x (X' Y'Z + Y'ZX'))

= Φ(X'2(λ - l/2)a 4- Y'*Z2 - Y'X'Z 4- (λ - 1/2) x

x (2X' Y'Z + F'2))
[Z2, Y'] = -ZX' - X'Z

= -2X'Z- Y',
Qλ{Y) = Φ(Y'{λ-\β)-X'Z)

ρλ(Y2) = Φ(F'2(A - 1/2)2 4- X'ZXZ - (λ - 1/2) x

x {Y'X'Z + X'ZY'))

= Φ(Y'2(λ - 1/2)2 4- X'2Z2 + X' Y'Z -(λ- 1/2) x

x (2 Y'X'Z - X'2)) .
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Then,

_ (λ _

= - (λ - 1/2) (λ + 1/2), or Z = A - 1/2 . (4.2)

Let ίf̂  , y = 0, ± 1, ±2, . . ., be a basis of # such that

Define:
f\(t) = {ΪΌIρΛ+iΛCExpίίX))^) . (4.3)

This formula extends the "Legendre functions" defined by (4.1) to
integral values of j and arbitrary values of I. (To extend the definition
to non-integral j , one must consider representation of the algebra X', Y',
Z in which Φ(Z) has a non-discrete spectrum, a refinement we will not
consider here.)

We get an asymptotic theorem for the Legendre function by trans-
forming from the "Inonu-Wigner picture" (in which there is a singularity
at λ = oo) to the "Kodaira-Spencer picture" (in which a family of Lie
algebras deforms as λ -> oo into the Lie algebra generated by Z, X\ Y').
In fact, define:

Φλ(Z) = Φ(Z)

Φλ(X)=~ρλ(X)

As we already have verified [11], Φχ is a representation of the following
Lie algebra:

which is a deformation of the Kodaira-Spencer sense of the Lie algebra
generated by Z, X', Y'.

In particular, everything is smooth as λ -> oo, and

Urn <yo|ΦaCExp(fX))y,> = W0\Φ(EτpVX'))ψfy .

The right hand side is just the matrix element for the given representa-
tion Φ of the group of rigid motions of the plane. In fact, this is known
to be Jj(t), the Bessel function. The left hand side is

(Ψo I ExpΦ,(ίX) ψ,y = ψo I Exp ( Qλ (-I X)) Ψ,- > = f\_χ (ί/λ).

Hence

lim/$(*/*) = J,(f).
Z-»oo

This is the asymptotic formula proved by INONU and WIGNER [13] by
contracting (in their sense) a series of finite dimensional representations
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of 80(3, R). Note that our method, besides being more systematic,
extends the formula automatically to nonintegral values of I and j and,
if one is careful (as we have not been) to at least certain complex values of
t. Another virtue of our method is that it extends routinely to representa-
tions of other groups to which the Gell-Mann formula applies. Many
such examples for semisimple groups are given in [11].

We shall now turn to the physically more interesting case of the con-
traction of the Poincare group to the Galilean group.

V. Contraction of Representations of the Poincare

to the Galilean Group

The topic of the title of this section is one of the standard examples
illustrating the LNΌNU-WIGNER ideas [12]. However, the interesting
feature that "true" representations of the Poincare group contract to
ray representations of the Galilean groαp suggests that the physicist's
way of looking at this be rephrased (for maximal clarity, if nothing
else) in terms of our basic "analytic continuation" program. We have
done this in [12], Part III, for the simplest sort of situation. However,
we will now present it in simpler form that as a bonus, completely covers
the general case! This way of looking at the problem is due to L . L.
FOLDY [4], and in this section we shall only be adapting his work to our
point of view.

First, we must describe the deformation of the Poincare into the
Galilean algebra. Let G be a vector space spanned by elements

Pii H, Jt, Ki

(1 ̂  ί,j, . . ., ^ 3 summation convention in force). Put λ= 1/c (c = velo-
city of light). Define a one-parameter family of Lie algebra structures on
G as follows:

[P i ( P,\ = 0 = [Pt, H]λ = [Jit H]λ

(OΛ)

[H, K,\ = P,

(εijjc is the usual skew-symmetric tensor).
For λ =j= 0, this is the Lie algebra of the Poincare group, for λ = 0

that of the Galilean group. Notice that it is perfectly analytic in A.
Now, we want to construct a Lie algebra L, and a one-parameter

family Φλ of linear maps G -> L which, for λ φ 0, is a homomorphism of
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the λ-ih structure into L. For this, construct two Lie algebras H and S.
H is an 8-dimensional Lie algebra, with basic elements (p{, xu I, t) sub-
ject to the following commutation relations:

o = [Pi, Pjl = fo, xA = [Pi, i] = [χt, i]

= lPi, t] = fa, t]

S is a simple three-dimensional Lie algebra (whose Lie group is then
/SO(3, R) or 8ϋ(2)) generated by elements (sf) with

Now, let L = U(ΈL 4- 8), i.e., H + S is the direct sum Lie algebra, and
f7(H + S) is its universal enveloping algebra considered as a Lie algebra
via the commutator. (We will in fact assume that U (H + S) is the
"complete" enveloping algebra, i.e., including arbitrary "functions" of
the generators.)

Now, define Φλ : G -> L as follows:

Φλ(H) = ε γirtc*~+"p* , P2 = ^ P i 2

One must now verify that Φλ is a homomorphism of the A-th Lie
algebra defined by (5.1) into L. Let us take it for granted that this is
done.

Of course, (5.2) is not analytic about λ — 0, i.e., c = oo. Let us see if
the group theoretic trick introduced in [12], Part III, for "resolving the
singularity", i.e., making a central extension, which is "trivial" for
λ =r 0 but nontrivial for λ = 0, works again.

The trick to introduce an element 1 to G that commutes with all the
generators of G; for λ Φ 0. Φλ is also extended by mapping this element
into the element 1 of H.

Consider:

H'λ = H- me* 1 = # - - ^ i -

Then, all the relations (5.1) are unchanged by this substitution of H\ for
H, except possibly the last:

[Pt, K,-] = λ*δtiH = λ*δtj (i?Λ + ^ - ) = a 4 ί UaJ?i + m

Notice now that the "lucky" accident mentioned in [12], Part III,
repeats itself: The commutation relations do not pick up a singularity as
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λ -> 0. However, again this is at the expense of not getting the Galilean
algebra itself as λ -> 0 but a central extension of it.

Finally, we must check that the homomorphism Φλ also is analytic at
X — 0. Let us look at (5.2). The only terms that are effected are the second
and the fourth:

2l/i
= me 21/ 1

- me2

1 p2

Δ 7Π

1^-
2 m

-|-l) - εiiksjlPkj(jF+ φi(Hλ)+~-

Again, we see that there is no trouble at λ = 0: The representation Φλ is
now analytic at λ — 0. We conclude that FOLDY'S formalism gives an
excellent description of the simultaneous i'deformation" or "analytic
continuation" of the Poincare* algebra and its representations into those
of the Galilean algebra.

VI. Analytic Continuation of the Plancherel Formula for SO (^R)1

Before studying "analytic continuation" of matrix elements in
generality, it will be useful to examine some simple examples. 80(2, R)
seems to be the simplest case that gives some insight into the general
case.

Consider two complex variables x and y, and the quadric M defined in
this space by

x2 + y2 = 1 .

M is, of course, just the group manifold of 80(2, C). Let M° be the
points of M for which x and y are real, and let M' be the points for which
x is real, while y is pure imaginary. M° is the group manifold oί 80(2, R),
Mf the group manifold of 80(1, 1). Both M° and M' are "real forms" of
M, with M° compact (i.e., a circle) while M' is non-compact (i.e., a
hyperbola).

Suppose f(x, y) is a function defined on M alone, analytic in a suitable
domain, continuous when restricted to M°, with boundary values
(possibly in a generalized sense) on M'. Now, / restricted to M° can be
expanded in a Fourier series (which is then the PETER- W E YL expansion
for 80(2, R)) while the boundary values of / (x, y) on M can be expanded

1 I would like to thank A. KIHLBERG who discovered an error in the first
version of this section.
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in a Fourier integral (which is the Plancherel expansion for the group

-80(1,1)).

Our main task is to examine how the two expressions may be related
to one another. Specifically, we have in mind developing a group-
theoretic version of the SOMMERFELD-WATSON transform, i.e., some
procedure for "analytically continuing" an expansion over a compact
group into an expansion over a non-compact real form [18].

Introduce a new variable z = x + iy. Then the 2-plane minus the
point z = 0 represents M as a complex manifold. M° is the set of z of the
form eiθ, 0 5g θ g 2π, while M' is the real axis.

Consider the Fourier expansion of / restricted to M°, i.e.,

2π

' n ~ 2π J ' ^ ' ' \ - )
0

We must somehow take into account the fact that f(z) is analytically
continuable off the circle \z\ = 1, leading to "boundary values" on M1'.
The simplest way of doing this can be described as follows2:

Suppose f(z) satisfies a "dispersion relation", in the form of a Cauchy
integral representation:

oo

f j z ~ d t for some ε > 0 . (6.2)

Use 6.2 and 6.1, assuming that the integrals can be interchanged:

(6.3)
for n ^ 0

= 0 for n < 0 .

Suppose g (z) is a similar function, admitting a dispersion relation of
the form:

X E g ( t ) at

2 I owe this suggestion to A. MARTΓN. It is also suggested by the related work
of STEIN and WAINGEE [18].
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Similarly,
l - ε / 2π

(6.4)

Now, let £ = es in each of these integrals:

? =2H
lOg 6

As £ -> 0, we obtain, in formal way at least,

(6.5)

+ 9)(es)e-n$ds (6.6)

(Regard the function (/ + Q) (es), defined as follows on the "boundary
values" of the function (/ + g) (eis) on the non-compact set M':

(fJr9)(es) = f(es) for a > 0

(f + g)(es) = g(es) for s<0.)

So far, n has been real; however, 6.6 suggests that we use the formula
for n pure imaginary as well, obtaining in this formal way, essentially
the "Fourier transform" of the functions s -> (/ + g) (es), i.e., the
"Plancherel expansion" of this function when it is considered as a
function on SO (I, 1).

This simple explicit calculation immediately suggests a general
framework. Suppose G is a non-compact semisimple Lie group. Let Gc

be its complexification, Gμ a compact subgroup of Gc whose compacti-
fication is also Gc. (Gμ is the "compact real form" of (JC). Gμ can be
chosen so that Gμ ΓΛ G — K is a maximal compact subgroup of G, and
a symmetric subgroup of Gμ. (One class of examples to keep in mind
might be:

G=80(n,l), Gc = S0{n+ 1,0)

Gμ = 80{n+ 1,JR), K = S0{n,R)) .

Let Kc be the complexification of K, considered as a complex subgroup of
Gc. Define the following coset spaces.

M = GJKC M° - GμjK M' - GjK .
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Then, both M° and Mr are "real" submanifolds of the complex manifold
M, i.e., complex analytic coordinate systems can be found for M for
which, locally, each of M° and M' are defined by real values of the
coordinates.

Denote points of M, if0, M' by p, p°, pf, respectively. Suppose f(p)
is a function which is complex analytic on at least some domain of M,
and defined and continuous of M°. Then, f(p°) can be expanded in a
"Fourier series" using the spherical functions [10] of the symmetric
space GJK. Let {/n} denote the coefficient in such an expansion {n is a
discrete, multiparameter index). Then

/»= / f(P°)K(p°)dpQ (6.7)

where hn(p°) is the spherical function parameterized by n, and dp0

denotes a volume element on M° invariant under θμ.

Now, M° will intersect M'. Suppose, as ε -> 0, M' — M° can be written
as the union of connected submanifolds M} \j M* \j of the same
dimension as M'. (Precisely, we mean that, as ε -> 0, this union fills up
Mr — M°.) Suppose B(p°, p') is a Cauchy (i.e., BERGMAN-WEIL) integral
kernel which converts a function f(p') on M' into a holomorphic function
/ (p) by ^ n e formula:

f(p)= I B(p°,p')f(p')dp',
M'

where dp' is a volume element on M' which is invariant under G''. (We
would also suppose that the operator f(p')->f(p) is an intertwining
operator for the action of G' on these functions.) Suppose that, for
fj{p') defined and continuous on M{, j = 1, 2, . . . the formula:

/ί(2»°)= / B(po,p')fi(p')dp' (6.8)

gives a continuous function on M°. We can now obviously combine 6.8
with 6.7 to obtain:

&= I ( / z(p°,pf)gn(p°dp»)f(p')dp
Ml M°

which should be the generalization of 6.6. In particular, the functions:

9n(p)= I B(p»,p')gn(p«)dp°
M°

should be the generalization of the "Legendre functions of the second
kind", i.e., the functions that are, in the classical notation, pn(cosθ).

Since working further would involve considerably more complicated
machinery, we shall leave these ideas as conjectures to be worked on at a
later point.
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Til. Generalized Functions and the Dirac Notations

So far, in studying matrix elements g-> (Ψ'\ ρ(g)\Ψ} of group
representations we have assumed that Ψ and Ψ' were elements of a
Hubert space H, and that ρ is a representation of a Lie group G by
genuine operators mapping H into H. While this is adequate for simple
problems, clearly many of the interesting applications to physics involve
such objects defined when ψ and Ψ' are "generalized functions" in the
sense used by GELFAND and his coworkers. We will now present some of
these ideas in a form that will be most useful for our goal of relating
group representation theory to elementary particle physics and quantum
field theory.

It is interesting to note that GELFAND and VALENKIN'S version of the
theory [9] is extremely close to that originally used by DIRAC in his
treatment of quantum mechanics, although they avoid DIRAC'S ingenious
notations, presumably because of its bad reputation among mathe-
maticians. In our brief treatment here, we will attempt to suggest such
a direct use of DIRAC'S ideas, although since it is only a side point, we
cannot claim that all the details have been fully developed.

Now we proceed to the description of the notations and ideas we will
need. A Hubert space will be, in this paper, a complex vector space,
elements typically denoted by Ψ, Ψ', . . ., with a positive-definite
Hermitian inner product (Ψ, Ψr) -» (Ψ\ Ψ'}, which satisfies:

(Ψ\ Ψ') = (Ψ' I ψ)* (* denotes complex conjugate)

(cΨ\Ψ'} = c*(Ψ\Ψ') for c £ C (C denotes the complex numbers)

We will not assume that H is complete, as is customary in most work in
functional analysis.

Let D be a complex-vector space of linear functionals on H. For
intuitive purposes, we will denote elements of D and H by the same
sort of letter, usually Ψ. For ΨζD,Ψ' ζH,(Ψ\Ψ') is the value of the
Linear functional on Ψ'. We will suppose that:

(a) D is a topological vector space. (Details about the topology of D
will be made precise as they are needed. Recall that GELFAND and VALEN-

KIN define D as the dual space, with standard dual space topology, of a
topology on H that is different from the topology on H defined by the

norm \Ψ\\ = γ<Ψ\Ψ) )
(b) For fixed Ψo £ H, the linear form Ψf-> (Ψ0\Ψ') is in D. This

serves to identify H with a subspace of Ό. When we write H C D, this is
what we mean. Ώ will be called the Dirac space associated with the Hubert
space H.
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(c) Any linear form in H that is continuous with respect to the Hubert
space topology defined by the norm \\ψ\\ is also in Ώ. (Thus, D contains the
completion of H as well as H itself.)

Note that (Ψ\ Ψ'} does not make sense as a number if neither ί fnor
Ψf belongs to H. However, it can be given a meaning by a limiting
process, or regarded merely as a convenient algebraic symbol in certain
specific calculations. To see this, we consider the idea of a "generalized
orthonormal basis" of H, which we now define.

Let M be an auxiliary space, whose points are denoted by p, p', q,
etc. Let dp be a measure on M, enabling one to form the integral
/ / (p) dp of a certain class of complex-valued functions on M. Consider
a mapping M -> D, denoted by p-^Wv. It is said to form an ortho-
normal basis for H if

(Ψ\Ψ'} = f (Ψ\Ψpy (ΨP\Ψ')dp for ψ,ψ'ζH. (7.1)

This relation can be symbolized by the relation:

<Ψv\Ψv)=δPlί for p,qζM.

Now, suppose that A is a linear operator: H -> H, define A*: D -> D by
the formula

<A*Ψ\Ψ'} = (Ψ\AΨf) for ΨζD, Ψf ζH .

The operators A that we will consider will satisfy the following condition:

A*{H)cH. (7.2)

Then, we can extend A to a map: D -> D by the formula

{AΨ\Ψ'y = {Ψ\A*Ψ') for Ψ'eH,Ψξ:D.

A vector Ψ ζ D is then an eigenvector for A with eigenvalue λ if

AΨ= λΨ.

H is diagonal with respect to the orthonormal basis p -> ψφ if

AΨv = λ(p)Ψv for all pζM.

Several examples will make the ideas clear:
Example 1. The Dirac Delta Function.
Suppose that i f is a locally compact topological space*, and the

measure dp3 is such that all compact sets are measurable and have
finite measure, (dp is then sometimes called a Radon measure.) For H
we can take the space of all continuous, complex-valued functions
p->Ψ(p) on M that vanish outside of a compact set with (Ψ\Ψfy)

)* Ψ'{p)dp. For pζM, define δp ζ V as follows:

for

3 It would suffice to think of Euclidean space Rn as an example, with the
Euclidean measure dp — dxn.
13 Commun. math. Phys., Vol. 5
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Then, for Ψ,Ψ'

= Ψ(p)* Ψr(p) dp = (Ψ\Ψf)
i.e., (7.1) is satisfied-

Let A be the operation of multiplication by a continuous, complex
valued function p->f{p) on M. Then, {A Ψ) (p) = f(p) Ψ(p).

A*, on H, is obviously just the action of multiplication by /*, hence
maps H into itself. Then

i.e., δP is an eigenvector for A.
Example 2. The Fourier Integral.
Let x denote a real variable, — σo < x < σo, and let # be the space of

infinitely differentiable functions x~>Ψ{x) that vanish outside of a
compact set.

Let p also be a real variable, — σo < p < σo, and for each ?̂ ζ Jf, define
ϊ ^ £ £> by the formula:

Notice that (Ψp\ψy = Ψ(p), where Ψ denotes the Fourier transform
of Ψ. Then

= ]ψ(p)* Ψ{f) dp = <Ψ\Ψ') .
— oo

This is usually called the 'Tlancherel formula", and expresses the fact
that the Fourier transform is a unitary operator. We see that it is equi-
valent to the statement that the ψp form on orthonormal basis. (If one
requires

where the integral on the right-hand side is obtained as a limit of partial
sums, using another topology in D, then one finds equivalent statements
to the Fourier inversion formulas.)
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Define A as the operator Ψ(x) -> djdx Ψ(x). Then it is readily com-
puted that A* — — d/dx, and maps H into itself.

oo

{A ΨV\Ψ)= <ΨP I A* Ψ) = —L= f - tr*>* djdx Ψ(x)dx
•—oo

CO

= ^=rif f e~iί>xΨ(x)dx

This is interpreted as saying that ψp is an eigenvector for A, with eigen-
value ip.

We now turn from these trivial examples to a situation where in
addition a group acts. Let H, D and M be as above. Suppose p-+Ψp

defines an orthonormal basis for H. In addition, suppose that G is a
group, and that ρ : g -> ρ (g) is a representation of G by operators on H.
Suppose ρ((7)* maps H into itself, so that ρ(^) can be extended to an
operator: D -> D.

Definition. The orthonormal basis p -> ΨP of H is compatible with the
action of G on H if:

(a) G acts as a transformation group on ilf: For p ζ M, g ζG, gp
denotes the transform of p by g.

(b) β(9) (Ψv) = m(g, p ) Ψ g v ίor gζG,p£ M.
The map (g, p) -> m(^, #>) is a complex-valued function on G x Jf that is
called the multiplier system associated with the orthonormal basis and
the group action.

m cannot be an arbitrary function, but must satisfy a certain functio-
nal equation. In fact,

= m{g%, p) m(gl9

or

™(9i92> P) = m(9z> P) m(9i,

This is called the multiplier equation. We can rephrase its basic property in
the following way:

Theorem 7.1. Suppose p->Ψp is an orthonormal basis for H, and that
m(g, p) satisfies the multiplier Eq. (7.3). Let g -> ρ'^) be a representation
of G by linear transformation on V, such that ρ' (g) (Ψv) is a multiple of
ΨgΊ). For g ζ 6r, define ρ (g) as a linear transformation on D by the formula:

Then, ρ:g-+ρ(g) also is a representation of Gby linear transformations on V.
13*
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Proof.

2> P) ρ'faiSϋ (Ψ*)

m(g2, p) m(gv g2p) ρ'{gj ρf (g2) {ψp)

m(9v 92V) Q'(9i) O f e P) Q'faz) Φv

i.e.,

Theorem 7.2. // m{gxp) satisfies the multiplier equation, so does any
power m(gv p)a, where a is a complex number.

Proof. This is obvious from 7.3.
Now fix a point q ζM, and consider the isotropy subgroup of G at q,

that we denote by GQ

G« = {gζG: gq^q}.

Theorem 7.3. // m (g, p) is a multiplier system, then the mapping
g -> m(g, p0) is, for g ζGPo, a homomorphism of Gq into the complex
numbers.

Proof. For Ov g2 ζ G<*,

m(9i92> ?o) = m f e 9) m(9i> 929)

= m{g2,q)m{g1,q)

which exhibits the homomorphism property.
As is well-known, this formalism applies to describe the spin-zero

representations of the connected Poincare group, G — LT, where L is the
subgroup of Lorentz rotations, T the invariant subgroup of translations.
M is the ' 'mass-shell positive energy" subset of the vector space of
4-momenta, that we denote by R2, i.e.,
M — p ζ i24 : p = m2, pQ > 0 (p - p denotes the Lorentz inner product)
If

p = {p°, p1, p*, pη then p p = (p0)2 - {p1)2 - (p2)2 - {p*f .

The elements ψp for p ζM, are then the δ-functions in momenta.

ρ(l)Ψ9=Ψlp for Z ζ i , pζM,

i.e., the action of L is just that of the Lorentz rotations.

For each p, the map t-+m(t, p) is a homomorphism of T into the complex
numbers (since T acts on M trivially, i.e., T C Gv for all p ζ M) m(t, p)
is determined explicitly in the following way: The Lie algebra T of T can
be identified with the space-time vector space, the space of momenta
is its dual space. Then, m(ExpX, p) = eip&) for X ζ T, p ζ i?4.
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The spin representations of G require a slightly more elaborate
formalism, that will be described later when it is needed.

Let H continue to be a Hubert space, p-^Ψ^pζ M, an "orthonormal
basis" for H parameterized by the measure space M. Suppose that M is
also a topological space. We can now define the notion of the support of
an element Ψ' £ D.

Let U be an open subset of M. One says that an element Ψ ζ H
vanishes outside U if

(Ψ\Ψβ) = 0 for all p ζm - U .

Let Ψ be an element of Zλ Let us say that ψ' vanishes inside U if:
(Ψ\Ψf) = 0 for aliΨζH which vanish outside U .

Say that an element Ψ' ζ D vanishes in a neighborhood of a point
p ζ M if there is an open subset containing p in which Ψ' vanishes. The
union of all such points is then an open set, hence its complement in M
is a closed subset of M that we will call the support of Ψ''.

Let us now apply these general notions to an example where every-
thing is sufficiently simple and, in principle, known, y t still sufficiently
illustrative to suggest further developments.

YIΠ. Partial Wave Analysis for $ Matrices

Associated with Spin Zero Representations of Semi lirect Product Groups

We now want to examine the usual derivation of the partial wave
analysis of the scattering operator in order to isolate certain interesting
group-theoretic features.

Suppose that G is a semidirect product of an abelian invariant sub-
group T and a subgroup L, i.e., G = L T. (Of course, as our notations
indicate, again we have in mind the case: G = Poincare group,
L = Lorentz subgroup, T — translation subgroup.) Use the notations
described in the last section: H^ . . ., H^ are Hubert spaces, ρ1? . . ., ρ4

unitary representations of G on Hls . . ., H± which extend to Dv . . ., D 4

Dirac spaces associated with Hl9 . . ., ϋΓ4. Suppose Mv . . ., M4 are
auxiliary measure spaces in which L acts with

Pt^Ψ,, * = 1 4

defining orthonormal basis for H^ . . ., H± with

Qi(T)(Ψ^ = Ψl9i (8.1)

1 ^ i < 4 , tζT, i ζ L .

For fixed p{, t -> mi (ί, p{) is a homomorphism of T into the complex
numbers.



178 R. HERMANN:

Suppose L acts transitively on Mx, . . ., M4. Let p®, . . ., p% be fixed
points of Ml9 . . ., Jf4 (the "rest frame"), and Kv . . ., i£4 the isotropy
subgroup of L at p l 5 . . ., £>4. Thus

Now, suppose >4 is an operator ϋ ^ ® H2-> H3® H± that intertwines
the tensor-product action of 0 on each of the Hubert spaces. Suppose also
that A extends to a mapping of the corresponding Dirac spaces, i.e.,

A : D x <g» D2 -> Z>3 ® D 4 .

The customary analysis now proceeds to regard the following formula as
defining a "function" of the indicated variables, despite the fact that it is
not considered legitimate to define the inner product of two elements of
the Dirac spaces:

/ (ft, ft) = {A (Ψpo ® S^o) I Ψps ® yp 4> . (8.2)
Then, for t ζ T,

/(ft, ft) = <(βi ® ρa) (0 (^(Ψvi ® ϊ ^ ) ) i tee ® ρ4) (0 ( ^ 3 ® ΨPΛ)>

= % f t 2>?)* m2^» P2)* m a ( ^ ft) m 4(^ ft) /(ft» ft)

This identity seems to imply that:

/ (ft» ft) = ^ J except when

ra3 (ί, ^3) m4 (ί, p4) = mi (ί, y?) m2 (t, pi) . (8.3)

Let N be the set of points (p3, p^) of M3 x Jf4 satisfying condition
(8.3). The correct interpretation of this condition should be then that
the support of the Dirac element A (Ψvo ® Ψ ô) of H3 ® ϋΓ4 is contained
in the set N.

Another condition is readily obtained: Let K be the group Kxr\ K2,
i.e.,

Ψvl®Ψv$ = Ψvl®ΨA for k£K.

Then, we have, from (8.2),

i.e., if f(p3, pd is a genuine function of the subset N of Mx x M2, it is
invariant under the action of K.

Let us examine the condition (8.3) that determines N. Now, for fixed
Pj £ Mi9 (j = 1, 2, 3, 4), t -> w, (ί, ^ ) determines a homomorphism of the
translation group T into the complex numbers of absolute value 1. Let T
be the Lie algebra of T, and let Td be the dual space of T, i.e., the space
of linear mappings of the vector space T into the real numbers. Then,
each Pi determines an element of Td (for which we use the same notation)
such that for X ζ T :
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{(j)j, Xy denotes the value the linear form p3- takes on the element X ζ T.)
For I ζ L, Aάl maps T into T. Let Addl denote the dual representation in
Td i.e

for l£L,XζΊ

(8.3) takes the form:

i.e.,
(Pz>PU£N if and only if p3 + p4 = p\ + p°2 . (8.5)

In the physicist's notation, this takes the customary form for the
"^-matrix":

(Pv P2 \A \Pv Pd ^^(Pi + P2-Ps- PA) /(?) ,

where / (q) is function on the subset N C Mx x M2 x Mz x M4 determined
by (8.5). This ''invariant amplitude" /(#) is not an arbitrary function
on JV, but is invariant under the group K(p1}p2), which is the inter-
section K(p1) r\ K(p2), where K(p}) is the subgroup of the I ζL such
that Ad^Z(p3) = Pj.

The usual "partial wave expansion" for the invariant amplitudes
should now be interpreted as an expansion for / in terms of a complete,
orthonormal basis of functions on N which are invariant under K(pv p2).
If N is compact, this should be expected to be an expansion over a
discrete parameter, but if N is non-compact, it may be expected to be
an expansion over a continuous parameter, similiar to the physicist's
expansion of the amplitude after the Sommerfeld-Watson transform.
The relevance of our remarks in Section 6 is a simple mathematical
model for this phenomenon should now be clear.

In summary, we have gone through the analysis to point out the
existence of two general mathematical problems, which we will now
state, but will only work on seriously in later papers:

Problem I. Suppose ρ is a unitary representation of a group G on a
Hubert space H, which extends to a representation of G on a suitable
Dirac space D associated with H. Suppose G' is a subgroup of G and Ψ ζ D
satisfies:

ρ(g)(Ψ) = m'(g)Ψ' for g ζG'.

Suppose p -> Ψv ζ D, p ζ M, is an orthonormal basis of D, satisfying:

ρ(g)ΨP = m(g,p)Ψί) f o r gζG,pζM.

Write formally:

It appears that:

for
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In particular, for g ζGp Γ\ Gf (Gv = isotropy subgroup of G at p),

f(p) = m'(g)m(g9p)f{p) .
Guided by our experience with the £ί$-matrix" case, we would guess
that this identity requires that: The support of Ψ be in the set of all
points p ζM such that

m'(g)m(g,p) = l for gζG^ίλG'.

Apparently, this sort of problem has not at all been considered (at least
at this level of generality) in the mathematical literature. However, there
is a close relation to problems considered by F. BRTJHAT [1].

Problem II. Let M be a manifold, Nλ a submanifold of M depending
smoothly on the parameter λ. (In the "^-matrix" case, λ may be con-
sidered as the initial momenta (p^, p%).) Let L be a group which acts on
M. Suppose Kλ is a subgroup L (also depending smoothly on λ) such that
Kλ maps the subset Nλ into itself. Consider a function fλ defined on Nλ,
invariant under Kλ. The problem: Investigate the expansion of f in
terms of a complete, orthonormal basis for functions on Nλ, particularly in
regard to the dependence on λ. For example, the variation through
values of λ at which Nλ changes from a compact to a non-compact set
should be particularly interesting. Recent work by D. FREEDMAN and
J. M. WANG [6], M. GOLDBERGΓER and C. E. JONES [7], M. TOLLER [19]

and E. LEADER (to be published) should particularly be examined in this
spirit.

IX. Analytic Continuation of Matrix Elements of 80 {2,1)

As a guide to our general problem of investigation the asymptotic
behavior of matrix elements of the form (Ψf\U{t)Ψ} as £->oo, we
examine in more detail in this section the case where U(t) is a one-
parameter group generated by one of the elements of the Lie algebra of
SO(2, 1). This will be done in such a way as to lead into certain general
features to be covered in Sections XI and XII.

Again we will work with the "Gell-Mann formula" method of generat-
ing representations of 8L(29 R), which we will formulate in a slightly
different manner.

Let H be a Hubert space, with Z, X, Y operators on H such that:

[Z, X] = Y; [Z, Y] = - X ; [X, Y] = 0; X2 + Y2 - - 1 .

Define operators
Xλ = YZ + λX

Our goal is to calculate matrix elements of the form:

f(t,λ) = <Ψ'\Έxp(tXάΨ)
in such a form that the asymptotic behavior as t -> oo can be investigated.



Group Representations-V 181

Now, Έxp(tXλ) satisfies the differential equation:

(9.1)

= (X0+λX)Exp(tXλ). (9.1)

Theorem 9.1. Set Aλ{t) = Yλ Exp(ίX0) Y~λ. Then

l. (9.2)

In particular, Aλ{t) satisfies the same differential equation (9.1) as
Exp(ί, Xλ), hence, if the relevant uniqueness theorem holds, then

Exp (tXλ) = Yλ Exp (tX0) Y~λ (9.3)

[Xo, Γ ] = [ Γ Z , Γ] =

Proof. Since Y Y commutes with Y, we have:

[Zo, Y*] = 1 F - 1 [Zo, Γ] = -
Hence,

Xo Y
λ Exp(ίZ0) Γ-Λ = [Xo, Y

λ] Exp(ίZ0) Γ-Λ +

+ YλX0 Exp(<X0) Y~λ = - λ YλX Exp(ίX0) Y~λ

+ YλX0 Exp(ίZ0) Γ-», or (Z o + λZ) (Γ λ Exp(ίZ0)

This proves (9.2), and the theorem.

In the next two sections, we will investigate the roots of this formula
in Lie group cohomology. Let us now proceed to see how it helps to
calculate matrix elements.

Let us now realize this algebra as an algebra of differential operators,
using the method described in [12], Section VI. H is the Hubert space of

functions ψ(θ), 0 ̂  θ ̂  2π, with <Ψ\Ψ) = f Ψψ)* Ψ(θ)dθ

Xλ = sin θ -TK — λ cos θclσclσ

Yλ = cos θ^j

Hence, XQ = sinθ -JTΓ , YQ = sinθ.
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It is convenient to change variables:

-1)4-,Y= Iβiiz-z-1)' dz ' ' v ;

zs + 1
2 + «

with
1 +e<

Note that Exp (tXQ) (z) -> ± 1 as £ -> oo, 5 -> ± 1. Note also that s is the
"correct" function of t to choose to make Exp(ί(s) X0(z)) analytic in the
neighborhood of t = ± 00, i.e., s = ± 1.

Suppose Ψ = zn

Exp(ίZ 0) (Γ- A ΪO = Exp(*X0) (1/2<(2; - s-1))-^^4 .
Now,

0 ) (z - s- i )

I ) 2

+ s) {zs + 1)

z2s2 4- 1 + 2 ,̂9 — z2 — 252 — 52

225 + 252 + Z + 5

2 2 ( 5 2 — 1) — ( S 2 — 1) __ (S2 — 1)(22 — 1 )

Z2S + Z(S2 + 1) + S Z2S + 2 ( 5 2 + l ) +

Note that:
Exp(*X0)7Exp(—tX0) . 1 .. . , _
— — — 2___i) 1 S analytic at s = ± 1 .

Hence,

Thus, we have proved:
Theorem 9.2. Suppose ψn9 Ψm satisfy:

Then, the matrix element:

admits the following integral representation:

f (log ( τ = j ) , ή = <vm I YX EχP(ίz0) γ-*ψny

* 7 \ 2 8 S + Z ( ί 2 + 1) + β / \ z + 5 /
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where the integral is taken over the unit circle in the comples z-plane. (Of
course, since the integrand is analytic, it can be shifted in accordance with

Cauchy's theorem.) Note particularly that (s2 — l) λ / (log 1-τ-̂ :—) , λ\ has

no singularity in the neighborhood of s = ± 1.
This theorem sums up many special facts about the Legendre func-

tions and their asymptotic behavior as ί->oo. Another interesting
observation: For certain values of complex t, there will be trouble with
singularities in the integrand. This indicates the feature we pointed out
earlier, ΈιXτp(tXλ) will not be strictly definable for complex t.

X. Lie Group Cohomology and the Deformation of Representations

Many features of the argument of the last section are of general
interest. Since the argument implicitly involves Lie group cohomology,
we will detour to sketch what we need.

Let G be a group, and let Φ be a representation by linear trans-
formations on a vector space F. One will find an exposition of the
associated cohomology groups and their algebraic interpretation in [14],
Chapter 12. Since we will only need cohomology of degrees one and two,
and our notation differs from those of KUROSH, we will sketch what we
need. Work by VAN EST [3] indicates the relation between Lie group
and Lie algebra cohomology.

A 0-cochain is an element of F. A one-cochain is a map ω from G to
F, a two-cochain will be a map from G x G to F. These form vector
spaces, that we denote by C°(Φ), Cλ(Φ) and O2(Φ). A coboundary
operator will send Cn(Φ) into Cn+1(Φ):

(a) For ω ζC°(Φ), i.e., ωζV,

ω) — ω for g ζ G .

(b) For ωζC^Φ)

d ω ( g v g2) = ω { g x ) + Φ f a i ) ( ω ( g r 2 ) ) - ω ( g x g 2 ) f o r gv g 2 ζ G .

Let us show that d(dω) = for ω £ C°(Φ)

d(dω) (gv g2) = dω(gλ) + Φ{g±) (dω(g2)) - dω(gl9 g2)

= ω -f Φ(9l) (ω) + Φ (Λ) ( - ω + Φ(g2) (ω)) - ( - ω + Φ(gl9 g2) (ω)) = 0

Let Zλ{Φ) be the kernel of d: CX(Φ) -> C2(Φ). Then

If G is a Lie group and we restrict ourselves to cochains that are
differentiable functions on G, then the connection with Lie algebra
cohomology can be made explicit. Let G be the Lie algebra of G, and let
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X £ G. The representation Φ oί G induces a Lie algebra representation
by operators on F, that we will denote by Φ, of G.

We can define mapping α: Cr(Φ) -> Cr(Φ), r = 0, 1,2, that commute
the (Z-operator.

C°(Φ) and O°(Φ) are both equal to F, hence identified. If ω
define α (ω) as follows:

Suppose that ω ξ F

= - co + Φ (G) (ω), hence α (dω) {X)

where dω is taken in the sense of Lie algebra cohomology. Then

ocdω = docw for wζC°(Φ).

Let us consider ω ζ&iΦ)

doc(ω) (X, Y) = Φ(X) (α(ω) (Y) α(ω) (Z)) - α(ω) ([X, 7])

-^jΦ(X) ω(Exp(ί Γ)) - Φ(Γ) ωCExp(ίZ)) - ω(Exp(ί[Z,

Γ)) - Φ(Exp(57))

7)) -

7)) - dω

(Exp {s 7), Exp (ίZ)) + ω(Exp (ίZ)) - ω(Exp (5 7), Exp (ίZ))s>«β 0

- ~-ω(Exp(ί[Z, 7])) ί = 0 .

We now prove that:

^ - β)(Exp(*Γ)Exp(rX))]Γ>ί_0

d ( 1 0

, Γ])) t _ 0 .

For the proof, let us suppose that G is a group oίn x n matrices, and
that ω can be extended to a function on all n x n matrices. (Using the
techniques of manifold theory, the proof can be extended to abstractly
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given Lie groups.) The left-hand side of (10.1) is then:

Consider the following curve in the space of n x n matrices:

= FExp(ίZ)

z(t) = Exp(ί[X, F]) .
Then,

z'(0) = XY;y'(0)=YX;z'(0)=[X9Y], i.e., x' (0) - y' (0) = z' (0).

This relation between the tangent vectors of the three curves leads to the
relation among their directional derivatives.

JJω(x{t)) - ηβω(y(t)) -^-ω(z{t)) tsaQ = 0 , which is just 10.1.

(10.1) enables us to see how to define α(ω) if ω ξ C2(Φ), namely:

α (ω) (X, Y) = - ^ ω ( E x p (βX) E x p (t Y)) - ω ( E x p (a Y) E x p (tX)) 8§twm0

for X, Y ξ G.

One sees from this formula that α(ω) (X, F) = — α(ω) (F, X), i.e.,
oc(ω) is actually a cochain in C2(Φ). Further, our method of defining
oc(C2(Φ)) guarantees that:

) for ω

Having shown the connection between Lie group and Lie algebra
cohomology, let us turn to the connection between the former idea and
deformation of Lie group representations.

Suppose G is a Lie group g -> ρ (g) is a representation of O by linear
transformations on a vector space H. Consider a deformation of ρ
depending on a real parameter λ, i.e., for each λ,g->ρλ {g) is a representa-
tion of G by linear transformations on H, reducing to the given one for
λ = 0.

Set ω (g) = -^ ρλ {g)ρ{g-1)λ = 0

Then,

) ρteΓ^A-o ( 1 0 2 )

Let F be the vector space of linear transformations: H -^ H. Let Φ be the
following representation of G by linear transformations on V:
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Regard ω as an element of C1 (Φ). Tnen, condition 10.2 means:

dω = 0 .
Define:

ω(X) = ~ Φ Λ ( X ) Λ = 0 f o r X ζ < } .

Regard ω as an element of (^(Φ). Then, it is readily verified that:

α(ω) = ω ,

i.e., the definition of ω as a cohomological "first obstruction" associated
with the deformation λ ~> ρλ of Lie group representations is compatible
with the previous definition (in [12], Part 2) of ω as a "first obstruction"
associated with the deformation λ -> ρλ of Lie algebra representations.

We now turn from this brief general review of material covered in
detail by NIJENHUIS and RICHARDSON to a more specific topic, namely,
the formulation in cohomological language of the argument used in
Section 9.

XI. Group Representations Deformations Associated with the Lie Algebra
Representations that are Linear in the Parameter

Suppose G is a connected Lie group, G is its Lie algebra, and ρλ is a
one-parameter family of representations of G by linear transformations
on a vector space H. Let ρ = ρ0, and assume that ρλ is of the form:

ρλ(X) = ρ(X) + λω(X) for X ζ G (11.1)

where ωζ(71(Φ). (V is the space of linear operators: H->H, and
Φ(X) (A) = ρ(X) - Aρ(X) = [ρ{X),A] for X £ G, A ζ F.) Now, we
know the conditions that ρλ given in this form be a representation,
namely:

(a)dω = 0 (b) [ω(X),ω(Y)] = 0 for X, Y £ G . (11.2)

Our problem is to show that this special assumption about the Lie
algebra deformation implies a special form of the group deformation,
namely:

ρΛg) = A(g,λ)ρ(g) (11.3)

where, for each g, λ, A (g, λ) is a linear operator: H -> H, and A (e, λ)
= A(g,0) — 1 (the identity operator).

First, let us start off with a deformation ρλ(g) of form (11.3) and
deduce the consequences.

= jχ Qλ(g) Qig-^λ-o ==='dλA(<9, λ)λ==0

= A(X,λ)@ρ(X),
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with

A ίir i\

dt
A(X,λ)=4τA(Exp(tX),λ)tss0. (11.5)

Hence,
A{X9λ) = λω(X) for X ζ G , a l lA. (11.6)

Let us write down the condition that (11.3) define a representation
for every value of λ:

Qλ(9i92) = A(9i92> λ) Q(9i92) = Qλ(9i) QiQz)

= A{gl9 λ) ρfa) A(g29 λ) ρ{gώ

= A (gv λ) ρ (gx) A {g2, λ) ρ {gζ1) ρ (gxg2) ,
or

A{gig29 λ) = A(gl9 λ) ρ(gi)A{g29 λ) ρfo1) . (11.7)

Our experience with constructing "multipliers" for representations
now suggests a way to solve these equations: As an Ansatz, set:

{g)) (11.8)
where:

ω ζ C1(Φ), i.e., ω is a mapping of 0 -> V = (operators on H)

{ω(g): g ζG} forms an abelian set of operators on H. (11.9)

Then (11.7) takes the form:

This condition is implied by the following one :

ω(g1g2) = ω(gi) + Φ(gi) (ω(g2)) , (11.10)

with ρΦ(<7i) (̂ 4) = ρ(^) ^4ρ(^fx), for each A ζV, i.e., each linear map
J.: H -> H. (11.10) is just the condition that dω = 0, where ω is inter-
preted as an element of Cλ{Φ).

Then, (11.9) and (11.10) are sufficient conditions that (11.3) and
(11.7) define a deformation λ -> ρ̂  of representations of G.

Suppose further that:

oc{ω) = dB, for BζV9 i.e., B ζC°(Φ) .

Then, we know that this is so if and only if:

ω = dB, where B is interpreted as an element of C°(Φ) .
Then,

ω(g) = B-Φ(g)(B)

) . (11.11)
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Summing up, we have proved:
Theorem 11.1. Suppose ρ is a representation of the Lie group G by

linear transformations on H. Let B be a linear transformation: H -> H,
and define ω(g), for g ζ G, by (11.11). Suppose that (11.9) is satisfied. Then
the following formula defines a deformation λ -> ρλ of ρ.

ρλ(g) = Έxp(λ(-B+ρ(g) Bρ{g-^)))ρ(g) . (11.12)

The corresponding deformation ρλ of the Lie algebra representation is
given by:

with
ω(X) = dB(X) = [ρ(Z), B] . (11.13)

This is the abstract version of the construction done in Section 10
in order to calculate the asymptotic behavior of the Legendre function
P^ (cos ht) as t-*oo. We will now turn to the abstract version of the
asymptotic formula itself.

XII. An Abstract Version of the Asymptotic Formula

Suppose H is a Hubert space, with ρλ a one-parameter family of
representations of G by operators on H of form (11.12).

For fixed elements X £ G, Ψ, Ψ' £ H, consider the matrix element:

Our experience with the calculation in Section 10 suggests simplifying
(11.2) with a further Ansatz. Suppose that:

(a) The operators {B, ρ(g) Bρ(g~1): g ζ Cr} form an abelian set of
operators. (12.1)

(b) There is an operator C with:

i.e., O =

Under the condition,
Qx{g) = C-λρ{ρg)σ. (12.2)

Then for ΨζH, XζG,

ρλ(Έxv(tX) (ψ)) = C~λρ(Ex^{tX)) (CλΨ) .

Suppose that another parameter s can be introduced as a function of
t, such that:

(a) As t ->• oo, s -> 1.
(b) There is a real-valued function a (s, λ) such that

is non-singular at s = 1. Then

ρλ(Έxv(tX))(Ψ)a(s(t),λ)
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takes a definite, computable value as t -> oo, so that this formula deter-
mines the asymptotic behavior, in the classical sense, of matrix elements
as t ~> oo, with λ held fixed.

Now, let us examine the asymptotic behavior of λ -> oo, with t held
fixed. We know that:

Hence, ρλ{Xjλ) is non-singular in the neighborhood of λ = oo. Thus, we
can expect that

Έxp(tρλ{X)) = ρλ Exp(*X/Λ) = ρλ Έxp(tjλX)

will behave decently as λ -> oo.
But,

We then face the problem of investigating this formula as λ -> oo. Further
work on these lines is dependent on doing more explicit calculations in
order to obtain a reasonable idea of what to expect in general, hence we
will defer it to later.

Another comment about (12.2): If the operators Cλ and C~λ are genuine
operators on the Hubert space and (12.2) held for all g in G, (12.2) would
say that ρλ was equivalent to ρ, and, in particular, the value of the Casimir
operators of G would be the same for both representations. For the case
of G = SL(2, R), for example, this would be nonsense. There are two
remarks to be made about this: First, the operators Cλ and/or C~λ are
highly singular. (For example, for the case G = 8L(2, R) H = Hubert
space of functions Ψ(θ)9 0 ^ θ ^ 2π, Cλ is the operator of multiplica-
tion by

(sinθ)λ) .

Second, the C may not be valid for the whole group G. (For example,
for the case G = 8L(2, R), it is readily verified that the C changes if X
is replaced by Y). The general idea is that the relevant cohomology
vanishes when restricted to a suitable subgroup of G. This is not surprising:
We have seen many examples of this method of £'computing" cohomo-
logy groups, i.e., choose a suitable subalgebra or subgroup for which the
relevant cohomology groups vanish.
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