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Abstract.The main problem, deforming a subalgebra of a Lie algebra, is treated
algebraically, requiring an extensive development of methods of defining multi-
plications on Lie algebra cohomology cochains. Some applications to differential
geometry are also presented.

I. Introduction

As we have already seen [2], one of our main problems can be describ-
ed in the following way: Suppose G and L are Lie algebras, with Φ
a homomorphism of G to L. It is possible to "deform" these structures
in the sense of defining:

a. A Lie algebra structure [X, Y]λ on G varying with the parameter A,
reducing to the given Lie algebra when λ = 0.

b. A one-parameter family of linear maps Φλ : G -> L, each of which
is a homomorphism of the [, ]λ Lie algebra structure on G.

The INONU-WIGNER idea of "contraction" of Lie algebras and
representations and the Gell-Mann method of "expanding" representa-
tions both suggest that this is the fundamental problem.

In this paper, we shall develop the full algebraic formalism necessary
to discuss this deformation problem. As can be seen from Ref. [4], this
necessitates studying the "multiplicative" structure on the chochains
associated with Lie algebra cohomology. We have delayed presenting this
theory because of its complexity, but in this paper we can present a
relatively simple independent exposition, and show how it is applied to
the interesting deformation problems in a straightforward way. There is
considerable overlap in results with work done by A. NIJENHTJIS and
R. RICHARDSON [5, 6, 9, 10]. However, the methods presented here are
perhaps better adapted to the explicit calculations that are necessary
to apply the theory to interesting problems of group representations
and differential geometry.

It is extremely interesting to notice that our problem (deforming
Lie algebras and their representations) and that of K. KODAIRA and
D. C. SPENCER [3, 11] on deformation of differential geometric structures
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are basically the same. We will present some work designed to show this
connection, without getting involved with the full details of this.

I would like to thank P. GRIFFITHS and R. RICHARDSON with whom I have had
many conversations about the material presented here on deformations.

II. The Multiplicative Structure on Cochains

Let G be a Lie algebra. Suppose F l 5 F 2 and F 3 are vector spaces, and
that Φ l 5 Φ2, ̂ 3 a r e representations of G by linear transformations of F 1 ?

F 2, F 3, respectively. Suppose also that α: Yx x F 2 -> F 3 is a bilinear
map, commuting with the action of G, i. e.,
Φz(X)(φvv2))=oc(Φ1(X)vvv2)+a(υvΦ2(X)v2) for X £ Q,v, ζ Vl9

Let Cr(Φi), i = 1, 2, 3, r = 0, 1, . . ., be the r-cochains of G with
coefficients in these three representations. (At this point, we will need
the notations and concepts of Lie algebra cohomology theory as presented
in [2] Part II.) Our aim is to show that α induces a bilinear map, which
we also denote by α, of Cr{Φ^) X CS(Φ2) -» O r + s (Φ 3 ), for each pair (r, s)
of non-negative integers.

Now, for r = s = 0, Cr{Φλ) = F l 5 C
s (Φ2) = F 2, <7'+s(Φ3) = F 3 . We

require in this case that α be the same as the map we are given. We will
now proceed by induction on (r -f s), assuming that α is defined on
Cr' x 0 s ', for r' + s ; < r + 5, and show that it can be well-defined on
Or x 0 s . For this purpose, we "postulate" the following law connecting
the multiplication and the operation of contraction by an element of G.

X J α(ω l 5 ω2) = α ( I J ωv ω2) + (- l ) r oc(ωv X J ω2)
for (2.1)

Z ζ G , ω 1 6 ^ ( Φ 1 ) , ω 2 ζ 0 M Φ 2 ) .

Following a pattern established earlier, this rule enables us to define
α(ω1 ? ω2) by induction on r + 5.

α(ω1 ? ω2) (Z1 ? . . ., X r + S) = Xx J α(ω1 ? ω2) {X2, . . ., Xr+S)

= oc{X1 J ω l 5 ω2) (Z2, . . ., Xr+S) +

+ ( - l ) ' α ( ω 1 , Z 1 J ω a ) ( Z a , . . . , Z r + β ) for Z x , . . ., Xr+S ζ G .
We must show that α(col5 ω2) actually is a cochain, i. e., depends skew-
symmetrically on X1} . . ., Xr+S. The above formula (and the induction
hypothesis) makes it obvious that it depends skew-symmetrically on
X3, . . ., Z r + S . We must consider interchange of Xt and X2.

oc{ωv ω2) (Xl9 . . ., Xr+S) = X2 J oc{X1 J ωv ω2) +

+ (- l ) r X2 J α(ω l 5 XL J ω2) (X3J •> -^r+s)

= α ( Z 2 J Z x J ωx, ω2) + (- I ) - 1 a(X1 J ωv X2 J ωa) +

+ (- iy oc(X2 J ωl9 Xx J ω2) + (- 1)^ α(ω l 5 Z 2 J X1 J ω2)

(X3, . . ., Xr+S).
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This makes it evident that the dependence on Xx and X2 is also skew-
symmetric.

Having defined α(ω1 ? ω2) so that Eq. (2.1) is satisfied, we must now
investigate by the same sort of inductive reasoning how the other
algebraic operations we have defined on cochains are compatible with
this product. First, consider the Lie derivative:

X oc(ωv ω2) = α(Z(ω 1), ω2) + α(ω1, X(ω2)) for

ω± ζ C'ίΦJ, ω2 ζ C°(Φ2), X ζ G . (2.2)

Proof. Let 7 ζ G. We must show that 7 J applied to both sides of
Eq. (2.2) gives the same result, if it is assumed that Eq. (2.2) is true for
cochain of lower degree. (Notice that for r = s = 0, it just expresses the
fact that α commutes with the action of G.)

Y J X α(ωl5 ω2) = X(7 J α(ωl5 ωa)) - [X, Y] Aoc(ωv ωa)

= I(α(ΓJω 1 ,β) 2 ) +

+ (- 1)' α(ω1? 7 J ω2)) - α([X, 7] J ω l5 ω2) - (- 1)' oc(ωv [X, Γ] J ωa)

= α([Z, 7] J ωl9 ω2) + α ( Γ J I K ) , ω2) + α(7 Jω 1 ? Z(ωa)) +

+ (- 1)- α(Z(ωx)? 7 J ω2) + (- 1)- α K , [Z, 7] J ω2) +

+ (-1)^(0)!, Γ J Z ( ω a ) ) - α([Z, 7] J ωl9 ω2) - {-l)rot(ωl9

[Z, 7] J ωa)

= 7 J [α(Z(ω!), ωa) + α(ω l 3 Z(ω a))] q.e.d.

Now, turn to the following formula:

d α(ω l 5 ω2) = α(ίZω1? ω2) + (— l ) r α(ω1 ? dω2) for

ω 1 6 ^ ( Φ 1 ) , ω 2 ζ ^ ( Φ 2 ) . (2.3)

Proo/. For X ζ G.

Z J d α(ω1 ? ω2) = Z(α(ω 1 ? ω2)) — d(X J α(ω1 ? co2)) = ,

using that Eq. (2.3) is true for forms of total degree less than r + s,

α(Z(ω1), ω2) + α(ω l 3 Z(ω 2)) — o!(α(Z J ω1? ω2) + (— l ) r α(ω l 5 X J ω2))

= α(X(ωx), ω2) + α(ω l 5 X(ω2)) — oc(d(X J ωx), ω2) —

- (- I)7*-1 α(Z J ω1? ^ω2) - (- l ) ^ ( a 0 W l , Z J ω2) - a(ω1? d(Z J ω2)))

= a ( Z J ^ω 1 ? ω2) -f a(ω1 ? X J cίω2) + (- l ) r a(X J ωv dω2) —

— (— l)roc(dω1, X J ω2) = X J (a(dω l 5 ω2) + (— l ) r a(ω 1 ? (iω2)) .

This proves Eq. 2.3.

Equation 2.3 indicates that the map α on cochains induces a bilinear
map (that we also denote by α) on cohomology classes, cc\Hr(O^) x
x HS(Φ2) -+ Hr+s{Φ3). Suppose that ωx and ω2 are cocycles belonging



134 R.HERMANN:

to given cohomology classes ωx and cυ2. Put α(ω1? ω2) = α(eυl5 ω2). We
must verify several facts to make this definition legitimate:

d(jx(ωly ω2)) = 0, i. e. ,oc{ωv ω2) is a cycle. [This follows from Eq. (2.3.)]

If ωx and ω2 are replaced by ω{ and ω'2 in the same cohomology class,
then

α(ω l s ω2) = α(ω{, ωg) (2.4)

For the proof, notice that:

cc{dθv ω2) = ̂ α(θ 1 ?ω2) - (- I) 7"" 1 oc(θ1dω2) = <Zα(01} ω2),i.e., oί(dθv ω2) = 0

Thus,

α(ωα, ω2) = α(ωx — ω{, ω2 — ω )̂ + α(ω(, ω2) + α(ω1 ? ω2) — oc(ω[, ω'2,)

hence 2.4.
Finally, let us suppose that V1= V2= V that Φ± = Φ2= φ, and that

oc(v2, v2) = c α(v1? vx) for vv v2 ζ F, where c is constant independent of vx

and t>2.
Then we have :

oc(ωl9 ωa) = (- l ) r s c α(ω2, ωλ) for ω t ζ c^(Φ), ω2ζcs{Φ) . (2.5)

Proof. Again, by induction on (r + <s).

Z J α(ω l s ω2) = α(Z J ωl9 ω2) + (~l)r oc{ωv X A ω2)

+ ( - l)r+r<β-l) c α ( χ J ω £ j ω i ) = (_ 1)« c ( ( _ l)β α ( c θ 2 ) X J ω i ) +

+ oc(X J OJ2, ωj)) = (- l ) r s c l j α(ω2, ωx) q.e.d.

The general problem inherent in Eq. (2.5) is that of determining how
algebraic relations among the representations of G used to define cochains
induce algebraic relations among the cochains themselves. Let us turn
to another example of this that is of interest in the application of Lie
algebra cohomology to deformation problems, namely that related to
"associative" laws.

Suppose we are given five vector spaces F l 5 . . ., F 5 with representa-
tions Φv . . ., Φ 5 of G on each.

Consider bilinear maps

oc:Vλx V2-+VB; β: F 3 x VA-+V5.

Form β(oc(yvv2), vA), (vv . . ., are typical elements of Vv . . ., F5).
Similarly, form β'(vv ad (v2, v^j) and β" (v2, α" (vv v4)), where the following
bilinear maps have the following domains and ranges:

F,-*F6

a " : F l X Vt^V3; β":V2
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Suppose now that all these bilinear maps commute with the action of G,
and that the following relations hold:

β(φv v2), v,) = a β'(vv oc'(v2, t>4)) + b β"(v2, <*" (υl9 v4)) (2.6)

where a and b are scalar constants.
Our problem is to find if there is a relation similar to Eq. (2.6) among

cochains. Suppose then that

ω, ζ σ(Φx), ω2 £ C°(Φ2), ω4

Based on our acquired experience with this sort of thing, let us try to
prove the following law as the extension of Eq. (2.6) to cochains:

β{at.{ω1,ωi), ω4) = a β'(ωv α' (ω2, ω4)) + (- 1)" 6 β"(ω2, α" (coj, cυ4)) (2.7)

As before, we apply X J to both sides of Eq. 2.7, where X ζ G, with
Eq. (2.6) starting off the induction.

X J β(cc{ωv ω2), ω4) = /9(Z J α(ω1; ω2), ω4) +

= j3(α(Z J ω1} α>2), cυ4) + (- l) r /3(a(Wl, X

X X J ω2), ω4) +

+ ( - i r + s

/ S ( a H , ω 2 ) ) X j ω 4 )

=, using Eq. (2.7) ,

a β'(Σ J oh, a' (ω,, ω4)) + (- 1 ) 0 - ^ b β"(ωt, a" (X J W l , β>4)) +

+ (- l)r[a β'(ωv a'(Z J co2, ω4)) + (- l)'( -υ δ /3"(Z J ω2, X

X a"(co!, co4))] +

+ (-l) '+ [β /?>!, a'(ω2, Z Jω4)) + (- l)«δ /S"(ωί( a " ( ω i ,Z] J ω«

Now

X J /S'K, a'(ω2, ω,)) = j8'(X J ω1; a'(co2, ω4)) +

+ (-ir i5'(co 1,Z Ja'(ω 2, ω4)

= β'(X J W l , a'(ω8) ω4)) + (- l)r [β'(ωv oc'(X J ω2, ω4)) +

+ (-l) j8'(ω1,a'(ω2,ZJβ>4))]

X ^β' iω^oί'Xω^ω,))

= β"(X J ω υ a" (ω2, co4)) + (- 1)' β 'fa, oc" (X J ωt, ω4))

= j8"(Z J ω2, «"(ft>1; ω4)) + (- l)slβ"(ω2, a" (X J ω1; ω4))

+ (-1Y β"(ω2, a" (ωv X

These identities prove Eq. (2.7).
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III. Deformation of Lie Algebra Homomorphisms

We will now consider what is perhaps the simplest situation where one
can see how the "multiplicative" structure of the cochains is related to
deformation problems. Suppose that G and L are Lie algebras, and that
λ -> Φλ is a one parameter family of Lie algebra homomorphisms from G
to L. Suppose that:

oo

Φλ(X)= Σ ωj(X)λ>

Let Φ' be the following representation of G by linear transformations
on L:

Φ'(X)(A)=[Φ0(X),A] for XίG,Aζί.

Then, each ωj(X), for j' ̂  1, defines a 1-cochain of G with coefficients
defined by the representation Φ'. Let us examine the conditions deter-
mined by requiring that each Φλ be a Lie algebra homomorphism.

Φλ([X, 7]) = [Φλ(X), Φλ(Y)], for X, Y 6 G , or

2>

Now

dojj(X,

Hence,

,([X, Γ])λ' =

ω,(fX, 7]) =

+ [ωk(X), Φc

Γ ) = Φ ' ( Z ) (

Eq. (3.1) can

• Σ

j

,(Y)]

K(X),ω,(7)];

[ ω ι . f (i ) l ( M ί (r:
j - 1

Ί. 1

'.ω^rn-tΦoίnω.
be rewritten as:

dω.,(X, 7) + Σ [ω*_#(Z),

l*+ί, or

) C U i (7)] .

0,(7)1 = 0

ω*(7)3

X, 7]) .

(3.2)
j f c = l

Now let α be the map: L x l + L denned by: oc(A, B) = [A, B]. Then,

«(ω*-i, ω*) (*, y) = ̂  J «(«*_,, ©ί) (7)
(7)

= [ωΛ_3(X), co3 (7)] -
Hence,

ϊ α K - i , ωj) (X, Γ) = ([ω,_,(Z),

= 2 2;[ω J b. i(Z),

Thus, Eq. (3.2) can be rewritten as:

1 ? " " 1

ί ω J + τ 2; α(ω, _fc, ωΛ) = 0 . (3.3)



Group Representations. IV 137

It all the data depends analytically on λ, then Eq. (3.3) gives the condi-
tion (for j = 1, 2, . . .) that λ -> Φχ be, for each λ, an homomorphism.

Notice that Eq. 3.3, for j = 1, gives the condition we already know,
namely dω± — 0. As we have seen [2], the cohomology class determined
by ωλ in H1 (Φ) is the first "obstruction" to showing that each member of
family λ -> Φχ of homomorphisms is equivalent under the group of inner
automorphisms of L to Φo itself. In fact, the known theorem [5] is that,
if G and L are finite dimensional, if HX(Φ') = 0, then Φλ is equivalent to
Φ o for λ sufficiently small. The proof involves as its basic tool the implicit
function theorem. It is sometimes possible to extend it to certain infinite
dimensional situations by a judicious use of the implicit function theorem
in Banach spaces. However, the situation of main interest to us, where L
is the space of skew-Hermitian operators on a Hubert space, does not
seem readily amenable to such techniques. We will then present the
primitive, but more explicit technique for carrying out such calculations.

Let L be the group of inner automorphisms of L. L is the group of
transformations of L generated by those of the form:

E x p ( A d ^ ) : J5->Exp(Ad.4) (B)
00

= Σ ψ ( ) + [ , ] + Ύ [ , [ 9 ] ] +
7 = 0 J

where A and B are elements of L.

We now have :

Theorem 3.1. Suppose that H1 (Φf) = 0. For any sequence Av A2, . . . of
elements of L, consider the following formulas:

Φ{ (X) - Exp (A d V Aό) ...Έxp(Adλ Ax) Φλ (X), Φ\ (X) = Σ <4 (x) λj

fc = 0

Our assertion is that this sequence can be chosen so that

<4(X) = 0 for 0<k<j, all Z £G . (3.4)

Proof. Choose Ax so that dAλ — ωv Then, for ! ( ( } ,

Exp(Ad λ Λ ) (Φo + ωx λ + •) (X) = (1 + λ Ad Aλ + - •) (Φo +

+ ω1λ+ --)(X)

--= ΦQ(X) + λ([Al9 ΦQ(X)] + ωi(X)) +-••

= Φ0(X) + λ([Alt Φ0(X)] + [Φ0(Z), A]) + •

= Φ0(X) + (terms involving A2, A3, . . .) .

Proceed by induction on j , assume that: Φ\{X) = Φ o ( ^ ) +
+ ωs{X) ?J + By 3.3, dωs = 0. Choose As so that

dAj = ω ; ,
10 Commun. math. Phys., Vol. 5
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again using the fact that H2(Φ') = 0.

Put Φ{+x (X) = Ad Exp (V Aj) (Φj (X))

= (1 + V Ad^ + *') (Φo(*) + «j(i) λ' + 1

= Φ0(X) + λ'([AS9 ΦQ(X)1 + dAs(X)) + - •

= Φ o W + (terms involving }J+1, . . .) q.e.d.

Theorem 3.1 is purely algebraic, of course. However, put

g$ = Exp(JίcZ # Aj) . . . Exp(^4(Z λ Ax), an element of L .

If ^ converges as / -> oo, to, say g{λ), note that:

A d g ( λ ) Φ λ ( I ) = Φ 0 ( I ) ,

i. e., each of the homomorphisms Φλ is equivalent under L to Φo, i. e., the
deformation λ~> Φχθί homomorphism as "trivial". The next step in the
program should be to consider conditions for the convergence. In this
paper, we will pass them by.

Next, we consider a situation where the algebraic structure on the
cochains plays a more important role. Suppose H1 (Φf) is not zero. Given a
cohomology class in H2(Φ'), we inquire whether there actually is a
deformation λ ~> Φχ = Σ ωj ^ °̂  >̂o w^h Φ± i n that cohomology class.

1
There is a standard answer that this is so if H2(Φf) = 0. We shall now
proceed to consider the formal aspects of this.

As we have seen, it suffices (modulo the convergence problems for the
series Φλ = Σ ωi λ*, which we will again pass by), to show that a sequence

3

ωv ω2, . . . of chochains satisfying 3.3 exists, starting off with ωλ given.
However, this can easily be done by induction: Assume ωl9 . . ., ω^ exists
satisfying 3.3. We shall show that ωj+1 exists.

Put:

We must show that dθj+1 — 0. For then, our assumption that H2 (Φf) = 0
would guarantee that ωj+x could be chosen as the cochain such that
dcθj+1 = θj+v Now

,fl 1 £ (A N , , λ

= ~ -δ" Σ Σ α(«(o>Λ-ϊ> ωι)>
Δ

! 1 kι

^Y Σ Σ α(
Δ
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Consider
k-i

Σ ΣΣ Σ «(β>ϊ, oc(ωJC_ι,ωj+1_k)) . (3.5)

Make the following change of variables in the summation:

k - 1-+1, ? + l - & - > & - Z .

Then, also I ~> j + 1 — k. The limits of summation remain the same. The

sum 3.5 is t h e n :
j J c - 1

Σ Σ <*(fi>s+i-k> oc(ωl9 ωk_ι))
k=l1=1

j Jc-l

= ~ Σ Σ oc(oc{ωk_ι,ωι),ωj+1_k)
& = 1 1 = 1

= 2dθj+1.

This gives the identi ty:

^ +i = --%- Σ Σ κ{ωic-ι, oc{ωl} ωj+1_k)) - dθj
% Σ Σ κ{ωic-ι, oc{ωl} ωj+1_k)) - dθj+1 ,
* & = 1 z = l

or
I j k-i

d®3+i=--Σ Σ Σ oc(ωk_ι,oc{ωliωj+1_k)). (3.6)

However, we can also make a different change of variables in the sum-

mation in 3.5\ j -\- 1 — k->l; k — l->j + 1 — k. Then, also l-^k — I.

The limits again remain the same. 3.5 then becomes

j J f c - l

Σ Σ oc(ωk_ι,cc{ωj+1=kiωι))
k=l1=1

j Ίc~l

= — Σ Σ κ{ωic-
ifc=li=l

Hence,

^ θ ;+i = ~ Σ Σ α
j f e = l Z = l

This is incompatible with 3.6 unless

dθj+1 = 0

Summing up, we have then formed:

Theorem 3.2. Suppose that H2(Φf) = 0, and that ωx is a l-cocycle. Then
there exists l-cochains ω2, ω 3 , . . . such that the formal power series

Φλ(X) = Φ0(X)+ Σ ωs(X)λ*
9 = 1

satisfies the equations which, if the series converges, implies that each Φλ

is a homomorphism from G to L.

10*
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IV. Algebraic Aspects of the Deformation of Lie Algebras

As we have just seen, the formal properties of deformation of homo-
morphism to all orders involves a multiplicative algebraic structure on
the cochains. We shall now consider the similar, but more complicated,
structure involved in deformations of Lie algebras alone. (This has been
recently considered by NIJENHUIS and RICHARDSON [6] and S. PIPER [8]

but since our work here is from a slightly different point of view, we shall
briefly indicate how it can be applied to this case.)

Suppose 6 is a vector space, with [X, Y]λ a Lie algebra type of
product, defined for all values of the parameter λ. Consider its Taylor
expansion:

[X,Y]λ = ΣωΛX,Y)V
j

Let Φ be the adjoint representation of the initial Lie algebra [X, F] o

= [X, Y], i e ,

Φ(X)(Y)=[X,Y].
Then, each ω3- is a 2-cochain of G with coefficients in the representation Φ.
The algebraic conditions imposed on these cochains are determined by the
Jacobi identity, which should be true for each value of λ:

[X, [Y, Z\\ = [[X, Y]λ, Z\ + [Y, [X, Z]λ}λ, or

Σ a>,(X, ωk(Y, Z)) V + * = Σ o>iK (*. Y),Z)+ ωf (T, ωk (X, Z)) λ' + k,

or

Σ *>,(*, ωk^(Y,Z)) - ω,(ωΛ_,(X, Γ),Z) - ω,(Γ, ωh_,(X9Z)) = 0 .

The terms for J — 0 and j = k just form the six terms of dωk(X, Y, Z),
hence we have:

dωk(X, 7,Z)+ Σ ω,(Z, ωk^(T9Z)) - ωj(ωk^(Σf Y),Z) -

- ω 5 (7,ω f c_,(Z,Z)) = 0. (4.1)

Now, after the pattern found for the case of deformation of homo-
morphismu considered earlier, one would expect to find the second term
of 4.1 to be a multiplicative operation on cochains. However, at first
sight, is has a different form than any we have considered before. We
will now show that it does in fact fit into the same pattern as the unified
theory of such multiplications given in Section II.

Construct a representation Φ' as the "adjoint representation" of Φ.
Explicitly, let V be the vector space of all linear mappings A : G -> G.

For X ζ G,

Φ'{X) {A) = [Ad X, A] - Ad X A - A Ad X . (4.2)
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Let α be the bilinear mapping: V x G -> G defined by:

α(i,I) = i(I).

Then, it is readily seen that α commutes with the action of G via Φ
and Φ'.

Define a mapping β : <7r(Φ) -> CffI-1(Φ') as follows:

If
ω : (Xv . . ., Z r) -> ω(Z1 ? . . ., Xr)

is an r-cochain? then:

β(ω) {Xv . . ., Xr-i) PQ = ω(Zx, . . ., -Σf_i, -ϊ) ,

Le.β(ω)(Xlί...,Xr_1)

is a linear transformation G -> G.

Lemma 4.1. dβ(ω) = β(dω).

Proof. By induction on r. By definition, if r = 0, /3(ω) = 0, dβ ω = 0.
Assume it is true for cochains of degree less than r, and let ω £ C(Φ).

Y J 0(α>) (* ! , . . ., Z r _ 2 ) (X) = ω(Y, Xv . . ., Z r _ 2 , X)

i.e.,

YJβ(ω)=β(Y_ϊω).

Y(β(ω)) (Xlt. . ., I , . , ) (Z) = Φ'(Γ) (/3(ω) (Z1; . . , Z r_ x)) (X) -

-β(ω)([Y,X1],...,Xr_1)(X)

), ω(Xv . .., Xr_v X)] - ω(Xv . . ., Xr_v [Y, X]) -

Z 1 ] , . . . , Z r _ 1 , Z )

= Γ(ω) (X1;. . ., Xr.lt X) = β(Y(ω)) (Xlt . .., Z r _ x ) (Z) ,

i.e.,
Y(β(ω))=β(Y(ω)). (4.3)

Finally then,

Y J (dβ(ω) - β(dω)) = Y(β(ω)) - d(Y J β(ω)) - β Y J jj(iω)

= /9(Γ(o))) - d/9(Γ J (ω)) - |8(F Jdω) .

By induction hypothesis,

rf/5(ΓJω) = /Sti(Γ J ω ) , hence Y }(dβ{ω) - β{dω)) = 0 .

Since this holds for all F ξ G, Lemma 4.1 is proved.
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Suppose now that ω and ω' are elements of C2(Φ). Let us compute:

α(/?(ω'), ω), which is an element of 03(Φ).

α(jS(ω'), ω) (X, 7, Z) = (α(^(X J ω'), ω) - α(|8(ω'), X J ω)) (7, Z)

= (α(jβ(X J ω'), Γ J β ) ) ) - α(Γ J β(ω% X J ω) + α(/?(α/),ω(X, 7)) (Z)

- oc(β(X J ω'), ω(Γ, Z)) - α ( 7 J j9(ω'), ω(X, Z)) +

+ α(ZJ /S(ω'),ω(Z ? Γ))

= β(Xlω') (ω(Γ,Z)) - j8(Γ Jω') (ω(Z,Z)) + j8(Z Jω') (ω(X, 7))

= ω'(X9 ω(Y9Z)) - ω r (7, ω(Z,Z)) + ω'(Z, ω(Z, 7)) .

Then 4.1 can be written as:

dωk + ^ α(0(ω,), ω,_, ) = 0 i = 1, 2, . . . . (4.4)
? = i

With this formula in hand, and the rules we have derived for com-
puting doc(β(cϋj), cok_j), it is now a routine matter to carry through the
KODAIRA-SPENCER "deformation program", as sketched, for example,
in [4] it may be considered as an exercise for the reader.

V. Simultaneous Deformations of Lie Algebras
and their Homomorphisms

As we have seen [2], the INONTJ-WIGNER idea of "contraction" of the
Lie algebra together with its representations suggests the study of the
following deformation problem: Let G be a vector space, and let L be a
Lie algebra. Consider one-parameter family (X, 7) -> [X, Y]λ of Lie
algebra structures on G, together with a one-parameter family Φλ : G -> L
of linear transformation, each of which is homomorphism of the λ-th
Lie algebra on G, i. e.,

Φλ([X,Y]λ)=[Φλ(X),Φλ(Y)] (5.1)

As before, let us expand in a Taylor's series:

j

Φλ(X) = Σ θk(X) λK
k

The cochains ω3- satisfy 4.4.

5.1 now leads to the equations:

Σ 0*(ω,(X, 7)) λ'+* - [0,(Z), θk(X)] λ' + * = 0 ,

or

Σ θfa.tiΣ, 7)) - [Θ,(X), θfc_,(Γ)] = 0 . (5.2)
0
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Suppose we relabel
[X, Y]=[X,Y]0=ω0(X,Y),

Φ{X) = Φ0(X) = ΘO(X).

Following the pattern already established, split off from 5.2 the terms
corresponding to j = 0 and j — k.

Φ(ωk(X, Y)) - [Φ(X), θk(Y)] + θk([X, Y]) - [θk(X), Φ(Y)] +

+ S V K ^ X , Y)) - [θj(X), 0Λ_,(Γ)] = 0 . (5.3)
7 = 1

Our next task is to interpret the first four terms in 5.3 via Lie algebra
cohomology. First, θk is an element of O1(Φ/), where Φf is the representa-
tion defined by:

Φ'(X) (A) = [Φ(X), A] for A ζ L . (5.4)
Then,
dθk(X, Y) = Φ'(X) (θk{Y)) - Φ'{Y) (θk(X))- θk([X, Y])

= [Φ(X)9 θk(Y)] - [Φ(Y), θk(X)] - θk([X9 Y]).

ωk is a 2-cochain with coefficients in the adjoint representation of G.
Φ is a linear map: G -> A which commutes with the action of G via the
adjoint representation on G and via Φ' on A, i. e.,

Φ'(X)(Φ(Y))=[Φ(X),Φ(Y)]

= Φ([X, Γ])

= Φ(AdX(Γ)).

Thus, Φ{ωk) is well-defined as an element of C2{Φ') by the formula:

Φ(ωk) (X, Y) = Φ(ωk(X, Y)) .

The reader may readily verify that it follows from this remark that the
mapping

commutes with the Φ-operator, Lie derivative, and inner product.
Thus, 5.3 can be written as:

(Φ(ωk) - dθk) (X, Y) + Σ ΘAωi.AX, 7)) -

-[0,(*) .0*-i(r)] = o. (δ.5)

We must now interpret the remaining terms by constructing the
appropriate multiplicative structure on the cochains. The fourth term
in 5.5 is easy: Let α' be the bilinear map: L x L -> L given by

a'(A,B)=[A,B].
Then,

α'(0,, β*-,) (X, Y) = (oc(θ}(X), θu_3) - «'(θ3, ek_,
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The interpretation of θj(ωk_j(X, Y)) is more complicated. Following
the pattern used in the last section, let V be the space of linear mapping
of G -> L. A typical element of V will be denoted by E. Construct a
representation Φ" on V as follows:

for X, Y ζ G, E £ V .

Define a linear mapping β': Cr(Φf) -» Or-1(Φ//) as follows:

0'(0) (Zx, . . ., Z r_x) (Z) = Θ(X19 . . ., Xr_1? Z)for X, Σl9 . . .,Xr^ £ G .

One may readily verify, following the pattern established for the similar
mapping β defined in Section IV, that β commutes witd d, inner product,
and Lie derivative. Now, define a bilinear map γ : V x G -> L by the
formula:

Again, it is readily verified that it commutes with the action of G, as
expressed by Φ", Ad G, and Φ'. Then,

is a 2-cochain in O2(Φ/), since j5;(θ^) is a 2-cochain,

KlS'(βi), ω»-ί) (-Ϊ. ^ = V(β'(θ}), ωt.iiX, 7)) = θ/ω^Λ*, 7)) •

Finally, 5.5, the basic "deformation equation", can be rewritten as:
j f c - l 1

Φ(ωk) -dθk+ Σ y(j8'(βi), ωfc_, ) + γ α'ίβy, θ,.,) = 0 . (5.6)

Again, the algebraic part of the deformation program can now be
considered to be in standard form, since the rules for applying it to all
the terms in 5.6 are known.

VI. Study of the First Order Terms of the Deformation Equation

We continue with the problem studied in the last section, and, in
particular, with the main deformation Equation 5.5 or 5.6. Let us write
it out for k = 1

Φ(ω i(X, Y)) = dθ1(Σ, Y). (6.1)

Both sides of this equation are cochains of G with respect to the represen-
tation Φ' of G given

Φ'{X){A)= [Φ(X),A] for X£G,A£L.

Notice that Φ' is a reducible (but not necessarily completely reducible!)
representation, since

Φ'(G)(Φ(G))cΦ(G).

Also, the cochain on the left hand side of 6.1 takes its values in this
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invariant subspace Φ(G) of L. This suggests that we "divide out" by this
subspace, i.e., construct V = L/Φ(G), and define Φ" as the quotient
representation of Φ' in V. Then, if X -> θ[ (X) is the cochain that assigns
the image of Θ1(X) in V, we see from 6.1 that:

i. e., θ[ is a 1-cocycle, hence determines a cohomology class in HX{Φ")
or the "first obstruction" to the deformation problem. This first co-
homology class is typical of the KODAIBA-SPENCER theory.

Let us discuss in an informal way what happens if H1(Φfi)= 0. Then,
we can find an element A± of L such that

for X £ G .

Let us suppose further that Φ is one-one. Then, there exists anelement
Ύx such that:

[Φ(X),Λ]-Θ1(X)^Φ(YX) for X ζ G .
Now,

= [[Φ(X1h A], Φ(X2)] + [ΦiXJ, [Φ(X2), A]] +

+ dθ^X,, X2) - [ΦiXJ, Θ^X,)] + [Φ(X2), Θ^XJ]

- [[Φ(Xi)> A], Φ(X2)] + [Φ&J, [Φ(X2), A]] + Φiω^Xv X*)) -

J, [Φ(X2), A] - Φ(YXz)] + [Φ(Z2), [Φ(Xλ), A] - Φ(YXl)}

hence,
YΆ, r.i = oh (X1, X2) + [Σlt Γ X J - [Z,, Γ X i ] . (6.2)

But, notice now that relation 6.2 is just that which asserts that d
applied to the 1-cochain X-> Yx of Gr with coefficients in the adjoint
representation of G is just ωv i. e., ω1 is a cohomology. We know the
interpretation of this: The one parameter family λ-> Φλ of homo-
morphisms G -> L can be changed to λ -> δλ = Φλ Tλ, where Tλ is a one-
parameter family of invertible linear maps: G -> G, so that the cocycle
of type ω± attached to this new family λ -> δ^ is zero. The new cochain
of type θλ is now a cocycle itself, hence determines a cohomology class in
H1^'). Again, since the pattern of further development should be clear,
we wull not carry the analysis further at this point.

VII. Deformation of Subalgebras of Lie Algebras

Suppose L is a Lie algebra, and G is a given subalgebra of L. We want
to study possible deformations λ-> Qχ which assign to each value of λ a
subalgebra of λ9 reducing to the given one at λ = 0. The situation may
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be more general than the one considered previously, in the sense that the
dimension of these subalgebras may not be the same, hence one cannot
set up a common isomorphism between their underlying vector spaces.
Yet, to apply our "Taylor's series" methods, it is necessary to para-
metrize the problem in some convenient way. We can do this by using
the "dual" method of parametrizing subspaces, namely assuming that
there is a one-parameter family λ -> Pi of linear projection operators
L -> L such that:

a) P\ = Px,

b) Pι(L) = GΛ, hence, since Gλ is a subalgebra, (7.1)

c) Pλ[Pχ X, Pλ Y] = [Px X, Px Γ] for X, Y £ L.

Having described the problem in this way, we are free to use the standard
methods, i. e., expand Pλ in a Taylor's series, interpret the individual
terms as cochains, then interpret the conditions on the cochains resulting
from 7.1 in terms of multiplicative structures on the cochains.

Pχ= Σ p> K,
? = 0

where each Ps is a linear map: L -> L.
(7.1) a) gives the condition:

Σ i * ΣPiλi, or

Jc

P P P k , k = O9l9...9 o rΣ

PPk+PkP-Pk= £ Pi P*-i (7-2)

Consider 7.1 b):

Σ Pi[P*X>Pι7]λ' + k + ι= Σ [PiXiPjcYlV + K or
i,k,l j,Ίc

Σ PdPΛX)>Pι-i-H(Y)]= Σ [PjX,Pi-*(Y)h 2 = 1 , 2 , . . . , or

P[P(X),Pι{Y)]+ Σ Pj[Pk

or

P[PX,Pk 7] + P[PkX,P Y] + Pk[PX,P Y]- [PX,Pk Y]-

-[PkX,PY] (7.3)

*
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The first step is to consider the left hand of 7.3 separately as a function
of X and Y9 which we define as θk(X, Y). Notice then that:

θk(X, Γ) = 0 if PX = 0= P Y (7.4)

θk(X, Y) = P[PkX, Y] - [PkX, Y] = (I-P)([Y, PkX]) (7.5)

if P X = 0, P Y = Y (I = identity map of L -> L).
Now, let V=(I - P) (L), i. e., V = {X ζL: P X = 0}, identify V

with L/G, and define Φ as the representation of G in V resulting from
passing to the quotient via the adjoint representation of G in L. Then

Φ(X){Y) = (I-P)[X,7] for YζV. (7.6)

We can now rewrite (7.5) as:

θk(X, Y) = Φ(Y) (Pk(X)) for X ζ V, Y ζG . (7.7)

Now, work out (7.3) for X, Y ζ G. Put:

a>k(X) = (I - P) Pk{X)

Interpret ωk as a 1-cochain of G with coefficients in F. Then,

θk{X, Y) = P[X, Pk Y] + P[PkX, Y] + Pk[X, Y] - [X, Pk Y] -

-[P*Z, F].

(I - P) θk(X, Y) = ωk([X, F]) - Φ(X) (ωk(7)) + Φ(Y) (ωk(X))

= -dωk(X, Y)

for X, Y ζ G (7.8)

P θk(X, Y) = P Pk([X, Y]) = ωk([X, Y]) for X, Y ζ Q . (7.9)

(7.8) is the key identity linking the deformation equations (7.3) with
cohomology. {dωk is of course the coboundary of the cochain ωk with
respect to the representation Φ of G in V.)

VIII. Deformations of Complex Structures in Manifolds

There is a close relation between the deformation-of-subalgebra
problem and the SPENCER theory of deformations of pseudogroups on
manifolds [11]. This way of developing the theory should provide a
realistic algebraic model for D. C. SPENCER'S monumental work, and
provide a unifying framework for many differential-geometric problems.
Since the deformation of complex structures has served as a model for
most of the work of KODAIRA and SPENCER, it will be instructive to
study it from our point of view before proceeding further.

At this point we will have to use the theory of manifolds, for which we
refer to HELGASON'S book [1] which also contains, in Chapter 8, a short
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exposition of the notion of complex manifold. (All manifolds, maps,
tensor-fields, etc., will be of differentiability class O°°.) Let M be a
manifold. F(M) denotes the ring of real-valued functions on M. V (M)
denotes the set of vector fields in M: Each element X ζ V(M) is a deriva-
tion / -> X(f) oίF(M). V(M) is both a Lie algebra over the real numbers
(relative to the Jacobi bracket operation (X, Y -> [X, Y]) and a module
over F(M), i. e., if / ζF(M), X £ V(M), fX is the derivation /' -> fX(f')
of F(M). The relation between these two types of algebraic structures
on V (M) is given by the following rule:

[Σ,fY] = Σ(f)Y + f[Σ,Y] for f ζF(M), X, Y ζV(M).

A complex analytic structure on M is defined by an F (M)-linear map,
typically denoted by /, of V{M) -> V(M) such that:

a) J 2 = — (identity),

b) [X, Y] + J[JX,Y] = J[X, JY]+ [JX, J7]. (8.1)

Such an operator can be used to define the notion of complex analytic
function on M a complex-valued function / + i g is complex analytic if

X{f) = JX{g) for all XζV(M).

(For example, consider the case M = R2, i. e., the space of two real

variable x and y. -=— and -j— are vector fields. J is defined by

J \dx) dy >J \dy] dx

These equations are just the Cauchy-Riemann equations.)
This differential-geometric version of the notion of complex manifold

emphasizes the relation to the underlying "real" manifold structure, and
its similarity to other sorts of differential geometric structure, such as
Riemannian manifolds, homogeneous spaces, sympletic manifolds, etc. In
this picture, however, the integrability conditions (8.1) are in a rather
unmanagably complicated form. As is customary in this subject, we
introduce complex-valued functions and vector-fields on M in order to
simplify it. F(M, C) is the ring of complex-valued functions om M, i. e.,
F{M, C) =F(M) + iF(M). V{M, C) is the set of derivations oiF{M, C),
which is in fact, just the "complexification" of V(M), i. e.,

V{M,C)= V(M) + i V(M) .

Consider a J satisfying (8.1). Extend it to an F(M, (7)-linear map of
V(M, C) -> V(M, C) by the rule:

J(J{M) + i V(M)) = J(J{M)) -I- ί J(V(M)) .
Put:

P — -ψ(I + i J) (I = identity operator) .
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Then:

pa = i(/-J»+2iJ) = y(/ + ijr) = P (8.2)

i. e., P is a projection operator V(M, C) -> V(M, C).
Notice that:

P* (the complex conjugate of P) = y (J - i J) = I - P (8.3)

i. e., P* is the projection operator on the complementary subspace to
P(V(M, O).

The advantage of introducing these notions is that the integrability
condition (8.1) b) takes the very convenient form:

P(V{M, C)) is a subalgebra of V(M, C), i. e.,

P[PX,PY]= [PX, P Y] for X, Y ζ V(M, C) . (8.4)

Conversely, an operator P satisfying (8.2—4) defines a complex
analytic structure on M: Define J = —i(2P — I), and verify reality
that (8.1) is satisfied.

Of course, a deformation of a complex structure on M would be a one-
parameter family λ -> Jχ of J-operators, each satisfying (8.1), reducing
to the given one at λ = 0. Alternately, we can consider it as a one-
parameter family λ -> Pλ of F(M, (7)-linear operators: V(M,C)->
-> V{M, C), satisfying (8.2—4) for every λ, reducing to the given P at
λ — 0. Hence, we are in a special case of the general theory sketched in
the last chapter:

L = V(M, C), G = P(V{M, C)), V=(I - P) (V(M, C)) = P*(V(M, C))

Φ(X)(Y) = P*[X,Y) for Z ζ G , F ζ F .

Notice now that both G and V are stable under multiplication by
F(M, 0), i. e., both are F(M, C)-modules. If

Σ
k

with each ωfc interpreted as a 1-cochain: G-> F, notice that each ωk is
F(M, C)-linear. This suggests a study (that we will begin in Section 9)
from a purely algebraic point of view of Lie algebra cohomology with an
additional module structure imposed. We can immediately check that
dωk is also F{M, C)-linear:

Γ) (ωk(X)) - ωk(X, f Y)

= P*[X, P* Pk(fY)] - P*[fY, P* Pk(X)] - P*Pk[X,Y]

= X(f) P* P* Pk{Y) + P* Pk(X) (/) P*(Γ) - X(f) P* Pk(Y) +

+ fdωk(X, Y) = fdωk(X, Y).
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This suggests that, in constructing cohomology groups, we restrict
ourselves to cochains that are F(M, O)-linear. They, in turn, can (in
accordance with the general principles of differential geometry [1]) be
interpreted as tensor-fields on M. The corresponding cohomology groups
are called the Dolbeault cohomology groups for the complex structure
on M.

Let us look for a geometric interpretation for the 0-cycles, i. e., — the
elements X £ V such that:

Φ(G)(Z) = 0, i.e., [G,Z]cG.

If Z satisfies this condition, so does X = -^ (Z + Z*) X is a real vector

field (i. e., in V(M) itself), and is, in fact, just the "real part" of the
complex vector field Z. (Z* denotes the complex conjugate: If Z = X +
+ i Y, with X, Y 6 V(M), then Z* = X - i 7.) Z* also satisfies:

From this, one sees that AdZ commutes with P, hence also with J, i. e.

[ ί , J Γ ] = J [ I , Γ ] for YζV(M).

This says that X is a vector-field generating a one-parameter group that
preserves the complex analytic structure, i. e., is what one calls (in the
theory of complex analytic manifolds) a holomorphic vector field. They
form a Lie algebra, that we denote by S. Thus, we have a sequence of
vector spaces.

S is the Lie algebra of the "pseudogroup" of all complex analytic trans-
formations of M. This sequence (called the "Spencer resolution" of the
pseudogroup) is exact, (i. e., the image of each homomorphism = the
kernel of the succeding one) if and only if the Dolbeault cohomology
groups vanish.

We will leave discussion of this well-known (to mathematicians)
example at this point, since we have merely meant it as "geometric"
motivation for the general treatment in the next section.

IX. Lie Algebra Cohomology and the Spencer Resolution

Consider a geometric structure on a manifold M which leads to a Lie
algebra S of vector fields on M. The Spencer resolution construction gives
a sequence Ev E2, . . . of vector bundles over M, together with a sequence
D{: Γ(Ei) -> Γ(Ej+1) of linear maps, ί = 1, 2, . . . (Γ(^) is the space of
cross section of the £-th bundle) such that:
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a) Γ(^)=7(2f).
b) S = kernel Dv

c) Ώi+1 Dt = 0, i. e., image Όι C kernel Di== v i = 1, 1, . . . .
Thus, we have a sequence

0 -> £ -> V (M) -

The main problems of the theory are, first, to construct the resolution,
then to prove that under certain ' 'convexity" conditions on if that the
sequence is exact, i. e., image Όι = kernel Di+ι, i = 1,2, . . . . We will
now present an algebraic construction that might serve as a model for
some of the ideas.

Suppose again that G is a subalgebra of a Lie algebra L, and that
V = G/L. Let Φ be the representation of G in V obtained by passing to
the quotient via the adjoint action of G in L. Let Cr(Φ) be the r-cochains
of G with coefficients in V, r = 0, 1, 2, . . . . Let d: Cr(Φ) -> CT+1(Φ)
be the coboundary operator. Let Zr(Φ) be the cocycles Cr(Φ), i. e., the
kernel of d. Then, of course, we have a sequence

^C2{Φ)^ . (9.1)

It is exact if and only if all cohomology groups of dimension JΞ> 1 are zero.
Now, we have:

Theorem 9.1. Let N(G) be the normalizer of G in L. Then Z°(Φ) is
isomorphic to iV(G)/G = S, hence, we have an exact sequence:

0->S-> F—^CMΦ)->•••• (9.2)

The proof should be obvious. If Z ζ L, the image of Z in V = L/G is in
the kernel of d if and only if

i. e., Z is normalizer. Further, the quotient map iV(G) -> V has G as
kernel q.e.d.

Now we may inquire under what condition C°(Φ) = V itself can be
made into a Lie algebra so that the map S -» V of 9. 2 is a Lie algebra
homomorphism. We shall give one such condition.

Suppose that L is, as a vector space, the direct sum G Θ G' of sub-
algebras, i, e., V can, as a vector space, be identified with G'. We must
find the condition that the map N(G)/G -> G' is a Lie algebra homomor-
phism.
Suppose that Z, Z± £ N (G), with Z = X + X', Z2 = X1 + X[ X, X1 £ G,
and X', X{ g G', Now

[Z, XJ = [Z, ZJ - [Z, XJ] ζ G,

[X, ZJ = [Z, ZJ - [X', ZJ ζ G , hence

[ Z , X ί ] - [ X ' ^ K G . (9.3)
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Then,

1 ] - [ Z , X ί ] - [ Z ' , Z 1 ] ζ G , or [Z, Z{\ - [Z, X[] £ G . (9.4)

Now, we have:
Theorem 9.2. Suppose N(G) = Q® (N(Gt) r\ N(Q')). Then, the map

S = iV(G)/G -> G' = C°(Φ) is a homomorphism.
Proof. Suppose that Z, Zx £ JV(G) n #(G')
By (9.4), projection of [Z, Zx] on G' = projection of [Z, X{] on G' = ,

by (9.4), the projection of [X',ZX] on G'. Now, [X',^] belongs to G',
but also equals [X', XJ + [Xf, X[]. Note that:

[X', Xx] = [X', Z{\ - \X\ X[] ζ G' = [Z, X,] - [X, XJ ζ G .

Since G r\ G; = (0), [X', XJ = 0, i. e.,

[(projection of J^(G) r\ N(Gf) on G), projection of N(Q) r\

on G'] = 0 . ( 9 5 )

This implies that projection of [Z, Z±] on G' = [X;, X(], which shows
that, with the identification C°(Φ) = G', the map S -> G' is a homo-
morphism.

X. Lie Algebra Cohomology with an Associated Module Structure

In the last section we have abstracted out one feature of the complex-
manifold theory that has general algebraic validity. Now, we will present
another general feature.

Suppose that G is a Lie algebra, and also a module over the ring F.
We will denote elements of G by X, elements of F by /. Suppose that to
each X £ G we are given a derivation / -> X (/) of F, and that:

[X,/7] = X(/)7 + /[X, 7 ] , for X, 7 £ G, / ζF .

Suppose that X -> Φ (X) defines a representation of G by linear trans-
formation on a vector space F, that V is also a module under F, with

>), (10.1)

for XiG,v£V.

Let O£ (Φ) be the submodule of Cr (Φ) (the r-eochains of G with coefficients
on F) consisting of those ί -cochains which are also -F-nrultilinear, i. e., the
functions Xv . .., Xr ->• ω(Xx, . . ., Xr) that satisfy:

ω(fXv Xj,. . ., Xr) = f ω(Xv . . ., Xr)

for /e-P.ZL . . X . e G .

As a consequence of 10.1, one proves easily that:

X(fω) = X(f)ω + fX(ω) for ω ζ(7r(Φ),/ζJ? (10.2)

(X(ω) denotes the Lie derivative of the cochain ω).
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Theorem 10.1. If ω i Cr

F(Φ), X £ G, then X(ω) £
Proof. ΈoτfζF,

X(ω) (fXv .. .,Xf) = Φ(X) (ω(fXv ..., Xr)) - ω([X,fXx],.. .,Xr) - . ..

1? . . ., [X, X,]) = X(/) ω(Z1? . . ., Xf) + / Φ(X) (ω(X1? . . ., Xr))

Xl5 . . ., Xr) - /ω([X, XJ, . . ., Xr) -

fω(Xv...9 [X, Xf]) = (/X(ω) (Xl9. . ., X,)) .

Theorem 10.2.d(<7£(Φ))c<?£+1(Φ), r = 0, 1, . . . .
Proof. We proceed by induction. For r = 0: ω ζ C%{Φ) means ω ζ V

ίω(/X) = Φ(/X) (ω) = / Φ(X) (ω) - / rfω(X) .

Assume it is true for forms of degree < r

dω(X,F, Xl9 . . ., Xr) = (X_]dω) (fXv . . ., Xr)

= X(ω) (/Xx, . . ., Xr) + ί (X J ω) (/Xl5 . . ., Xr)

= /X(ω) (Xi, . . ., Xr) + / ί ί ( I J ω) (X^ . . ., Xr)

(by Theorem (10.1) and the induction hypothesis),

= /dω(X,X1,...,X,) q.e.d.

Thus, we can use cochains that are jF-multilinear to construct a
cohomology group. They are obviously the appropriate group to discuss
deformation of homomorphisms, subalgebras, etc., that are ^-linear.

Notice the following way of denning an interesting cohomology
situation: Suppose G is a Lie algebra that is also an .F-module, with L
also acting as derivations in F, as before. Suppose that G is a Lie sub-
algebra of L that is also a submodule of G. Then, F = G/G is an .F-module,
and the cohomology theory sketched above can be used.

XI. Deformations of Complex Submanifolds of Complex Manifolds

Now, we proceed to abstract out of KODAIRA'S work [3] on deforma-
tion of complex submanifolds an interesting algebraic structure. Let M
be a manifold, J: V{M)-> V(M) a tensor-field (i.e., an _F(ilf)-linear
map). Satisfying (8.1). For p ζ M, let Mv be the tangent space to M at p.
Each vector field X ζ V(M) determines a tangent vector ar p, i. e., an
element of Mp, which is its "value" at p, which we denote by X(p).
J has a "value" at p also, which is a linear map (which we also denote by
J of Mv -> MP such that J 2 = — (identity). Then, as definition,

Let N be a submanifold of M. For each point p of N, its tangent space,
Ng, is a subspace of Mv. J'(Nv) may or may not be equal to NP. If it is,
11 Commun. math. Phys., Vol. 5
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for each p ζ N, then obviously N inherits a J-tensor. If this is so, it is
readily verified that the "integrability condition" (8.1) is satisfied on N
also, i. e., N has a complex manifold structure.

Now, we can consider "deformations", i. e., a one-parameter family
λ-> Nλ of complex submanifolds of M. The "trivial" deformations are
those of the form

where λ -> Φχ is a one-parameter family of transformations of M that
preserve the complex-analytic structure on M, i.e., that are complex -
analytic transformations on M.

Let us formulate this more algebraically. Suppose F (M, N) consists of
the functions of M that zero on N. Then, F (M, N) is an ideal in the ring
F{M), &nάF(N), the functions on N, can be identified with the quotient
τwLgF(M)IF(M, N). A vector field X ζ V is tangent to N if:

X(F(M,N))cF(M,N).

Thus, the action of such an X by derivation on F(M) induces an action
by derivation on F(N)=F (M)jF (M, N). This defines a vector field on N,
which is just the induced vector field on N. Let V(M, N) denote the set
of these vector fields that are tangent to N. Then, the condition that N
be a complex submanif old is

J(V(M, N))cV(M,N) .
Notice that

[V,(M,N),V(M,N)]cV(M,N),

i. e., V{M, N) is a subalgebra of V(M).
Also V(M, N) is &Ώ.F(M)-submodule of V(M). Thus, a deformation of

submanifolds, λ -> Nλ (independently of the condition that each sub-
manifold be complex), can be considered as a deformation λ -> V{M, Nλ)
of a subalgebra of V(M).

Now, we can handle deformations of complex submanifolds. As before,
"complexify" F{M) and V(M) to F(M,C) and V{M,C). Put P
= 1/2 (/ + i J): F {M, N) and V (M, N) can be complexified to F (M, N, C)
and V{M, N, G). Then, P(V{M, N, C)) is a subalgebra of P(V(M, C)).
A deformation λ -> Nλ of complex submaifolds leads to a deformation
λ -> P(V{M, Nλ, G)) of subalgebras of P(V(M, G)).

We have carried the analysis sufficiently far to make it clear that the
algebraic formalism sketched above applied to this situation also.
However, there is a new feature: We have a Lie algebra L(= P(V(M, 0))),
a subalgebra Gr(= P(V(M, N, C)))> and we count those deformations
λ-> Gλ of G as "trivial" which are obtained by acting on G by a one-
parameter family of automorphisms of L taken from a given group of
automorphisms. In this case, the Lie algebra of the group of auto-
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morphisms is S, the normalizer of P(V(M, C)) in V(M, C), modulo
P(V(M, C)) itself, i. e., the group is the group of automorphisms that
is induced by the complex analytic transformations of M on V(M, C).
This, is a slightly more general deformation problem that is considered
here or in RICHARDSON'S paper [10], but the same methods apply to it:
We shall return to this in another paper.

XII. Deformations that are Linear in the Deformation Parameter

Let us turn to another problem that is closely related to the "multi-
plicative" structure on the cochains, namely the problem of deciding
when a given deformation is equivalent to one which is linear in the
deformation parameter. (For example, the "Gell-Mann formula" type
of analytic continuation of Lie algebra representations [2] leads to such
types of deformations, in a very natural way.) Since we will only begin
this discussion in this paper, we will consider the simplest case, the
deformation of Lie algebra homomorphisms.

Let L and G be Lie algebra, and let Φ: G ->L be a homomorphism
from G to L. Let V be the underlying vector space to L, and let Φ' be the
following representation of G by linear transformation in L:

Φ'(X)(Γ)=[Φ(X), Γ] for XζG, YζL.

Let ω ζ O2(Φ'), i. e., ω is a linear map G -> L.
Consider

Φλ{X) = Φ{X)Λ- λω(X) for Z ζ L .

Then,

ΦA([X, 7]) = φ([X, 7]) + λω([X, 7]) [Φλ(X), Φλ(Y)}

= [Φ(X) = λω{X), Φ(Y) + λω(Y)]

= [Φ(X), Φ(Y)] + λ[ω(X), Φ(Y)] + λ[Φ(X), ω(Γ)] + λ2[ω(X), ω(7)]

Now, let α : L x L -> L be the map α(X, 7) = [X, 7]. Then α induces a
multiplication

C (Φ') x CR(Φ')-+Cr+R(Φ')

on cochains, as described above.

α(ω,ω)(X, 7) = [ω(X), ω(7)] .

We see that Φλ is a homomorphism for every λ, if and only if:

dω = 0f (12.1)

α(ω,ω) = 0. (12.2)

Suppose now that a given ω^0 1(Φ /) satisfies (12.1), but not (12.2).
Then (12.1) says that ωx is a cocycle, hence determines a cohomology
class that we denote by ώv Can we change ωx within its cohomology class
11*
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so that 12.2 is also satisfied ? Now, α induces, as we have seen, a multipli-
cation

H1{Φt) x H1{Φf)-^m{Φ') .

Thus, a necessary condition is that

α(ω, ω) = 0 .
Now, it is easy to see that it is not always a sufficient condition.

However, we can add another condition which makes it also sufficient,
and that is satisfied in many examples.

Theorem 12.1. Suppose ω ξ_Z1(Φ') satisfies

α(ω,ω) = 0. (12.3)

Suppose also that Z1 (Φ) can be split up as a direct sum

dC°{Φ)@ W1

ivhere W1 is a sub space of Z1(Φ) satisfying:

oc{W\ W1) ΓΛ dC^Φ') = (0) . (12.4)

Conclusion: If ω is the element of W1 which is the same cohomology

class as ω then Φλ defined by:

is, for each λ, a homomorphism of G into L.

The proof is trivial: (12.3) says that α(ω, ώ) = α(ω, ω) = 0, i. e.,
α(ω', ω') £dC2(Φ'), while (12.4) then implies that α(ω', ω') = 0. Then,
(12.1—2) are satisfied with ω replaced by ω', whence the conclusion.
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