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Abstract. A scheme of the construction of the $-matrix according to the per-
turbation theory which is free of the ultraviolet divergences is suggested by the
example of the one-component scalar quantized field. The causality is violated in
small space-time region. The effects which are due to the causality violation at
large distances are described by very high perturbation orders, and are therefore
very small in the framework of the perturbation theory.

1. Introduction. The Macrocausality Condition

As is well known, the main trouble in the quantum field theory due
to the perturbation expansion of the S -matrix in the usual Lagrangian
of the system quantized fields is to remove ultraviolet divergences. Many
attempts have been made to overcome this trouble by refusing the
locality principle, as has been first suggested by VATAGIN [1]. However
there are many difficulties in the non-local quantum field theory. It
seems to us that at present it is far from being completed1.

The present paper is also an attempt to remove the ultraviolet
divergences by introducting non-locality into the interaction Lagrangian.

One of the main difficulties in constructing the non-local quantum
field theory appears to be the formulation of the macrocausality of the
$-matrix. Though there are intutive considerations that the acausal
signal should damp rapidly with increasing time or distance, the require-
ment on the $-matrix behaviour has not yet been formulated sufficiently
clearly, as it has been done in the case of the microcausality [3].

It seems to us that a reasonable macrocausality condition imposed
on the S- matrix would be the following generalization of the micro -
causality condition [3]. Let φ(x) be a field operator. Then the $-matrix
should satisfy the following condition2

0 (1.1)
v '

.
δφ(x) \dφ(y)

1 See a review paper on the non-local quantum field theory [2].
2 From the drivation of the causality condition in [3] it follows that if SS+

outside the mass shell in the causality condition there appears S-1 rather than
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outside the regions G and Gl where

G: x0 ^ Ϊ/Q, (x — y)2 > 0 causal region (1.2)

GI\ — I2 ^ (x — y)2 Ξj I2 non-causal region . (1.3)

Here I has the meaning of an "elementary" length, x2 = x% — x2.
An additional requirement should be imposed so that expression (1.1)

in the region GI would be proportional to relativistically invariant
distributions A l (x — y) which would possess the following property.
They must transform any functions f(x) different from zero in some
restricted space-time region Gf into functions F(x) = f dy Al(x — y) f (y)
different from zero only in a somewhat larger restricted space-time region
GF = Gf -f δ Gf. The region δ Gf should be restricted and completely
located inside the region Gfl such that x ζ Gfl, if — I2 ^ (x — y)2 ^ I2

where y 6 Gf. The shape of this "difused" region GF should depend only
on the behaviour of the function / (x) in the region Gf.

Such a definition of macrocausality seems to be rather satisfactory
since it is relativistically invariant and free from the usual objections
that the dependence of expression (1.1) on the interval s= (x — y)2

outside the causal region G (1.2) postulates the existence of non-causal
signals whatever large the distances would be.

As Λvill be shown in what follows such distributions exist. However,
Λve have not succeeded in satisfying completely the macrocausality con-
dition formulated. It turned out that in expanding the $ -matrix in the
coupling constant the non- causal region Gl enlarges with increasing per-
turbation order and in the n-ih order reaches the value G(n_l)l. This
means that within the complete power series the $-matrix does not
satisfy, strictly speaking, the causality condition formulated.

However, from the physical point of view the problem may be for-
mulated in such a way that the degree of the causality violation would
satisfy the usual requirements imposed on non-local theories. Indeed,
using the Lagrangian of the quantized field system, we have to construct
the expansion the $-matrix in the small coupling constant. Stress that
we are interested only in the perturbation series, nothing can be said
about the properties of the series as a whole in the framework of the
present day methods. Therefore it may be required that causality viola-
tions at macroscopic distances described by higher perturbation orders
be negligibly small. Usually in the non-local theory one demands that
the non-local signals damp sufficiently rapidly as a function of time or
distance, e.g. like e~At where Λ is the cutoff momentum. In the case of
weak interactions (where Λ is usually about ~ 100 GeV) the effect of the
non- causal signal is extremely weak, namely ~e~1()U, if times are of the
order of atomic size, i.e. t ~ 10~18 sec ~ 1 ev"1. Let us look what
happens in our scheme. We consider again weak interactions. The quan-
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tity 6rZ~2 is a small parameter of the perturbation series, G being the
weak interaction constant, I is the elementary length. It is natural to
assume that Gl~2 < 1. Let e.g. Gl~2 be equal to e"1. The causality
violation at distances of the order of the atomic size will be described

T
in the n-ih perturbation order, where n — γ- ~ 1011 if as before we choose

r ~ 10~8 cm ~ 1 ev"1 and I ~ 10~2 Gev"1. This means that the magni-
tude of the non-local effect at distances of the order of atomic size is
about ~ (Gl2)n ~ e~1Qίί. In other words, the effect is as small as in the
usual non-local theories which are worth studying,

Thus, from the physical point of view the suggested formulation of a
non-local theory for interactions with small coupling constant is, in our
opinion, admissible. In the present paper we consider an one- component
scalar field, for simplicity. The generalization of the suggested procedure
to the fermion field is not difficult. In § 2 problem is formulated. In § 3
a class of non-local operators is chosen and in § 4 the properties of the
classes of test functions and distributions are studied. § 5 is
devoted to the construction of the perturbation series for the ^-matrix.
It is shown in § 6 that the /S-matrix is unitary and in § 7 that it satisfies
the causality condition formulated.

2. Formulation of the Problem

We consider an one-component scalar field φ(x) which is described
by the interaction Lagrangian of the form :

&(x) = &0(x) + &I(x). (2.1)

Here 3?0(x) is a usual free-field Lagrangian, «£/(#) is the interaction
Lagrangian of the field φ(x). In the case of the usual local field theory
the interaction Lagrangian is a polynomial of the field φ(x), e.g. &ι(x)
= gφ*(x).

Consider the following problem. In the interaction Lagrangian we
replace the field φ (x) by the field Φ (x) defined as follows :

Φ(x) = fdyA(x-y) ψ(y) = A(Πa) ψ(x] , (2.2)

A(x-y) = A(aa)δM(x-y), (2.3)

A / x c a2 a2 a2 a2

where A (Πj is an operator ^^χ = j^ — ̂ -j^ — j^

We make the following transformations. The S- matrix can be formally
written in the form of the T- product :

S=T exp{—i f dx j£?j (x)} (2.4)

where JδPj (x) is now the polynomial of the field Φ (x), e.g. Jδfj (x) — g Φ4 (x) .
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We expand the $-matrix in a power series in the coupling constant and,
according to the Wick theorem, we pass to the N- product of the field
operators Φ(x) where the chronological pairing of the operators Φ(x)
implies the so-called " Wick- T'-product"

De (x-y) = Φ(χ)Φ (y) = A (πβ) A (π.) Ψ^Ψ (y)
I

A (x — y] __ -Δc(X y)-

Thus we obtain the ordinary perturbation series with the only difference
that the usual causal functions of the scalar field are replaced by the
function (2.5).

Our problem in the following. Is it possible to find the operators
A (Π) so that the functions [A ( — £>2)]2 play the role of the cutoff function
in the perturbation series, i.e. the integrals corresponding to any Feynman
graphs converge and the ^-matrix obeys unitarity and causality con-
ditions ?

3. Properties of the Operators A (Π)

Let us study the properties of the operators -4(Π) We assume that
the operators A (Π) can be represented as an infinite series in powers Π *•

w = 0

Then the Fourier transform of this operator is written as:

oo

•F z = — p* . (3.2)

What requirements the function A (z) should obey ? First of all note that
A (z) treated as a function of the complex variable z = —p2 must be an
entire function. Otherwise any singularities of the function A (z) for
finite z will lead to the appearance of some additional non-physical
singularities in the physical process amplitudes. This will mean that the
^-matrix is not unitary.

Thus, the function in eq. (3.2) is an entire function. We distinguish
three cases:

i
W lim \an

 n = 0 ,

(Π) Πϊn \an\ή = const < oo, (3.3)
n—>oo

(ΠI) Πmk,F = co.
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In case I the functions A (z) are entire functions of the order γ < -^- ,

i.e.

\A(z)\«?\*\γ, y < y , (3.4)

where a is a positive number. The example of such functions is the
function

According to the theory of entire functions (see e.g. [4]) it is known
that for these functions there is not any direction in the complex plane
z, along which they could decrease. Consequently, they cannot play the
role of the cutoff functions and in this case it is impossible to make the
perturbation theory finite.

On the other hand, it can be shown by extending the results of the
MAIM ANN [5] paper to a relativistic case that the operators A (Π) with
the coefficients an obeying condition (3.3.1) are local. Thus, this means
that it is impossible to construct a perturbation theory without ultra-
violet divergences, introducing into the interaction Lagrangian instead
of φ(x) the local field Φ(x).

In case II the functions A (z) are entire functions of the order -~- , i.e.

\A(z)\ rg e*YWΓ . (3.5)

Such functions may have only one direction in the complex plane along
which they may decrease. This is just the case which will be discussed
below.

In case (III) the functions A (z) are entire ones the order of which is

higher than-^- , i.e.

\A(z)\ ^ eh^ (3.6)

where h(\z\) is a positive function satisfying the condition h(\z\) >
JL

>a\z\2 at |z| -> TO for any a > 0. Such functions may have some regions
where they decrease when \z\ -> oo so that they may be chosen as the
cutoff functions for the construction of a finite unitary perturbation
theory. However it may be shown that the field operators Φ(x) are no
longer local, i.e. the behaviour of the operator of the field Φ(x) at the
point x = 0 is determined by the behaviour of the field operator ψ (x)
over the whole a -space. In other words, the differential operator -4(Π)
in (3. 3. Ill) is, in fact, an integral operator whose kernel differs from zero
over the whole a -space. Therefore this theory would not satisfy the
causality condition.
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4. The Class of Test Functions and the Distributions

We consider the distributions

Aλ(x-y} = Aλ(Πx}δ^(x-y} (4.1)

for which the operator Aλ(Π) of the type (3.III) can be written in the
form

exp (<ρ0-^ + β^[)

(4.2 a)

or Aλ(Π] = f d*ρ α(ρ2) exp
ρ 2 <A 2

(4.2 b)

o
Here ρ is an Euclidean four- vector ρ2 = ρ§ + ρf -f ρ| + ρ|, α(ρ2) is an
integrable function of ρ2, J^z) is the Bessel function, λ is a parameter
having the meaning of the "elementary" length, as will be seen below.

In what follows we say that the operators ^(D) belong to the type
(A) or (B) if they are represented in the form (4. 2 a) or (4.2 b) respectively.

We write the operators (4.2) in the momentum representation

Aλ(-?) = ( 2 π ) * f d β β * a ( β * ) ^^/^ , (typeA), (4.3a)

}-9 (typeB). (4.3 b)
o r^

We note that if the operator ^U(Π) belongs to type (A) then the
function Aλ(—p2) decreases at p2 ->—oo and increases at p2 ^ + 00. If
the operator Aλ(\3) belongs to type (B) the function Aλ(—p2) decreases
at p* -> + oo and increases at p2 -> —oo.

Now let us investigate the properties of the class of test functions.
This class is denoted by D and the class of distributions by D''. First of
all we require that the test functions f(x) = f ( x 0 , x) = f ( x 0 , x^ x2, #3) be
reals and decrease at infinity. The following functional must be deter-
mined unambiguously in the class of test functions

/
/ 7) 7\ \

& ρ a (ρ2) exp ̂  ρ0 -̂ - + ρ ̂ j / (x) ^A a)

= J fρ α(ρ2) f(xQ + iρQ, x + ρ) , (type A),

(Aλ9 /) = / d*ρ α(ρ2) f(x0 + ρ0, x + iρ), (type B) . (4.4b)
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We require that the functionals (Aλ, /) in (4. 4 a) and (4.4 b) should be
unambiguously determined in any Lorentz frame of reference and for
any value of the parameter λ. Then the class of test functions must
consist of entire analytical functions f ( z 0 , z1} z2, 23) with respect to each
argument ZQ, z1? z2, z3.

Thus we shall assume that the class of test functions consists of the
entire functions f(z) which decrease along any direction in the s-plane
outside the region \Rez < d where d is a certain number, i.e.

lim zf(z) = 0 when |Res| < d . (4.5)
Z— >oo

We give the example of such a function

CO

du Sinuz1 Γ
1 (z) = — J

Here f(z) =0 \—\ in the range |Rez| > — at z -> oo. We give a final

definition of the class (D) of test functions :
1 . Each / (x) ζ D is an entire analytical function with respect to

each its argument x} and satisfies the condition (4.5) where d depends
generally speaking on the function f(x).

2. Each f(x) ζ D is real on the real axis.
3. The sequence of the functions fn(x) ζD converges to zero in a

certain region G if all functions of the sequence tend uniformly to zero in
this region.

For a further consideration we have to know the local properties of
the distributions Λλ(x — y). To determine the local properties of the
distributions it is necessary to have the test functions localized in a
certain bounded region of the a -space or simply at any point. Such func-
tions are absent in the class D. However, we can choose the sequence

{fn (x> y}} so that each fn (x, y) belong to D but the limiting function

f(x,y)= lim f n ( x , y ) (4.6)
n— >oo

no longer belongs to the class D and vanishes at all points x Φ y. If, in

addition, the functions fn (x, y) are normalized to the condition

f#xfn(x,y) = l (4.7)

then the sequence introduced gives the representation of the δ -function
in D. As an example of such a sequence we choose

/, (x, y) = /, (x - y} = 77 JL /, ΞL~- (4.8)

where v implies four independent positive parameters v0, vl9 v2, v3 with
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respect to each xj and /3 £ D and satisfies the condition (4.7). Then

limfv(x-y) = δ(x-y). (4.9)
v->0

Let us consider the sequence

g,(*-y) = f <Vx' Aλ (x - x'} /, (x' -y) = Aλ (D J /, (x - y) (4.10)

where the function fv(x — y) in chosen according to (4.8). Let us look

where the function g (x — y)= lim gv (x — y) vanishes if lim fv(x — y) = 0
v-+Q v-»0

for all x Φ y.

First of all we investigate the properties of the operators Aλ(\3) of

the type (A). For simplicity we put y = 0. We get

g ( x ) = lim gv (x) = lim / d*ρ a(ρ2) fv(xQ-{- ίρQ, x + ρ) . (4.11)
V-+Q v^0ρ*<λ2

Here we can pass to the limit vί = v2 = v3 = 0. According to (4.9) we

obtain

g ( x ) = lim θ (A2-x2) Γ
VQ— >0 J

According to the property (4.5) of the test functions

lim J L / f ^ + ̂ Λ = Q for all α:0 Φ 0 .
"0-^0 VQ \ VQ J

Finally

g(x)= lim gv(χ) = 0 (4.13)
j>->0

outside the region x0 = 0, x2 < λ2. Thus when the operator Aλ(\Σ\) of the
type (A) acts on the sequence {/„ (x — y)} the limiting function of which

vanishes everywhere, the exept the point x = y, we get another sequence

{gv(x — y)} the limiting function of which vanishes outside a certain

bounded space-like region GΛ (XQ = yQ, x = y + ρ, where ρ2 < λ2) around

the point y. The four- volume of this region is zero.

Now let us consider the sequence (4.10) in the case when the operator

-4λ(Π) belongs to the type (B). We have

g ( x ) = lim / d*ρ α(ρ2) fv(xQ + ρ0, x + ίρ) . (4.14)
"-̂ 0 ρ 2 <Λ 2

Here we can pass to the limit VQ — 0. According to (4.9) we get

g(x} = lim θ(λ*-xl) ί
Vι,v2,vz^Q J

Qz < V-

Owing to the property (4.5)

lim 77— LXs Qi = 0 for all X Φ O .
v.^^-^o^li Vί

4 Commun. math. Phys., Vol. 5
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Finally
g(x) = ]lmgv(x) = Q (4.16)

v— >0

outside the region XQ < λ2, x = 0. The action of the operator of the type
(B) on the sequence {/„ (x — y)} leads to a sequence {gv (x — y)} the limiting
function of which is zero outside the bounded time -like region GB

(#0 == yQ + τ, where τ2 < λ2, x = y) around the point y. The four-volume
of this region is zero too.

Stress that there exist various sequences {/„ (x — y)} which satisfy
the condition (4.6). Such are all sequences which can be obtained from
(4.8) by the Lorentz transformations. Under the action of the operator
-4λ(Π) each such sequence will transform into a new sequence. The latter
reduces to the function equal to zero outside a bounded region connected
by the appropriate Lorentz transformation with the region for the
sequence (4.8). All these bounded regions obtained from sequences
{/„ (x — y)} lie inside the hyperboloid :

—λ2 ^ (χ — y)* < A 2 . (4.17)

Thus the physical meaning of the distributions Aλ(x — y) is the
following. Let φ (x) be a certain field appears and then disappears at
time y0 in the space point y. Then, due to the "propagator" Aλ(x — y)
this field will affect a certain bounded region with zero four-volume
which lies completely inside the hyperboloid (4.17). The shape of this
region will depend on the "micro-shape" of the impulse of the field φ(x).

In conclusion we describe one more important property of the
distributions (4.1) which the tempered functions do not possess. It is
possible to define unambiguously the product of the distributions (4.1)
with the operator -4λ(Π) of the form (4. 2 a) or (4.2 b):

Cλ(x-y) = -iA^(x-y} A™(x-y) (4.18)

where the indices 1 and 2 denote the functions %(ρ2) and a2(ρ2) in the
integrand of (4.2).

We construct the distributions by an improper transition to the limit.
Approximate these distributions by the following regular functions :

»Aλ(-ι>*)R (ιfi), (4.19)

Re(ξ) = exp{— ε(ξ + + v <rinσ} (4.20)

where 0 < v < a < -~- . For the regularizing function EB (ξ) at large ξ the

estimate

(πa-(v + y) arg|)} (4.21)
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is valid. In other words, Eε (ξ) is analytical and falls out faster than the
linear exponential in the upper half-plane of the complex variable ξ.
The integral (4.19) well converges at ε > 0 and determine a certain
function A\(x — y).

Now let us consider the product

Ci(x-y)=-iAφ (x-y)A(p (x-y) (4.22)

and show that at ε -> 0 there exists a limit for the functional (CB

λ, /) where
/ belongs to the class D. We perform some simple transformations

= -ifd*yAp (x- y) Aφ ( χ - y ) f (y) (4.23)

= -ίf d'pef' ϊ(p) f d*q Ap (-q*) 4p (-(p- <z)2)
where

Al(-q*) = Aλ(-q*)B?(q*).

Since the function f(y) £ D then its Fourier transform / decreases along
the real axis p more rapidly than the linear exponential. In the last
integral over d*q one can pass to the Euclidean metric by turning the

contour of integration over g0 at the angle -^ or over q^ (j — 1, 2, 3) at

— 2~ depending on which type (A) or (B) the operators -4^(Π) and

^4(A2)(Π) belong to. The possibility of turning the contour is proved by
the property (4.21) of the regularizing function Rε. For definiteness we
assume that A^ and A^ belong to the type (A). Then after turning the

contour of integration over g0 at -~- we get

(Cl /) = / d * p e f * * f ( p ) ClW) , (4.24)

<W) = /^V^l1)β(+?I) 42)e(+(fe-^)2) , (4.25)

where qE is the Euclidean vector gfr = q% + q\ + g| + g|. Inserting into
(4.25) the function A%(+q^) according to (4. 2 a) we get:

It is seen that here one can go over to the limit ε -> 0 since the integrand
in (4.25) is integrable and the integral (4.24) will be convergent because
f(p) rather decreases. We have

OAHp a)==limC7S(-

= (2π]^L
Finally

(Cλ, /) = lim (Cl /) = / fry Cλ(x - y} f(y) (4.28)
ε->0
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where

(4.29)

Similar formulas are obtained if both distributions A^ and A^ belong
to the type (B). If A^ and A^ belong to different types then their
product can no longer be defined as far as no turning of the contour in
the integral (4.25) can let the integrand decrease in the limit ε -> 0.

5. The Perturbation Series for the S-Matrix

As was already mentioned in Section 2 the perturbation series for the
$-matrix (2.4) is constructed by mean of the usual Feynman graphs,
using the function (2.5) instead of the ordinary causal function. In the
x- space the matrix element of a process in the n- approximation of per-
turbation theory is a sum of the expressions of the type :

F(x1,...,xn) = ΠDe(xl-xi) (5-1)
ij

where i and j are integer from I to n according to a suitable choice of the
Feynmann diagram. The amplitude F(xlf . . . , xn) in (5.1) is a distribution
of the class D' since

Dc(x) = Δc(x) + K^x) (5.2)

#z(z) = 7όAϊ-r ί -τ^4^-^- {ίAλ(— 2>2)]2 — 1}ί v ' (2π)H J p2 — m2 + ̂ ε u Λ V ^ lλ >
(5>3)

where Z = 2 A and the operator KI(L]) belongs to the same type as the
operator Aλ(\3). We assume that the operator Aλ({Σ\) is normalized as
follows :

Aλ(-m*) = l (5.4)

where m is the mass of the scalar particles considered. The amplitude
F (xlt . . . , xn) is integrable in the class D test functions.

It is convenient to construct the Fourier transform of the amplitude
F (x ̂  . . . ,xn) in (5.1) using an improper transition to the limit. Instead
of the causal function Dc (x) we introduce the regularized function :

regJDc K _ ̂  =

where Rε(p2) is chosen as in (4.20). It is easy to show that

lim / d x reg-L/c (X) j (xj = / dx -f-^c ί*^) /1*^) \^ ^)
e—>0

where f(x) ζD.
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Thus, instead of F(xl9 . . . , xn) in (5.1) we consider the regularized

expression : fe (x^ ...,χn)= ΠτegDc (x, - χf) . (5.7)
i,i

We write the Fourier transform of this function

$ε(Pι, . - ,Pn) = f^xί . . .fd*xne*<**** + ••• + *»*») F'fa, . . ., xn) . (5.8)

Going over to the momentum representation we get an integral :

ff fa, ...,pn) = (2πrδ(Pl + + pn) 2* (ft, ...,pn), (5.9)

T fa, , ft,) =/ . . ./Πd^Π^-flE^kf) . (5.10)

kj is the four-momentum corresponding to the given line in the diagram,
li are the four-momenta over which the integration is performed. The
integral (5.10) converges for ε > 0.

The analytical properties of Rε(k2) are such that in (5.16) at ε > 0
the contour of integration over the time components (^ )0 can be turned

at the angle -̂  or over space components (ZJ )1, (lj)2, (lj)3 at the angle

— ~. The type of the function Aλ( — k2) defines which turning is to be

made so that to get the finite limit at ε -> 0. If Aλ( — &2) belongs to the
type (A), i.e. A^( — &2)->0 at k2^* — oo, then it is necessary to make the
turning over the (^ )0, and in the case (B), i.e. when Aλ( — k2) -> 0 at

Let Aλ( — &2) belongs to the type (A). Then in (5.10) one can turn the
contour over (^ )0 and go over to the limit ε = 0. One obtain an integral
over the Euclidean four-momenta (lj)E. The external momenta are

pseudo- Euclidean. If [A ( — &2)]2 = 0 1-^-1 at &2-> — oo then the integrals

corresponding to any Feynmann graphs converge. In a similar way one
obtains expressions for the amplitude when the functions A%( — &2)
belongs to the type (B).

Thus, the amplitude T(pl9 . . . , pn) is determined by the convergent
integral and depends on the scalar products of the pseudo -Euclidean
external momenta plt . . . , pn. Instead of the pseudo -Euclidean momenta
plf . . . , pn we introduce n Euclidean momenta qlf . . .,qn.

This can be done since, firstly, any scalar products of n pseudo -
Euclidean and n Euclidean momenta are defined by the same number
of invariant variables and, secondly, the amplitude T(pl9 . . ., pn) is an
analytic function of its invariant variables. Therefore the amplitude T
can be considered as dependent on n Euclidean vectors T(qlί . . ., qn).
The expression obtained is the same as for the true amplitude in the
Euclidean domain of space-like or time-like external momenta. Owing
to the uniqueness of the analytical continuation the true amplitude
T(pl9 . . ., pn) can be got over the whole region of the change of the
invariant variables by means of analytical continuation.
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It should be noted that the suggested procedure is completely equiv-
alent to the usual methods of consideration of the perturbation Feynman
graphs. If it is assumed Aλ(£]) = I then the usual expressions for the
scalar amplitudes are obtained.

Thus we get a perturbation series free of the ultraviolet divergences.
Now our aim is to check the unitary and causal nature of the series
derived.

6. The Unitarity of the S-matrix

We show that the constructed ^-matrix is unitary in each perturba-
tion order on the mass shell, i.e.

< α 5 - 8 + | J 8 > = < α | / 3 > (6.1)

where |α) and |/5) are arbitrary physical states. We assume as usual
that there exists a set of amplitudes \n, k) which together with the
amplitude of the vacuum state |0) is complete so that for the arbitrary
operators A and B

A \n, k> <«, k| B\β} (6.2)

and such that the state \n, k) corresponds to a definite momentum k and
energy En (k) > 0. As such a system we choose the following set of states

|»,k> = <...<[<)>, (k1+ + kn = k) (6.3)

since we are working in perturbation theory. It is assumed that the states
|α> and |β) in (6.1) may be expanded in the set of states (6.3).

In order to prove the unitarity condition in the form (6.1) it is enough
to prove the Cutkosky rule for normal thresholds in the arbitrary Feyn-
mann diagrams. This property was proved by the author [7]. Thus the
$- matrix constructed is unitary.

Note that the unitarity condition remains valid if a scalar external
field a(x) is introduced into the Lagrangian, e.g. in the following way:

&! (x) = g(Φ* (x) + a (x) ^ (x)) . (6.4)

The unitarity in the form (6.1) for the interaction (6.4) is easily proved
in each perturbation order if the results of ref. [7] are used.

7. The Causality Condition for the S-Matrix

To check the causal nature of our $-matrix which is a functional of
the operator Φ (x) we consider the expression

In the case of local interaction when the microcausality condition is
fulfilled the operator C(x} y] as is known [3] vanishes for x < y. Let us
find the value of the operator C(x,y] in (7.1) in the case under con-
sideration.
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First of all we show that the operators Φ(x) in (2.2) satisfy the local
commutation relations

[Φfo), Φ(*2)]_ = ]>&), 9φ2)]_ = A(X,- X2) (7.2)

where Δ (x1 — x2) is a usual commutator of the scalar field. To this aim
we use again improper transition to the limit, i.e. instead of the field
Φ (x) λve consider the field Φε (x) defined by the relation

Φt(x) = fdyA λ(x-y)φ(y) (7.3)

where A\(x — y] is taken according to (4.18). Then the commutator (7.2)
is calculated as follows :

), Φ(*2)]_ = Jim [φ.fo), Φβ(*a)]_

= ltoj fdy1fdy2A*λ(x1 — yj A λ(x2 — y2) [ φ f a ) , g%2)]_ (7.4)

- Km [Aλ (— m2) Rε (m2)]2 •A(x1 — x2) = Δ(xl — x2) .
ε->0

The same can be said about the Z>(±) -functions of the field Φ(x)

D^\x1 — x2) = zj(±) (x1 — x2) (7.5)

here Zl(±) denote the corresponding functions of the scalar field.
We now consider eq. (7.1). Our ^-matrix is a functional of only the

operator of the field Φ(x). In expanding in a power series in the coupling
constant we obtain a series of the form

n(x^ ...,*„): Φto) . . .Φ(xn):

where the functions 8n(xl9 . . .,xn) are constructed out of the causal
function (2.5) which is the sum of the usual causal function of the scalar
field and the distribution Kl(xi — Xj) (see (5.2)). Insert the series (7.5)
into (7.1) and go over again to the ^-representation . In this case there
arise ZH~) -functions of the operators of the field Φ(x). According to (7.5)
the ZM~) -function is exactly equal to the zl<-) -function of the usual
scalar field φ (x). Therefore if we do not take into account the distributions
&ι(xί — χj) we ge^ a usuεtl microcausality condition of the local scalar
field, i.e. the operator C(x, y) in (7.1) is zero for x<y. But when the
distributions KI(X{ — Xj) are taken into account in (5.2) the relation (7.1)
for x<y will be proportional in the second perturbation order of the
function Kl (x — y) and in the n-ih perturbation order to a distribution
such as

fdt, . . .fdtn^K^x-tJK^-tz] . ..Krf^-y) = Q(n_$ l(x-y}. (7.6)

Here φ(n-ι)z is ^ne distribution of the type investigated with the "ele-
mentary" length Ϊ1= (n—l)l. Hence, in the n-ih order the operator
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C(x, y} is zero outside the rigious G and G and G(n_-^l where

Θ:x0>y0,(x-y)*^0, (7.7)

β<»-ι)«: -(»-l)»P^ (x-y}*^ (n-l)*V. (7.8)

As ΛVas shown in Section 4 the ^-matrix constructed by us permit the
acausal signal to propagate in a certain bounded region which is com-
pletely inside G(n_l)l and the shape of which depends on the shape of the
impulse of the field investigated or the shape of the wave packets of
incident particles.

Thus, strictly speaking, in the complete perturbation series the
operator C(x, y} in (7.1) differs from zero everywhere. This means that
the ^-matrix obtained by us does not obey the causality condition.
However, as was said in the first section, in the case of the small coupling
constant interaction the violation of the causality at large distances
will be rather small.

8. Conclusion

It seems to us that the advantage of the scheme developed is the
following: firstly, we have succeeded in introducing into the interaction
Lagrangian all the ambiguity in the choice of the shape and the value
of the ''elementary" length; secondly, the amplitudes of the physical
processes have no additional singularities in the finite region of change
of the invariant momentum variables as compared to the local theory.

In conclusion I expresses my deep gratitude to Professor D. I. BLOKEΓNTSEV,
Academician N. 1ST. BOGOLUBOV and Professor A. A. LOGUNOV as well as Doctor
B. M. MEDVEDEV and Doctor I. T. TODOROV for discussions.
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