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Abstract. It is shown that the relativistic Boltzmann equation has a local
solution through an initial distribution function, if the scattering cross section is
bounded for high energies and if the initial distribution falls off exponentially with
the energy.

I. Resume of Relativistic Gas Kinetics and Notation1

Within the framework of general relativity, a gravitational field is
described by a 4-dimensional manifold M together with a metric Gab (x)
of signature (+1, — 1, — 1, — 1). The phase space of a particle is the
tangent bundle T(M) of M. If xa, (α = 0, 1, 2, 3), is a coordinate system
in M, and if T is a tangent to M at a point x in the domain of xa, then
T can be written

and T -* (xa, pa) is a coordinate system in T(M), called the coordinate
system associated with xa. The set of all coordinate systems in T(M) so
obtained defines on T(M) a diίferentiable structure which turns T(M)
into a diίferentiable manifold of dimension 8. A particle is represented as
a path (xa(t), pa(t)) in T(M), where xa(t) describes the position of the
particle for the parameter-time £, and pa(t) is its four-momentum at

dxa

that instant. If we choose the parameter t such that —^r- = pa then the

tangent of the phase path of a test particle moving under the influence
of an external electromagnetic field Fa^(x) and gravitational field

βα&(#)is

(x) Pb - Γ"6βpV} - . (1)
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1 For this paragraph of. BICHTELEB (1965). For different approaches, see

CHERNIKOV (1962), TAUBER-WEINBERG (1961), LΓNDQUIST (1966).
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Thus, X is a tangent field to the phase space T(M)> the integral curves
of which are the possible phase paths of particles with charge e, falling
freely in a combined gravitational and electromagnetic field. A point
(#', pf) on the unique integral curve of X through (#, p) is called earlier
than (x, p), if it has smaller parameter value: t' < t.

With the metric given, the phase space carries the following additional
structures, which will be needed in the sequel: As

dX = p-det(£α6j dxQ Λ dxl Λ dx* Λ dx* (2)

is a coordinate-independent 4-form on M — the 4-volume element —- so

dxP = JΛ-det(Gβ&(α;)) dpQ Λ dp1 Λ c^2 Λ dp* (3)

is a coordinate-independent measure on the fiber Tx of T(M) in #, often
abbreviated dP. Also,

dxP (4)

is a coordinate -independent 8-form (measure) on the phase space T(M).
As in Newtonian gas kinetics, the density of phase paths actually

occupied by the particles of a gas is described by a function F on the
phase space in the following manner : If H is a piece of a seven dimensional
hypersurface in T(M), then

H

is the number of particles crossing H. Here

ω ̂  paηabcddxb Λ dxc Λ dxd Λ dxP +

+ {F\p* — Γ\cp*pc} ηabcd dp* Λ dp* Λ dp* Λ dX

is a 7-form measuring the size / ω of H2. ω is carefully selected from all
H

possible measures for the size of H by requiring it to satisfy

dω = 0, dτ = dt λdω, f ω — 0 whenever X is tangent to H. (5)
H

The properties (5) are analogous to those of Lebesgue -measure in
Newtonian phase space; in particular, they imply Liouville's theorem.

If all the particles of the gas are of the same mass m then all possible

phase paths lie in the subbundle {(xp) : pap*Gaι>(x) = ̂ } of T(M],
which is a 7-dimensional submanifold of T(M) called the mass hyper-
boloid Πm(M). The tangent field X is tangent to Πm(M), hence is a
tangent field on Πm(M)ί and the parameter t equals eigentime/m (and is
an affine parameter if m = 0; for in that case empirically e = 0). If we
replace T (M) by Πm (M) in the preceding paragraphs then all considera-

2 ^oδcd is the totally skew tensor density with ??om = ]/—det((ταδ).
25*
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tions still go through, with the dimensions lowered by one. In particular,
the fiber Π™ has a coordinate-independent measure

d*P = dxPδ(p*-m*), (3')

again abbreviated dP. By dτ we understand now dX Λ d%P, which is a
measure on Πm(M). v(H) describes the flow of paths in Πm(M) through
a six-dimensional hypersurface H and is of the form Fω, where ω satis-
fies (5) onΠm(M).

With the notations as in the last paragraph, the relativistic Boltz-
mann equation reads

(XF) (xp) = /// {F(xp3) F(xp,)~F(xp) F(xp2)} x

x W(pp2 -> pzp±] δ (p + pz — 2>3 — p4) dPzdPzdPt (6)
with

where ^(pl5 #>2) = γ(p1 aPna)2 — ̂  — 1/^lί^ι — #2! |jPι + Pz\ ^s a kinemati-
cal factor and

σ (12 -> 34) - a (21 -> 34) = a (34 -> 12) (8)

is the Lorentz -in variant cross section3 for collisions Pιp2 -> PzPz σ* is a
function defined on the collision manifold4, that is, on the set of all
quadruples (1,2,3,4) of tangents in x with lα + 2α = 3σ + 4σ. The
ό-factor in (6) takes care of the 4-momentum conservation and has to be
understood mathematically in the sense of GELFAND and SHILOV (1960);
the orientation of the collision manifold is chosen such that δ d P2 d P3 d P4

is a positive measure.
Equation (6) was apparently first given by LICHNEBOWIOZ and

MABBOT, 1940. As it stands, it describes a gas in which only elastic
collisions take place. This equation can easily be generalized such as to
include quantum statistics, inelastic scattering such as decay and ab-
sorption, and gases which consist of N components with fixed masses
and charges5. However, the local existence theorem with which we shall
be concerned holds for all of these generalizations, and as its proof is in
principle the same, we shall confine ourselves to the simple equation (6).
For further simplicity we assume F\ = 0 in the sequel. The existence
theorem for the most general Boltzmann equation requires only minor
and obvious alterations of the proof below.

We call a solution of (6) any function F, defined in the tangent
bundle of a measurable subset of M for which both sides of (6) exist in
the usual sense almost everywhere (a.e.) with respect to the measure dτ
and coincide a.e. For the left hand side XF of (6) this means that the

3 Some authors call the differential σδdP3d P4 the cross section.
4 This notion was apparently first introduced by EHLERS (1961). 1, 2, lβ, 3β . . .

stands for plt p2, p f , p2

a . . . in the sequel.
5 Cf. e.g. BICHTELER (1965).
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derivative of F along the integral curves of X exists at almost all points
of the domain of F (the partial derivatives of F which occur in the re-
presentation (1) of X need not exist).

II. Statement of the Theorem

Suppose we are given a spacelike 3-dimensional hypersurface of M
and a compact connected subset H of it. We assume that H is equal to
the closure of its interior U in the topology of the hypersurface. One may
visualize H as a homeomorphic image in M of the 3-dimensional unit
ball. We define the restricted domain of dependence of H as the set D
of all points x of M such that any particle through x which moves
according to (1) was earlier in H (cf. Fig. 1). In other words, D is the set
of all points x £ M such that for any p ζ Tx the unique integral curve of
X through (x, p) contains an earlier point (x', pf) with x' ζ H. For any
(x, p), x ζ D, we denote by (#', p') the latest such point.

D is a closed subset of M. For let xnζD converge to x and let pζTx.
We may without loss of generality assume that the xn and x lie in a
coordinate domain and consider the integral curves of X through (xnJ pn)
where pn has the same coordinates as p in the associated coordinate
system (cf. Sec. I). According to the well-known theorem on the de-
pendence of integral curves on the initial point6, the integral curves
through (xn, pn) converge uniformly to the one through (x, p) for bounded
values of the parameter t. In particular, (x'nί pή) converges to a point
(x', p') on the integral curve through (x, p). Thus x' ζ H since H is closed.
So, recalling the definition of D, we see that x ξ D and therefore D is
closed and hence measurable7.

x

Fig. 1. The restricted domain of dependence D and a time layer W

6 Cf. e.g., KΔMKB (1956). We assume GΛ and Fa

b of class O2.
7 One shows by a similar argument that the subset JD of D consisting of all

x £ D such that x' £ H for all p £ Tx is an open subset of M and closure (D) — D.
We shall not need this fact. It shows, however, that D is a "sensible" set, adequately
visualized as in Fig. 1.
25a
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Let us finally define a "time layer over H". By this we mean an
open subset (in the relative topology) W of D which contains H (cf.
Fig. 1). The reason for this definition of D and W is the following: We
assume we are given an initial distribution / on the part of T (M) which
lies over H and which we shall denote by H x T. Then we cannot hope
to make a uniqueness statement for a solution F of (6) through / on points
outside D. For such an x can be reached by particles starting outside H.
And so the distribution may be influenced differently by different
initial distributions outside H.

Theorem. Let f be a function on H x T, measurable with respect to
ω and "exponentially bounded". That means we assume there exists a
constant A and a continuous vector field β'a(x) > O8 on H such that

\f(xp)\£Ae-Kω* ,xζH, pζTx. (9)

Furthermore, let the cross section be a continuous function on the collision
manifold such that the total cross section is bounded:

σ(#):-/σ(12-> 34) 0(1 -f 2 — 3 — 4) d3 dϊ ^ a = const. (10)

Then there exists a time layer W over H and a solution F of (6) on W
which is again exponentially bounded. Any two such solutions are equal a.e.
Moreover, if f ^ 0, then also F ^ 0.

Remarks. 1. The uniqueness statement of the theorem is to be under-
stood in terms of the class of all exponentially bounded functions: If
F, F' are solutions of (6) in W and are exponentially bounded, then
F = F' a.e.

2. The requirement (9) on / means that for the observer field βa(x)
the number of particles with energy E decreases exponentially with E.
Then, incidentally, relative to any other observer field β'a (x) there also
is exponential decrease, and, according to the theorem, will always
remain so. The requirement (9) is not as restrictive as it may seem at
first: All local equilibrium distribution functions are exponentially
bounded9 and so are distribution functions which are close to local
equilibrium in the sense that their momenta are close to those of an
equilibrium distribution. Furthermore, in the (still apparently mathe-
matically not justified) Chapman-Enskog approximation, F is written

F=e-^x^(l + φ) (H)

with a small φ, for which a linear integro-diίferential equation is derived.
The theorem as stated above tells that F remains in the form (11) if it
was in that form initially, with φ bounded. This is of course necessary for
the Chapman-Enskog method to make sense.

8 β > 0 means that βa is pointing into the future we say β is positive.
9 Cf. BlCHTELER, 1964.
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3. MORGENSTERN, 1955, proved10 a global existence theorem in the
non-relativistic case by a method which overcomes the difficulty of how
to define both sides of (6) for a sufficiently large class of functions by
modifying the collision term in (6) such that it can be applied to inte-
grable functions F. Unfortunately, he must assume the total cross
section a(E) to be 0(I/E), and the field equations do not follow from his
modified Boltzmann equation. His theorem can be generalized immediately
to the general relativistic case.

III. Proof of the Theorem

The proof of the theorem is an application of the well-known Banach
fixed point theorem which states that a mapping of a complete metric
space into itself which uniformly decreases distances has a unique fixed
point. Our proof proceeds as follows. As a first step we establish a lemma
stating the existence of a continuous vector field βa(x) on D which
continues the given vector field β'a on H in a suitable way such that
— βa(x)Pa can be used as an exponential bound for the prospective
solution F. In the second step, we choose a time layer W and consider
the set Φ of all measurable functions F on W, which are bounded by
2Ae~^a/pa. Φ can be made into a complete metric space in a natural way.
Then obviously a solution of (6) through / in Φ is a fixed point of the
mapping ~ of Φ in Φ defined b}̂

(XP)
F(xp}^l(x'p') + ί dtfff{F(xt3)F(xt4)~

(x'p' )

— F(xtpt) F(xt2)} δ(pt + 2 — 3 — 4) W(12 -> 34) d2 d3 d£

and, conversely, every fixed point of ~ is a solution of (6) through /.
The main labor in the proof then consists in showing that the mapping
~ is well defined for functions of Φ, that it maps Φ into itself, and that
it is uniformly contractive. Application of Banach's theorem then yields
the existence and uniqueness of a solution F of (6) through /.

Step 1. Lemma. Let β'a(x) be a covariant timelike vector field, defined
and continuous on H or on a compact time layer K over H. Assume
Γa

bc (x) to be of class C1. Then there exists a continuous timelike covariant
vector field βa(x) on D such that'.
(A) β'a(x)^ βa(x)faraaxξK,
(B) The function βa(x)pa on D x T does not increase along phase paths.

Let us clarify the statement (A). We call the closed (tangential)
forward light cone in the point x ζ M, Vx, and its open interior which

consists of timelike vectors only, γx. We call a vector ua ζ Tx greater

10 Up to a minor oversight concerning the <5-factor, which can be repaired by
proceeding as in the proof below.
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than the vector va ζ TXί and we write ua ̂  va, if ua — va ζ Vx. We say

u is strictly greater than v if u — v ζ V. Thus ua ̂  va if and only if
uap

a ^ vap
a for all pζ Vx. A vector βa(x) is called smaller than a set

Bx of vectors of TX9 if it is smaller than any vector of Bx. The relation
^ gives rise to an order on Tx compatible with the vector space structure
of Tx.

Proof of the Lemma, a) Let Bx be a compact subset of Vx. Then
there exists a unique vector βa(Bx}ζ Vx of greatest length, which is

smaller than Bx. For, first of all, the set of vectors in Vx smaller than Bx

is non void (cf. Fig. 2). Otherwise, Bx — rta would contain points outside

Vx for arbitrary ta ξ Vx and arbitrary r > 0. Taking ta fixed and
r = Ijn (n = 1, 2 . . .) there would exist a sequence bn ζ Bx with

bn— ljnta $ Vx. By compactness of Bx we may assume bn convergent to

b ζ Bx, so b $ Vx in contradiction to Bx c Vx. So the function va -> vav
a,

restricted to the (compact) set of all vectors of Vx smaller than Bx,
takes on a positive maximum at a vector βa(Bx). If there were a second
vector β'a of greatest length smaller than Bx, then 1/2 (β -f β') would be
a vector smaller than Bx of length greater than that of β and β'. So,
β(Bx) is unique.

x
Fig. 2. The greatest vector smaller than Bx

b) The mapping Bx-^> βa(Bχ) has the following properties:
bl) B'xcBx^βa(B'x}^βa(Bx],

which is immediate from its definition. Further, it is continuous in the
following sense: For any ε > 0 there exists a compact neighborhood U

of BX) contained in Vx and such that

b2) βa(B'f) > βa(Bx) (1 - ε) for all B'.ζU.
The argument is immediate. Let us remark that the family of sets of
vectors which lie strictly between two given ones forms a basis of the

topology of Vx.
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c) We assume temporarily for the next few steps that D lies in a
coordinate domain and that coordinates xa are chosen such that XQ = 0
on H.

Let # be a point of D, x' a point of K earlier than x, and let d be a
broken piecewise time — or lightlike geodesic joining x and x'. Let Dx be

the set of all such broken geodesies. We define a vector bx(d) in Vx by

transferring the given vector β'a(x') in V& parallely from x' to x along d,

thus getting a map bx : Dx -> Vx.

If we parametrize the curves of Dx by the coordinate time x° and
provide Dx with the topology of uniform convergence in x°, then bx is
continuous. For, let us consider two broken geodesies d and d of Dx with
starting points x' and x'. If we choose d and c? sufficiently close to each
other then the two following vectors of Vx are arbitrarily close to each
other: the vector β'a(x') after parallel transfer from x' along a geodesic
to x' and from x' along d to x\ and the vector β'a (xr) after parallel transfer
to x along d. This is an immediate consequence of the continuity of
β'a and the smooth dependence of the solution of a differential equation
(here the equ. of parallel transport) on its initial value. Thus, in order to
prove continuity of bχί it suffices to assume that the curves d and d have
the same starting point xf. We must show that if d and d are sufficiently
close together, then it matters arbitrarily little, whether we transport
β'a(x') along d or along d to x. Or, what amounts to the same, we must
show that β''a(x'), transported along d to x and then back to x' along d,
is arbitrarily close to β ' a ( x f ) . That this is so if the loop described by d and
d is a small geodesic triangle Δ, is a well-known fact (which can be used
to define the Riemann-tensor cf. BISHOP and CRITTENDEN (1960),

Sec. 6.1.7). In that case β ' a ( t f ) - β'a(x')tlΆn^ = 0 ( \ Δ \ ) where \Δ\
denotes the area of Δ. But the latter estimate still holds for an arbitrary
loop made of a broken geodesic, as can be seen by splitting it into a
sequence of geodesic triangles (cf. LICHNEROWICZ, 1955, p. 51). Now if
d and d are sufficiently close uniformly in XQ, then the area Δ enclosed
can be made arbitrarily small; thus the continuity of bx is established.

We continue bx to a mapping, called again bx, of the set Dx of all

curves which are uniform limits of broken geodesies of Dx, into Vx. Dx

consists of time- or lightlike continuous curves, and bx is continuous
also on Dx. Now Dx is compact in the topology of uniform convergence
in xP. For, Dx consists of continuous functions in a real interval, is equi-
continuous since the (coordinate-) velocity of light is bounded in the
coordinate domain, and every element of Dx takes its values in the inter-
section of D with the backward light cone of x, which is compact. Thus,
according to the theorem of Ascoli, Dx is compact in the topology of
uniform convergence in #°.
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Thus the set oίbx(Dx] = Bx C Vxis compact as a continuous image of
a compact set.

We are now in the situation a) and define the vector field βa (x) of the
statement of the lemma by βa(x) = βa(Bχ}'

d) Statement (A) of the lemma is immediately obvious from the
definition of βa, and so is (B). To prove the continuity of βa, one repeats
essentially the reasoning of c), varying also x11 and making use of the
continuity property stated in b).

e) If D is not contained in a coordinate domain, we define βa as
above in coordinate patches containing H. Where they overlap, the /J's
are equal. We thus obtain β on a time layer L containing H. We con-
tinue β by continuity to its closure L and proceed the same way again,
now starting with the upper boundary of L, L — L, instead of H. Thus
we obtain a vector field β on D which obviously meets the requirements
of the lemma.

Note that βa coincides with β'a on H.
Step 2. a) Consider the integral J(p9 β) = f pa%

a * e~β2 d2. Because
2

of the exponential factor it is convergent and a smooth function of p and
β. Simple symmetry considerations show that it depends on these
parameters in the form J(pβ) = βaP

a%(\β\) where Z is a smooth
function of the length \β\ of β. Further, if x is a point of D joined to a

X

point x' ζ H by a geodesic γ, we have / I ( p β ) dt = f Z(\β\) βa(x) dxa,
γ x'

since pa dt = dxa on γ according to (1). Let us choose a number B, which
we shall specify later according to our needs, and define a time layer W

by

fZ(\β\)βa(x)dx"-<B. (13)
Xf

The set of all x such that (13) holds for all geodesies from x to H is, in
fact, a time layer, since x -> Z(\β\ (x)) βa(x) dxa is a continuous form.

b) Let us denote by Φ the set of all real-valued functions F on W
which are measurable with respect to dτ((4)) and which satisfy

\F(xp)\ ^ 2Ae~β«va a.e. (14)

We equip Φ with the following distance function || ||:

\\F-G\\ = ess. max. e

+P Wv \F(xp) — 0(xp)\ . (15)

That is, || F— G\\ is the infimum of all numbers c such that the set of
points (xp) where e^p\F— G\ exceeds c has ^τ-measure zero. It is easy
to check that || || has the properties of a pseudometric and that Φ is
complete. For, if Fn is a Cauchy sequence under || ||, then e^pFn is a

11 For the details cf. BICHTELER, 1965.
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Cauchy sequence in L°°(W, dτ), so converges to a function which is of
the form ePpF, F ξ Φ. And this means exactly that Fn -> F in Φ. Note
that Φ is not separated, however.

c) Let us suppose for the moment (to be precise, until Section e
where we shall prove it) that the integrals in (12) are well-defined. We
may then estimate |ί*|| :

p')\ + (16)

(α)

dt I \F\F} (xtpt)\ rg \ePM*'f(x'p')

(«p) (β)
+ 1 / dte**M*'I[F\F] (xtpt)\ ^A +

(x'vΊ
(ZP)

+ I dt Iff {\F(x3)e+P*F(x4:)e+P*\ + \F(xpt)e+
(x'pr)

(y)
x δ(p + 2 — 3 — 4) x pa2

a x σ(p2->3
(y) (XP) (<J)
^ A + 8A* f dtf σpa2« x e~^2 ^2 ^ ^4

(X'P') 2

||ί*|| ^ ̂  + SA*σB . (17)
So,
The steps in this over-estimation are justified as follows : (α) by the fact
that e$p does not increase with t. ( I [ F \ F ] stands for the 3-fold integral
in (6)). (β) by (9), (7) and the fact that β^1 = e^e^e~^ on the collision
manifold; (γ) by (10) and the definition (14) of Φ; finally (δ) by the
definition (13) of W.

d) An estimation of \\F — G\ for two functions F, G ζ Φ proceeds
exactly in the same way and need not be reproduced its result is

\\F-&\\ ^4ABσ\\F~G\\ . (18)

(17) and (18) show that if we choose for B the number -̂ -j — , then ~
O*aί(7

maps Φ into itself and is contractive: ||jP — G\\ g l/2||jP — G\\9 provided,
at least, the map is well defined and yields measurable functions F. To
show this, will be the content of the next section.

e)12 We observe first that the function (xI2) -+ F ( x l ) F (x2) is
measurable with respect to σkdXdld2 as a product of functions
(xl2)-+F(xl). Because of (14), the function (x\2) -+ F ( x l ) F (x2) is
even integrable.

Let 8 be the set of points (#1234) with 1 + 2 — 3 — 4-0 and let
ds - or (12) Jfc(12) δ(l + 2 — 3 — 4) dX dl d2 d3 d±. The measure ds on
S is an integral

da - / dX dl d2{(xl2) -> 0^*0(1 + 2 — 3 — 4) d3 d4} (19)

For this section cf. BOUEBAKI, integration ch. V, and GELFAND-SHILOV, 1960.
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of measures δxkσ δ d% dk and this representation of ds is vaguely con-
tinuous. Next we observe that the function (#1234) -> F(xl) F(x2) on
S is integrable with respect to ds. For there exist continuous dX dl d2-
integrable functions ^(#12), ψ2(x!2) with ^(#12) ^ F(xl)F(x2) ^
^ ψ2(x 12) and / |̂  — ̂ 2| σkdXdl d2 arbitrarily small, say smaller
than ε. Then the functions ^ : (x 1234) -> ^(#12) on $ are continuous
bounds for (#1234) ->F(xI) F(x2), integrable with respect to ds and
satisfy J \ψι — $2 ds < ε. One sees in the same way that the function
(#1234) -> F(x3) F(x4) is ds-integrable.

Now, because of the vague continuity of the representation (19),

f / F ( x 3 ) F ( x 4 : ) σ ( l 2 - > 3 4 : ) k ( l 2 ) δ ( l + 2 — 3 — 4) d3 d4

exists for dX dl d 2 -almost -all (#12) and is #12-integrable. By Fubini's
theorem, f f f F ( x 3 ) F ( x 4 : ) σ k δ ( l + 2 — 3 — 4) d2 d3 c£4 exists dX dl-
almost- everywhere and is integrable, hence measurable. An even simpler
argument holds for the second term of the collision integral in (6) and
yields the existence and integrability of I[F\F]. Now, according to
(5), / I[F\F]dτ= f I[F\F]dt/\ω, so f I[F\F]dt exists almost every-
where and is measurable13.

f) The existence of a solution is now established. Its uniqueness in
the class Φ follows immediately from the uniqueness statement in
Banach's fixed point theorem. There could, however, still exist a solution
which is exponentially bounded by an exponential e~β'v other than the
one we chose. But then, according to the lemma, there exists a bound

e-βp which is greater than e~β'p, hence both of our assumed solutions lie
in the space Φ defined with e~βp and thus are equal. Note that uniqueness
means always uniqueness up to a set of measure zero.

g) In order to prove positivity of the solution for positive /, consider
the same time layer W as in a) and the set Φ+ of positive (a.e.) functions
of Φ. Define a mapping ^ of Φ -f into Φ + by

The same arguments as for ~ show that ^ is indeed a mapping of Φ-f-
into Φ + , again contractive. So ^ has a fixed point. It has, by modifica-
tion on a set of measure zero, a fixed point F which is continuous along
geodesies. We show that F = F a.e., such that F is also a fixed point
of ~ and hence a solution of the Boltzmann equation. For i i f f = ^ F = F,
then f < 0 in a point (xp). Then there is on the geodesic through (xp)
an earliest point (x* p') such that F(x'p'} = P(x'p'} =F(x'p') = 0 and
such that j^ < 0, and hence F = 0, for all later points which are suffi-
ciently near to (x1 ' p1). But then an inspection of (12) shows that F does

13 f I dt is, in fact, an indeterminate integral. But an obvious "triangle argu-
ment" makes Fubini's theorem applicable.
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not decrease from (x'pf) on, the negative term in the collision integral
being zero, which is a contradiction. Hence, F coincides (a.e.) with the
unique fixed point of ~.

IV. Indication of Further Results

1) If the initial distribution / is positive and bounded also from
below by a local distribution function Ae~β'p on H, then it will remain
so on W. To show this, one constructs a continuous vector field β on D
which continues βf and is such that the function βap

a does not decrease
along phase paths. The proof of the existence of β is a straightforward
analog of the proof of the lemma. Now, the subset of Φ consisting of all
functions greater than l/2Ae~βp is shown to be closed and invariant
under ~, so the fixed point of ~ lies in it. This persistence property is
another hint that a distribution stays close to local equilibrium, a con-
dition necessary for the Chapman-Enskog method to make sense (cf.
remark 2, Sec. II). By a similar argument on closed invariant subsets it
can be shown that if / happens to be continuous, so is F.

2) To prove local existence and uniqueness we simply carried over
the well-known Picard-Lindelof procedure in the theory of ordinary
differential equations. As is done there, we can refine the method to
study also the dependence of the solution on the initial distribution
and on the ingredients of the equation, viz. Fa

b, Γ\c, σ(12-> 34). The
way to do it is obvious, though lengthy, and yields the following:

If the initial distributions fn converge to / in the norm

I/I = (ess. max. \ePfί)ff(x'p')\, x' ζ H, ω the measure) ,

then the corresponding solutions Fn and F exist on a common time layer
and Fn -> F in the (pseudo-)metric (15). If / is continuous, and Fn

a

b -> Fa

b

and Γn\c -> Γ\c uniformly on a neighborhood of H, then there exists
a common time layer for the corresponding solutions Fn, F and Fn->F
in the metric (15). Finally, the same behavior of the respective solutions
holds if max / |σn(12 -> 34) — a(12 -> 34)| d3 eZ4 -> 0.

1,2

I would like to express my thanks to Professor JTJRGEISΓ EHLERS for many stimu-
lating discussions in connection with this paper.
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