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Abstract. The consequences of an axiomatic formulation of physical probability
fields established in a first paper [1] are investigated in case of a finite dimensional
ensemble-space.

It will be shown that the stated number of axioms can be diminuished essen-
tially. Further the structure of an or tho- complemented orthomodular lattice for
the decision effects (also often called "properties" or still more misunderstandingly
"propositions") and the orthoadditivity of the probability measures upon this
lattice, both, can be essentially inferred from the axioms 3 and 4, only. This seems
to give a better comprehension of the lattice structure defined by the decision
effects.

Particularly, it is pointed out that no assumption (axiom) concerning the
commensurability of two decision effects E± E2 with Et ̂  Ez must be made but
that this commensurability is a theorem of the theory.

I. Fundamental axioms

Since in a preceding paper [1] we briefly discussed the heuristic
aspects having led to the statement of the axioms, these axioms shall be
quoted very briefly in this paper and, from the first, will be restricted on
the case of a finite dimensional ensemble-space.

We will start from two sets :
Let K be the set of all ensembles V,
let L be the set of all effects F.
Axiom 1. Over K x L (cartesian product) a real-valued function μ is

defined, satisfying:
a) o^ μ(V,F) ^ 1,
β) μ ( F1? F) = μ ( F2, F) for all F ζ L implies Fx - F2,
V ) μ ( V, J?Ί) = μ ( F, F2) for allVζK implies Fτ = F*
ό) for each V there exists a F with μ(V,F) = 1,
ε) there exists a F (denoted by Oj with μ(V, 0) = o for all V ζ K.
Definition 1. Let B be the set of all functions X(F) on L with

= Σaiμ(Vί,F), V,ζK (1)
ί = l

real numbers and n any finite integer.
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Obviously B is a vector space over the field of real numbers.

The following axiom is additional, only in order to simplify the investi-
gations of this part. Nevertheless, it may be expected to get all the typical
structures. The more general case might be a limit of that which will be
investigated in this paper, the correlation resembling to representing
integrals as limits of sums.

Axiom 1 ad.. B is finite dimensional; we introduce the abbreviation
dim B - N.

df

By the correspondence X <-» F, if

X(F) = μ(V,F) for all F ζL ,

K becomes a subset of B. When we define

μ(X,F)TtX(F)

μ can be uniquely extended to the entire B x L and, for fixed F, μ is a
linear functional on B.

Definition 2. \\X\\ = sup{|Z(^)| \F £ L} is a norm of B.

An immediate consequence of axiom I/? and definition 1 is that the
normtopology in B is identical with the Euclidean topology of the
N-dimensional space B and that K has exactly N linearly independent
F's. Because of axiom 1 α and δ a ray {λ V \ V ζ K fixed and λ ζ R} has
only one element of K, namely F.

Definition 3. K denotes the closed convex closure of K in B. The
elements of K are called mixtures of the elements of K.

As an immediate inference, the conditions α, β, γ, ε of axiom 1 are
satisfied on K x L, too.

Definition 4. By B' we denote the vector space consisting of all linear
functionals Y ( X ) , i.e. the conjugate space of B.

As is well-known, B' is also a ^-dimensional vector space over the
field of real numbers. μ(X} F) being a linear functional of B for fixed F,
the elements F of L can be canonically identified with certain elements of
B''. Then it is possible to extend the definition of μ to all elements Ύ ζ B'
l>yμ(X,Y)TίT(X).

Definition 5. L is the closure of L in B'.

II. Axioms of sensitivity-increase of effects

Definitions. For any F ζ L we define K_(F) = {F| F ζ K and
μ(V, F}^o for fixed F ζ L}.

For any subset I C L we define K_(l) = {V\ V ζK and μ(V9F) = o
for all F ζl.
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Definition 7. A closed subset K' C K is said to be a completely convex
subset (c.c.s.) (also called: extremal subset), if for o < λ ^ 1

α) V - λ Vl + (1 - λ) F2 with F1; F2 ζ #' implies F ζ #'
)8) F = A F 1 + ( 1 - A)F2with F £ #'implies Fl3 F2£JΓ.
We repeat the following theorems deduced in [1]:

Theorem 1. K_(F) and K_(l) are c.c.s.
Theorem 2. K__(l) = Π K_(F).

F ζl
Theorem 3. K__{ U ZΛ = (Ί K_(lλ), Λ any indexing set.

Definition 8. For F15 Y2 £ 5' we define Ύ ̂  ̂  F2 if and only if
μ(V, Fi) ^ μ(F, 72) for all V ζK.

An immediate consequence is μ (V, Fx) ̂  μ (F, Γ2) for all F ξ ^Γ.
Thereby 5' is a partially ordered vector space.

From F! ^ ̂ 2 follows directly K_(Fl) 2 /C(^2). Hence, in the sub-
sequent axiom 3, K_(F^} C K^F^ r\ K_(F2) is valid because of J^ ^ jP3

and FZ^FZ. Consequently, K_ (F^) ^ K_ (FJ r\ K__ (F2) may be re-
placed by K_(Fz) = K_(F-L] r\ K__(F2) in this axiom.

Definition 9. L_(V) ~ {F\F ζ L and μ(V,F) = o for fixed F £ JK)

and for any subset k ζ= K

L_(k) ^{F\F ζL and μ(V,F) = o for all F £ &} .

Definition 10. W = {^_(Z) | Z g L}.
Definition 11. U = (L_(k)\kςK}.
Similar to the theorems 2 and 3 the following theorems can be easily

proved:

Theorem 4. L__(k) = ̂ i_(F).

Theorem 5. £_( U ^Λ = Π L_(kλ), Λ any indexing set.
^•λ ζ. Λ. J λ ζ_ Λ

The subsets I g L leading to the same K_ (I) form a directed set with
a maximal element lm~\jl (join of all Z with the same K_(l}}\ this
results from theorem 3. Because of Zm = L_K_ (I) these maximal elements
lm are elements of U. Conversely, if we consider all the sets k leading to
the same L_(k), then, because of theorem 5, km can be defined in an
analogous manner and km = K_L_(k) holds; hence:

Theorem 6. The mappings K_ : W -> U and L_: U ~> W are bijective
and invert the order relation; i.e. they are dual-isomorphisms from W and
U, respectively, satisfying K_L_ = Ij^ and L_K_ = lπ.

Directly from theorem 3 and 5 results the
Theorem 7. W and U are complete lattices.
So, again by theorem 6,
Theorem 8. W and U are dual-isomorphic. K_, L_ are such dual-

isomorphisms from the lattice U on W and from W on U, respectively,
K_, being the inverse mapping of L_.
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Axiom 2. For any neighbourhood of each F ζL there exists a F' ζL with
F' <F.

This axiom expresses the "idealized" effects F ξ_ L with F $ L to be
idealized just because their sensitivity is reached by less sensitive jP's
only approximately.

The most basic aciom of the whole theory is
Axiom 3. For each F1} F2 ζL there exists a F% ζ L such that F± ^ F&

F2 ^ FZ and K_(F3) 2 K_(FJ r\ K_(F2}.
The axioms 2 and 3 only contain the sets K and L, although, for a

moment, K and L seem to be important for these axioms. First of all,
the sets K_(F) are used in axiom 3. This is only a simplifying writing
because by definition 3 each V ζ K_ (F) is only a mixture of elements of
K. Likewise in axiom 2 a Cauchy sequence of L may be substituted for
an element of L. Then the axiom would run: every Cauchy sequence of
L is equivalent to an isotonely increasing sequence (Fv), (Fv ^ FV+I).

Theorem 9. From axiom 2 and 3 there may be inferred that axiom 3 is
also valid for L (instead of L).

Proof. Let F^ and F2 be two elements of L. According to axiom 2
there exist two Fv F2ζL with F± ^ F^ F2 ^ F2 which, however,
approximate F± and F2 at any accuracy. By axiom 3 there exists a Fs

with _F3 ^ F19 FZ ^ F2 and K_(F^) 2 #-(̂ 1) n K_(F2}. Since
.F! ̂  Fl andF2 <_F2 also imply K_(FJ 2 K_(FJ and K_(F2) 2 K_(F2),
so K_(F%} 2 K_(F1) r\ K_(F2). Instead of F19 F2 select two sequences
(Fl), (FV

2) converging to F^F^ respectively. (FQ selected for this purpose
being a bounded point set (\\F$\\ ^ 1) it has at least one accumulation
point 3̂ £ L for which Fs ^ F19 F^ ^ Fz and K_(F^) 2 Π K_(Fl] 2

^K,(Fl)r\K_(F2) have to be demonstrated: from Fl^F\ there
results

μ(V,Fl)>μ(V,FU for all V ζK .

For any ε > o a v can be selected such that for all V ζ K

\μ(V,F$-μ(V,FΛ)\<ε and \μ(V, F\] - μ(V, FJ\ < ε .__

Hence μ (F, F3) ^ μ (V, FJ - 2 ε for any s>o and so μ( F, F3) ^
^ μ(V,Fλ). Likewise^ ^(F,^) = ojor all v implies μ(F,JF3) < ε for
any ε > o, i.e., μ(F, F3) = o, so K_(F3) 2 Π Jί_(^). This completes the

V

proof.
In what will follow, theorem 9 will be used instead of the axioms 2

and 3. So, from the first, it would have been possible to postulate axiom 3
(instead of the axioms 2 and 3) for L instead of L.

Theorem 10. The following two conditions are equivalent:
1) axiom 3 is valid for L
2) the sets I ζ U are ascending directed sets, i.e. for any F^ F2 ζl there

exists aF3ζl with Fλ ^ F9, F2 ^ F3.



Axiomatic Foundation. II 335

Proof. 1) =Φ 2). According to 1) there exists a FB for Fl and Fz such

that Fl rg F» F2 ^ Fs and /C(^3) 2 K_(FJ r\ K_(F2) = #_({^ι> F2}).
Because of {Flt F2} ς I and hence K_(ΐ) ς ^_({^1? jP2}) tne condition 2)
results.

2) => 1). 2) and Z = L_K_({Flt F2}) imply the existence oίF^ζl such
that jP3 ^ JΊ and .F3 ^ _F2. From ̂ 3 £ Z results

K_(F,) 2 JL(ί) = K,({FV F2}) = TU^i) n #_(^2) .

The latter formulation of 2) was postulated in [1] as an axiom. The
elements I £ U being equal to L_ (k) for any set Jc Q K, 2) has the
intuitive meaning:

For any two effects F^F^ satisfying μ ( V, F^ = μ ( V, F2) — o for
all V ζ Jc there is a F3 ^ F19 F3 ^ F2 with ^(F5 ̂ 3) = o for all F £ fc.

Thus, with the secondary condition "μ(F, jP) == o for all F ζ F' the
experimental problem would be to construct more and more sensitive
effect- apparatuses.

Theorem 11. For each I ξ U an element El ζ B' is uniquely defined by

If lι=¥ Ifr then E^ Φ E^ l± 2 1% implies E^ ^ E^. El belongs to I and
is the maximal element of the directed set I, i.e. F ^ El holds for all F ξ I.

This was proved in [1].
Definition 12. The elements Et introduced by theorem 11 are called

decision effects. Let 0 denote the set of all decision effects.
Theorem 12. According to definition 8 G is a complete lattice with

respect to the order and G is isomorphic with the set-lattice U but dual-
isomorphic with the set lattice W. The isomorphism of G on W is defined by
E<->K_(E).

The proof of this theorem, too, was given in [1],
From K_ (Eλ] r\ K_ (E2) = K_ (E^ \j E2) may be inferred at once :

μ(V, Ej) - o and μ(V, E2) = o imply μ(V, E1\jE2) = o.
Theorem 13. There exists a F ζ L with μ(V,F)=l for all V ζ K.
This element F may be denoted by 1. 1 is the "unit element" of the

lattice G.
Proof. L_K,(l) 2 I and L_K__(l) Q L imply L_K_(L) = L, i.e. L is

the unit element of the lattice U. Consequently, the unit element 1 of

and therefore determined by

μ(V,l) = βvp{μ(V,F)\FζL and V £ K} .
F

For V ζK μ(V> 1) = 1 is immediately deduced from axioms lα, δ). K
being the closed convex hull of K, μ (F, 1) = 1 is valid for all V £ K, too.
24 Commun. math. Phys., Vol. 4
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α) to ε) of axiom 1 hold consequently on K x L, too. The null effect
according to ε) is the null element of G. Because of the validity of
μ(V, 1) = 1 and α) a ray {λ V\ V £ K fixed and λ ζ R} contains one and
only one point, namely the fixed F ζ K. As a consequence K is a (̂  — 1)
dimensional convex set in the plane μ(X, 1) = 1 contained in B.

Theorem 14. B' is the span of L, i.e. L contains N linearly independent
elements.

Proof. It is sufficient to prove the theorem for L instead of L. Assume
L spans a proper subspace T C B' only, then there is X Φ 0 of B with
μ (X, Y) = o for all 7 ζ T. K being the span of B, there holds

N

X — Σ aί V V Vi ζK- & being convex even admits the selection of
i = l

F15 F2 ξ j£ (by adding the positive and negative elements of Σ α* J7^
ΐ = i

respectively!) such that X = αx Fx — αa F2 with αx ^> o, α2 ̂  o is valid.
Then μ(X, 7) = o implies α^F^ j?) = α2μ(F2, F) for all ί1 ζ L. From
jP = 1 results αx = α2 and hence, because of X 4= 0, /*(F1? .F) = μ(F2, -^),
so, by axiom 1 β),

71 =F2

but this contradicts X Φ 0.
Definition 13. By £ we denote the closed convex set generated by L

mB'.
The following theorem expresses well-known properties of a convex set
generated by a topologically closed set L :

Theorem 15. The extreme points of L belong to L. Each Y ζ L may be
written as

Using this we can prove the
Theorem 16. Axiom 3 and theorem 10 still hold if L is substituted for L.
Proof. The proof of theorem 10 can be immediately transferred to

L instead of L. The only item consists in proving b) of theorem 10 for
L. We consider the sets I — L_(k) and I — L_(k) = {Y\ Y ζL and
μ(V, Y) = o for all F ζ k} therefore l^l. Since any element of I has a
representation by some Fv ζ L according to theorem 15 the Fv'& must be
elements of I. Thus, I is the convex set generated by I. I being ascending
directed, so is I (by theorem 15) and I and I have the same maximal
element Eτ = E\. El is an extreme point of I.
By theorem 16 we are henceforth permitted always to use L instead of
L and so to substitute the set Ό of all L_(k) for the set U of all L_(k).
U and U are order-isomorphic.

Axiom 4. For every V of a c.c.s. kζK there exists at least one F Φ 0
of Lwith μ(V,F] - o.
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While axiom 3 expresses the existence of e'sufficiently sensitive" effects,
the axiom 4 expresses the existence of "sufficiently insensitive" effects.
Every V ζ K being not a boundary point of K in the plane μ(X, 1) = 1,
i.e. being not an element of a c.c.s. φj&Γ, can be written with any other
Vl £ K as a mixture

V = λVl + (1- λ)F a, o^λ^l, V2ζK.

The extreme points of K (being elements of the closure of K and hence
being arbitrarily precisely approximable by ensembles of K\) allow a
representation as a mixture only by the triviality Vl = F2 = F. The
axiom 4 consequently signifies that

1) such ensembles cannot produce every effect, and that
2) for each set of extreme points generating a c.c.s. k =f= K only,

there is a F being not produced by these ensembles.
Thus nothing but K and L (for experimental verification) enter axiom 4,
too.

Theorem 17. a) any X ζ B satisfying μ(X,F) :> o for all F ζL and
μ(X, 1) = 1 is an element of K.

b) any Y £ Bf satisfying o g μ (V, Y) ^ 1 for all V ζ K is an
element of L.

Proof, a) The intersection K r\ S of K with a supporting hyperplane
8 of the cone generated by K is, as easily to be seen, a c.c.s. unequal to
K. Through every boundary point of K there exist such supporting
hyperplanes. According to axiom 4, for every boundary point F of K
a F 4= 0 of L is such a supporting hyperplane. These jP's, however, form
a sufficient system of supporting hyperplanes of the cone generated by
K, i.e. the intersection of the positive half-space determined by these
supporting hyperplanes is the cone generated by K. But the intersection
of this cone with the plane μ(X, 1) = 1 is K. Any X, however, is in the
positive half-space of each of these supporting hyperplanes hence in the
cone generated by K and, because of μ(X, 1) = 1, X is in K', this prov-
ing a).

b) By the definition

K'~{X\XζB&nάo^ μ(X,F) ^ 1 for all F ζL] ,

K' is the positive cone generated by K and cut off by the plane μ(X, 1) = 1,
i.e. K1 = {λV\ V ζ K and o g λ ^ 1}. So, K' being the intersection of
all the half-spaces μ (X, F) J> o, μ (X, F) ^ 1 for all F ζ L, conversely,
L is the set {Y\μ(X, Y) ̂  o and μ(X, Y) ̂  1 for all Σ ζK'}.

With X = λVB,iίdo^λ^l,VζK there follows:

μ(X9 Y) ̂  o equivalent with μ(V, Y) S o ,

μ(X, Y) rg 1 equivalent with μ(V, Y) ^ 1 ,

this proving b), too.
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Theorem 18. Every exposed point of K is as singleton an element of W.
Proof. If F is an exposed point then K_L_(V) = {F} unless

L_(V) — β. Since F is a boundary point there consequently exists at
least one supporting hyperplane F ζ L containing F such that L_ ( F) φ 0.

Theorem 19. The set of all extreme points of L is equal to G.
To prove this we verify the following lemma at first :
Theorem 20. Any F ζ L has the representation

F = Σλt(E<-Eί+1) (2)
ΐ = l

with o < λi <: 1, λi φ λj if i Φ j, Ei ζ G, En+1 = o and Ei > Eί+l.
Proof. Let αx be the maximum of μ (F, F) on K and let E1 be determined
by K_(F) = K_(E1). Then ocΐlF ^ ̂ . Putting

^ = αΓ1^ + .F8 (3)

we infer F%ζL from theorem lib. (3) directly implies K_(F2) 2 -&_(^ι)
Since there is F ζ E ^ with μ(F, αjf1^) = 1 and therefore (because of

J^> 1) with μ(F, jP2) = o so ^_(^2) Φ K_(E^, hence K_(F^}^

Defining E2 by ^_(-F2) = K_(E2] we obtain ^2 < Ev

To ̂  ̂ he same procedure as before to F is applied till an element
Fn+1 = 0 is obtained. In this way a set of equations of the form (3) is
got from which by elimination of the .F/s the statement (2) results to-
gether with the λ/s satisfying the conditions stated in theorem 20.

Proof of theorem 19. Every E ζ G is an extreme point, for E = λF^ -f-
+ (1 - λ)F2 with Fl9F2ζL*,udo<λ<l implies K_(FJ 2 K_(E) and
K_(FZ) 2 K_(E) and hence ̂  ̂  ^/ and F2 ^ ̂ . Suppose F L<E then
with a suitable V ζK

μ(V, E) = A^(F, JΊ) + (1 - A) /*(F, J1,)

, J?)

Consequently, F1 = F2 = E and hence J£ is an extreme point.
Conversely, supposed to be an extreme point and F $ G, then there is a

λi Φ 1 in (2), say λ% φ 1. Then a ε > o is possible to be selected such that
AX + ε ̂  1 and λg — ε ̂  o. Then

o ^ £ W - tf<+1) + (A» ± e) ( ŝ - #&+1)
ΐ φ fc i

With jF1 = iτ+ ε(J2?Λ-^Λ + 1) and F2 = F - ε(Ek~ Ek+1) we then
obtain

Fl9F2ζL and ,P = γίΊ + γ^2 ,

this contradicts to be an extreme point.
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From theorems 19 and 20 there may be easily inferred:
Theorem 21. For every F ζ L there exists a λ with o < λ ̂  1 such that

F ^ λE with K_(E) = K_(F).
Proof. Substitute all λ^ in equation (2) by the minimum oί the λ$.
Theorem 22. Every Y ξ Br can be written as

with ocj, φ ocj if i φ j, Et ζ G, En+l — 0 and E{ > Ei+l.
Proof. With β < min{μ(F, Y)\V ζK} theorem 20 can be applied to

F=7+βl.
Theorem 23. Every F ζ L has the representation as

m m

F = ΣλiEi with λi>o,Σλi^l and E^G.

Proof. An immediate consequence of theorem 19.

III. Commensurability

In [1] the concepts £'coexistence5' and "commensurability" having
been discussed in detail, only their definitions shall be stated here. As is
well-known, a Boolean ring (without 1-element) is defined to be a ring
with the additional property a a — a for all elements of the ring.
Because of

a -j- a = 0 holds then .

The sign + is selected to distinguish addition in Boolean ring from that
in B or B'.

Definition 14. A £ L is said to be coexistent if there is al Boolean
ring R with A Q R C L and

μ(V, FJ + μ(V, F2) = 2μ(V, F1 F2) -f μ(V9 F1 + Fz)

for all F19 F2ζR and all F ζ K.
Definition 15. A set A of decision effects E is called to be commen-

surable if there is a Boolean ring R with A C R C G (G the set of all
decision effects) and

μ(V, EJ + μ(V, Ez) - 2^(F5 E1 - E2) + μ(V, Eλ -f E2)

for all E19 E2ζR and all F ζ K (and hence ζK).
If A consists of exactly two decision effects then these two decision

effects are called to be commensurable.
Next we will show the important
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Theorem 24. // there holds E± g E2 for two decision effects Eλ, E2 then
they are commensurable.

This theorem was postulated in [1] to be an axiom. This is unneces-
sary because the assertion of theorem 24 is inferable from the preceding
axioms 1—4. As lemmata for the proof of theorem 24, we show

Theorem 25. With Ev E2ζG such that Eλ ^ E2 and with E12 defined
bij K_(E12) = K_(F) there follows from E2^E1 + F that E2 = E1 w E12

and E1 r\ E12 = 0, i.e. E12 is a relative complement of E1 for E2.
Proof. Let be F £ L with F ^ Eτ and F ^ F. α = max{μ(F, E1 -f

+ F) I F ζ K} yields 1 ̂  α ̂  2 and ί" - ~ (El + F) ζ L and, because

of K_(F'} - -KL(jBι), ̂ ' ^ ^i, too. With F such that μ(V, E1 + ί7) = α
there holds

1 = /.(F, J") =~μ(V, E,) + ±μ(V,F) g ̂  + -^-

Because of F' <S ̂  there is // ( F, jE/j) = 1 and hence μ ( F, E2) = 1

and μ(V,F) = o, therefore 1 ̂  — , this implying α = 1 because of

1 ^ α ̂  2. Thus E L + F^ E1 and hence F = 0. Select a λ according
to theorem 21 such that λE12 ^ F and hence a fortiori λ(E1 r\ E12) g J7.
F = λ(Elr\E12) implies F ^ E1 and F ^ F, thus JF = 0 and hence

1̂ ̂  ̂ 12 = 0.

From #2 = E1 + F there results

/C(^) n ^_(^12) = JΓ_(^) n K_(F) = K_(E2)

and hence, because of

K_ (El \j E12) - K_ (EJ n K_ (E12) , E2 = Eλv E12

finally.
Theorem 26. -F /rom theorem 25 ίs α decision effect, i.e. E2 — E± ζ ̂

i/ JSΊ, jB2 ζ G αiwZ ^Ί ^ ̂ 2

Proo/. We verify jP - ̂ 12 with E12 defined by K_(E12) = K_(F).

K_(E12) - ̂ _(^) 2 ̂ _(^2) imply JS712 ^ E 2 .

Therefore there also holds E2 = Eί2 -f F, theorem 25 being valid for
E2 and 1̂2, too. E12 -{- F = El-\- F implies E12 — F = E1 — F. Because
of F ̂  Eί2 there hold F1 = E12 - F ζ I and j^ ̂  ̂ 12. But ̂  = E1-F

has as an implication F1 ^ J^j, too, thus K__ (F-^ 2 ^_ (^ι2) and
K_(Fj) ^ K_(EJ. Therefore a consequence of K_(F^} ζ W is also

JKL (- î) 2 /ί- (^i) w JK"_ (E12) = K_ (E1 n E12) , i.e. F1^ Elr\ E12 .

Since according to theorem 25 El r\ E12 = 0 holds, .F\ = 0 is also valid,
i.e. F = E12.
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Proof of theorem 24. E2 = E^ -f E12 according to theorem 26. By
definition 15 select a Boolean ring jR:

0, Elt Ez, E1 + E2 — EIZ, El

t Ez~ El .

Because of E2 — Eτ + E12 all the necessary conditions can be easily
verified.

The following theorems were then proved in [1] :
Theorem 27. The lattice G is orthocomplemented, i.e. there exists a

dual-automorphism E -> E* on G such that

E** ^E and E r\ E* = 0 .

E* being defined by 1 = E + E*.
Two elements Ev E2 are called orthogonal, E± _[_ E%, if and only if

E2 ^ E f .
Definition 16. An ortho complemented lattice is said to be ortho-

modular, if and only if

E1 \J E2 = E1 \j E'2 with E<ίA_E1, E% 1 E1

implies E2 = Eί>.
Theorem 28. The lattice G is orthomodular.
Theorem 29. The measures μ ( V, ) on G, V ζK, are orthoadditive, i.e.

for mutually orthogonal ϋ?/s

Theorem 30. // there is a set of orthoadditive measures {m | m (E) ^ o
for all E ζ G, m (E-^ = m (E%) for all m implies E1 — E%} on an ortho-
complemented lattice G then G is orthomodular.

Theorem 31. The following two statements are equivalent
1) G is orthomodular and μ(V, - ) are orthoadditive measures on G for

all V ζ K.
2) Two elements Ev E% £ G such that E1 ^ E2 are commensurable.
Theorem 32. Two decision effects Ev E2 are commensurable if and

only if
El - (E! Γ\ El) \j (E! A Ez) .

So far, the theorems proved in [1].
As is simply to be verified the set

K+(l) = {V\V £K and μ(V,F) = l for all FζlςL}

is completely convex. Likewise we define

L and μ(V,F)=l for all VζkQK}.

There exists a maximal decision effect E belonging uniquely to L_K+(l)
such that K_L_K+(ΐ) - {V\ V ζ K and μ(V, E) - o}.
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Hence, because of μ(V, E) + μ(V, E*) = 1

K_L_K+(l) = {V\VζK and
i.e.

K_L_K+(ΐ) - K+(E*) = K_(E]

and thus, because of
K+(l) gK_L_K+(l) ,

K+(t)gK+(E*),
too.

From F ζL+K+(l), 1 - F ζL,K+(l) is deducible hence 1 - F ^ E
— 1 — E* and so F ^> J2*. Consequently, .Z£* is the minimal element of
L+K+(l). So, there holds, because of I ^ L+K+(l), F ^ E* for all ̂  ζ Z
and hence K+(l) 2 K+(E*).

Thus the following theorems are obtained :
Theorem 33. Any element of W can be represented as

K+(E*) = K_(E) .

Theorem 34. Every set K+ (I) is an element of W.
Theorem 35. // F ζ £_ (k) then 1 — F ζ L+ (k) and conversely. In

addition, L+ (k) has a minimal element belonging to G.
Theorem 36. Any F ζ L can be uniquely represented by

F = Σ λvEv, o ̂  λv < 1, λv Φ λμ
v

if v φ μ and mutually orthogonal Ev ξ G.
Proof. According to theorems 20 and 26

is valid.
Because of E^ = Eί r\ Ef+ 1 and Et > Ei+1 there holds E[ \_Ej for

/ > i and hence a fortiori E^ J_ Ej for '̂ > ί. Therefore the Efa are mutu-
ally orthogonal.

Given two representations

it can be easily deduced that one of the λv's and one of the λ'μ's are the
maximum of μ(V9 F) on K and that the corresponding Ev respectively
E'μ are equal to E1 determined from above. So, step by step, uniqueness
too, results from the procedure of theorem 20.

Theorem 37. Any Y ζ B' can be uniquely represented by

Y = Σ <xvEv> &v Φ &μ if v =f= μ, Ev ζ G mutually orthogonal.
V

Proof. An immediate conclusion from theorems 36 and 22.
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IV. Decomposition of G into irreducible components

Definition 17. The centre Z of the lattice G is the set of those elements
of G which are commensurable with every element of G.

As a consequence 0, 1 ζ G belong to Z in any case.
Definition 18. G is called to be irreducible if Z consists of the elements

0 and 1 only.
Theorem 38. The centre Z consists of all the elements which can be

obtained as union of elements of a set z the elements of which are mutually
orthogonal, z is said to be the basis of Z. The union of all elements of z is
equal to 1.

Proof. By an atom of Z an element (Φθ) of Z is denoted for which
there does not exist a smaller element Φ 0 of Z. Let z be the set of all
atoms of Z. According to theorem 32 any two elements E^ E2 with
E L Φ E2 are mutually orthogonal because for atoms there holds
E1 r\ E2 — 0. If E is any element of Z there must be an atom E± ̂  E for,
otherwise, there would be an infinite sequence (Ev) with E > El > E2 >
By theorem 32 there would be thus an infinite sequence of mutually
orthogonal elements Evr\E'f+lί this contradicting the finite dimension
of B'. Applying theorem 32 and using the atom E± we can write
E ^ EI r\ (E r\ Ef). In the same way E r\ Ef can be proceeded with.
B' being finite dimensional, so E = U Ev is obtained by some Ev ζ z.

Thus U Eκ is the greatest element of Z which contains all the other
B<£*

elements, i.e. U EΛ = 1.
V β

Any E ζ G being commensurable with all elements of Z and so a
fortiori with all elements of z there holds with Ev ζ z (v = 1, 2, . . . , n)

this being easily derived by repeated application of theorem 32. For all
E £ G the elements E r\ Ev, v fixed, form an orthocomplemented ortho-
modular sublattice Gv of G satisfying

(E r\ Ef) r\Ev^(Er\ Ev) r\ (E1 r\ Ev)
and

(E r\E')r\Ev=:[ U^ (E r\ Eμ) u (W r\ Eσ)] r\Ev^(Er\ Ev) \j (E' π Ev).

Theorem 39. The space B' is the direct sum of spaces (B')V) each (B')v

being spanned by elements of Gv.
Proof. The elements of G spanning the entire B', it is sufficient to

prove that the elements of G (as elements of B') can be decomposed into
a sum of elements of Gv with the additional condition

(B')v r\ (B')μ — {0} if v φ μ (set theoretical intersection).



344 G. LTJDWIG :

Since mutually orthogonal Ev ζ G generally satisfy the identity
U Ev — Σ $v (Σ denotes summing in B'} which is clearly equivalent with

») fora11 VζK,
V

so there is the validity of

E = U (E r\ Ev) = Σ (E r\ Ev) with Evζz.
V

From theorem 37 uniqueness of such a decomposition results, this
proving the assertion.

A decomposition of B into B = Σ Φ Bv corresponds to a deeomposi-
V

tion B' — Σ ® (B')v This can be derived most evidently if for every
V

X ζB a component Xv is defined by μ(Xv,F) = μ(X,Fv)9 Fv being a
component of F in (B')v. Because Fv is uniquely determined by F and
the mapping F -> Fv is linear, the definition is meaningful. X = Σ %v

V

can be directly inferred from F — Σ -^V If v Φ μ then μ(Xv, Fμ) = o.

Suppose Xv == Xμ if v 4= μ, then μ (ZV5 .Fv) = o, too. This implies
μ(Xv, Σ

Fμ) = °>F = ΣFμ being arbitrary. Thus the final result Xv - 0.
μ μ

If the -X"v's (as linear functionals over B') are restricted to (B')Vί so
each (Bv, (B')J) is a pair of dual spaces with just the properties belonging
to (B, B'). Therefore, the structure of a decomposable system is clarified
as soon as the structure of irreducible systems (i.e. such with Z = {0, 1})
has been clarified. A subsequent part III will treat of this.

V. Coexistent effects

By definition 14 two effects Fl9F2 ζ.L are coexistent if there are
other effects of L :

which together with 0 form the Boolean ring R and satisfy the condition
of definition U. By abbreviating F1-F2 = F, F1 + Fl F2 = Fr and

F2 4- F1 F2 = F" we can satisfy all the conditions of definition 14 if
there hold

F^F' + F, F2 = F" + F and F' + F" + F£L.

Thus the following theorem has been proved :
Theorem 40. Fl and F2 are coexistent if and only if there exist three

elements F', Fn ', F ζ L with

Fτ = F' + F, F2 = F" -f F and F' + F" + F 6 L

all being elements of L.
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Consequently, two effects FIt F2 with Fl g F2 are always coexistent.
Definition 19. Let be F £ L, E £ G and .F = ,F, + J?^, where J,,

FL ζL^nάFl ^E,F^^ E*.
Then E is said to reduce F.
Theorem 41. An effect F ζ L and a decision effect E £ G are coexistent

if and only if E reduces F.
Proof. From theorem 40 there follows

FI - E19 E1 - F' + F, F2 - F" + F and F' + F" + F = El + F" ζL,

i.e.
o< μ(V,El) + μ(V,F")^ I for all V ζ K .

If VζK+WJ = K-(El), then μ(V,F") = o, i.e. JF" ^ j£f. Because of
^ = F' + JF there holds F -g, E± and hence ̂  reduces JF2. If $ reduces
the effect F, so with E -F^F': E - ί7' + jP,, J7 - Fj + F^_ and
^ -f J?7, + F± - Jζ7 + FL ζ L, since Jf + FL ^ ̂  + E* = 1.

Theorem 42. T^o coexistent decision effects are commensurable, too.
Proof. According to theorem 41 E± and E2 are coexistent whenever

E1 reduces E2 and vice versa. E1 reduces E2 if E2 = J^ -f- i^Λ2? where
^ ^f. SinceF±l g ^2andjPu g E^soF^^ Elr\Ez

n jBf. We will show that J^ = E1r\E2 andF±1 =^E^r\Ef.
1) let be Elr\E<ίφ 0. We select a V ζ K+(El r\ E2) ς K+(E*>). Then

1 = μ(V,E2) = μ(V9F}l), because μ(V, F±l) ^ μ(V, Ef) - o on ac-
count of K+(El r\ EI) - K_(E* ΓΛ ̂ ) g K_(Ef). Since ^(F, Fu) == 1
for all F ζ /^+(^ι n -βJ2)5 thus Fn = E1r\ E2\ for otherwise, there holds
E^r\E^ = Fn + jP with F ^ E1r\ E2 and hence

1 = μ(F, ̂  n E2) = ^(F, ̂ }1) + μ(F, J) = 1 + ̂ (F, F) ,
i.e.

μ(V, F) = o for all F £ /^.(^ n JS8) - K,(Ef n JPj) .

Therefore, F ^ Ef r\ Eξ = (Elr\ E%)* and hence, because oϊF ^ Elr\ E2,
F ^ (Ei n $2) r\(Elr\ E2)* - 0 finally.

la) Furtheron, if E2 π JS7f φ 0 then choose a F £.£+(#2 n $f).
Likewise F± = E2r\ Ef is deduced and hence i?2 = ($2 r\ ^) +
+ (E2 n J£f). From E2nElA_E2r\ Ef we finally obtain

#2 - (52 ΓA JS/i) w (JS72 n ^f) .

Ib) If E2 r\ Ef = 0 then F^^Q and thus E2 = E2r\ E^
2) If EI r\ E2 - 0 then E2 = E2r\ Ef.
This completes the proof of theorem 41 from theorem 32.
In a work1 by MR. HELLWIG it was shown that, concerning the

measuring process with respect to quantum mechanics, effects Fv F2

can be produced coexistent by a measuring apparatus, if the conditions
of theorem 40 are satisfied.

Preprint Marburg.
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VI. Reflections on the basic suppositions of the theory

Disregarding the formulation of the axioms 1—4 suggested by
physics, we can characterize the mathematical contents of the theory
by the following facts of the case :

There are given a vector space B and in B a convex cone $ (with
vertex 0) containing no entire line through the origin but spanning B.
A plane S without 0 cuts & in such a way that the intersection is a
bounded set K. By the convex cone & a partial ordering is determined
on the space B1 dual with B in a well-known manner (see definition 8).
All Y ζ B' with 7^0 determine a convex cone S?0 in B' which is the
polar of ® in B. The set { Y \ Y ζ B' and μ ( V, Y) g 1 , F £ K} determines
another convex cone ̂  in B' the vertex of which is fixed by the plane
8 = {X\Σ ζ B and μ(X, YJ = 1}. The intersection of $0 with ^ is
L. So far, the mathematical structure is consequently defined only by an
(almost) "arbitrary" convex cone 5? and an (almost) "arbitrary" plane S.
In this still very general mathematical state the only limiting additional
supposition is the axiom 3 assumed in the form :

Axiom 3. For any two Fί3 F2ζL there exists a F3 ζ L such that
F1 < F3, F2 ^ F3 and μ(V, FJ = μ(V, F2) = o implies μ(V, F3) = o,
too.

Thus we are authorized to say that axiom 3 is the only decisively
important supposition. It is the reason why the decision effects form an
orthocomplemented orthomodular lattice and why the probability
measures (F ζ K) are orthoadditive over this lattice. It also comprehends
the reason for certain decision effects to be commensurable.

A strengthening of axiom 3 leads easily to reparation of the "classical"
case characterized by G — Z :

Axiom 3c. The set {F\F ^ Fl9 F ^ F2 and K_(F) = K^FJ π
r\ K_ (Fz) for jP1? F% £ L} has a greatest lower bound.

For the present assume G = Z. Let Ev be the atoms of G — Z. Then
G consists of all elements ^ Σ bein extended to a subset of the

Ev's. All the elements of L have the representation Σ λvEv where
V

o ^ λv ^ 1 . All F £ K are uniquely given by vv — μ ( F, Ev) where

Σ vv = 1. Likewise, all F ζK are obtained by arbitrary vv ^ o with

j>, = 1. Clearly, the set { |̂̂  ̂  FI9 F ^ F2 and K_(F) = K,(F^) n
V

r\ K_(F2) for Flt F2 ζ L} has a greatest lower bound obtained by
λv = max{λj, λ*} with λ} by Fl and )ξ by ̂ 2.

Axiom 3 c being now supposed, any two Ei9 E2ζG will be shown to
have to be commensurable. It sufices to prove this for E1 n E2 = 0.
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Considering the two effects F± = -~ E± and F2 = ~-~ E2 we get an

effect F = -<>- (jS^ \j E2) satisfying

TΓ (7F\ fc" / Ϊ57 \ / 77M If (IF \ π Ί? (ΊF \ ff {Ή \ r-\ W (TF \
-£v_ ^_ι7 j = Xx_ \-*-^l ^ -* ̂ 2/ :=::: •"- — V I/ ' ' -**•-— v^a/ == •"•— \-P I/ ' ' -""— V-*^ 2/

Next, the nonexistence of an effect F% with F% ^ -~- Ei9 F% ^ -^- ̂ 2 and

F% < F shall be verified. On account of F% < F, in the canonical decom-
position of F according to theorem 36 there exists at least one λv such

that λv < Y further, for the EV

9& Ev g E1 r\ E2. Yet V ζ K+(E^ implies

μ(V, FS) = —, so does V ζK+(E2). For such a F, however, there would

be (in the canonical decomposition of F) μ( F, Ev) = o for all Ev with

λv < Y , i.e. Ev j_ El and Ev j_ E2. This contradicts Ev^ E±\j E2.

If, however, ̂  and jδ/2

 are incommensurable so there holds, indeed,

but not

±-(Eι + Et)^-(l

this contradicting axiom 3c.

To prove -^ (E± + E2) ^ -^ (E^ \j E2) we consider the canonical

decomposition of -^ (E1 + E2) according to theorem 36. In this there

must be at least one λv<-~- (the greatest λv is > -^ ! j .

This results as follows:
For one V ζK+(EI] μ(V,E2)=\=o must be valid since, otherwise,

E2^_E±\ this contradicts E± and E2 being not commensurable. Con-
sequently,

1

and hence one λv > y .

Since E2 ±Eltμ( V, E2) < 1 is deduced from V ζK+ (E* r\ (Eί \j E2)),

hence we get-— > Σ λvμ(V, Ev) whereΣ flCV* Ev) = 1. Thus (since one
2 v \

λv > -a-j at least one λv is < -^ . So we have the relation for that F ζ K+ (Ev)

belonging to the v with λv<-ψ :

μ\V^E^^E2}^λv<~^μ

hence
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In the general infinite dimensional case, too, the mathematical theory
of partially ordered topological vector spaces and of the correlations
between the cones 5?, $0> ̂ i nas been investigated [2]. It will be decisive
to investigate the limitation of the theory by axiom 3.

I thank Mr. G. DAHN for critical perusal of a preprint from which this version
has originated and for the English translation.
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