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Abstract. It is investigated in which sense the Bogoliubov-Haag treatment of
the B.C.S. -model gives the correct solution in the limit of infinite volume. We find
that in a certain subspace of the infinite tensor product space the field operators
show the correct time behaviour in the sense of strong convergence.

§ 1. Introduction

In spite of the vast amount of papers on the many body problem
there have been very few nontrivial problems where a result could be
established with certainty. One notable exception is the B.C.S. theory
of superconductivity where through the work of BOGOLITJBOV [1] and
HAAG [2] it turned out that HBCS may be replaced by a HB which can
be diagonalized by a Bogoliubov transformation. The present paper
studies the question under which circumstances and in what sense this
statement is correct.

We shall use the quasi-spin formulation [3] in which the BCS-
Hamiltonian is

Ω pφ Ω Ω

HΩ = Σ**(l-°*p)-~ϊfΣ<'ϊ £4" (!)
p = l " p = l pl = l

Ω is the number of pair states and Tc an interaction constant which, in
suitable units, is the critical temperature. HΩ acts in a 2Ω dimensional
space and the σ^ are Pauli matrices

(σ± = Y fac ± i

If the kinetic energy ε^ is independent of p (strong coupling), HΩ can be
trivially diagonalized since with

S = y2X (2)2 P
it becomes

a m

Ha = e(Ω - 2SZ) - ±±j- (S2 - 8t(8. + 1)) . (3)

* This work was partly supported by General Atomic Europe, partly by the
Ludwig Boltzmann Gesellschaft.
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Since S has eigenvalues 8(8 + 1), 0 ̂  S g Jβ/2, -S<SZ<S, we see
that the eigenvalues E (S, Sz) define two characteristic frequencies which
are for S, S2 ^> 1

Δ = E(8, S,) - E(8 - 1, S,) = -4Tβ~- (4)

and

2μ = E(8, 8Z) - E(8, fl, - 1) = -2ε + 4TC -§- (5)

$3 gives the number of pairs so that the second frequency is directly
related to the chemical potential and becomes zero for β = H — μN.
In the general case the problem is solved in the limit Ω -> oo by observing
that the commutator of

sfl = ̂ -S (6)

with an operator of the algebra of the σ's goes to zero. Thus in an irre-
ducible representation s^ is a c-number. Now HΩ can be replaced by

HB = ~ Σ 0*42> + 4 Tc (<V s™ + 8- σ+)) + const . (7)
V

Since HB gives the same commutators with all σ's as H^, they should

differ only by a c-number. HB is linear in the σ's and can be written

n2 = 1 . (8)
p

Thus HB contains only one frequency which will turn out to be Δ .
To investigate in what sense the arguments for the general case are

correct it is useful to consider HΩ as operator in the infinite tensor
product space (C.D.P.S.) [4] of the problem with Ω — oo. Then one can
study in which topology the various operators converge for Ω -> oo. It

turns out that the densities sβ and -~ HΩ converge strongly in a rather

large subspace of the C.D.P.S. If EQ is a suitable c-number HΩ — EΩ

converges only weakly and only in a small subspace towards HB.
Thus the operator H^ does not seem to be a useful object. One may

argue that this was to be expected and that these topological questions
are of no physical interest.

What one actually wants to know is whether

converges towards eiHjitσpe~ίHjίt and this should exist everywhere in
the C.D.P.S.

It turns out that in general they are quite different although HB and
HΩ give the same commutators with the σ's. However the s^ in HB is
treated as a c-number and thus a constant in time.
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But
800(0= lim eί£ΓΩίse-ί£ΓΩί (9x

Ω— >CG I

turns out not to be constant in time since

lim [#β,sfl]Φθ
Ω— >oo

and it rotates with the frequency 2μ of (5) around the s-axis. Just in
these representations where μ = 0, #g gives the correct time develop-
ment and these are the subspaces where HΩ — EΩ converges. Generally
the situation can be saved if β = H — μN is used for the description of
the time development. The chemical potential μ has a value such that G
has no second frequency and thus

8^(0= lim e^Ω^e-^Q1 (10)
Ω-+OO

is actually a constant. Then it follows immediately that SB gives the

correct time behaviour in the sense that elHΩtae~~lHΩt converges to-

wards elH Btσe~'iHβt in the strong operator topology.

§ 2. The infinite tensor product

In this section we shall briefly review the theory of the infinite
tensor [4] product specialized to our problem. For each p we have a
twodimensional complex space, in which we characterize the unit
vectors \ri) by a (real) unit three-vector n by

(σ n)\n)=\n). (11)

This determines \ri) up to a phase eί(P. The scalar product of two such
vectors is given by

(n>) = β*,|/i±^pί. (12)

The Hubert space we shall consider is the product

ff

The unit vectors
) (13)

P

are characterized by the set {n} of the three-vectors np. The scalar
product of two such vectors is

<{»'}|{»}> = /7(n>,) = 77eWl±i^ (14)
P P '

Since p = 1 , 2 . . . Ω for Ω == σo the question of the convergence of Π
p

arises. We distinguish three cases:
22*
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1. Π converges absolutely, i.e.
p

Σ < σo . (15)

(15) can be seen to define an equivalence relation which we denote by
\{n'}y & \{n}y and we shall say that if (15) holds \{n'}} and \{n}} are in
the same equivalence class C{n}.

2. Π does not converge absolutely but does so without the phase

factors eιφ»

Σ ,/ 1 + (n, O _
< oo . (16)

(16) defines another equivalence relation which we denote by

and all \{n'}y of (16) form the weak equivalence class Cw{n}. One sees

easily Cw{n}^C{n}. If \{n'}} £ |{τz}> but |{ '̂}> φ \{n}} (14) is meaning-
less and then we define

<{»'}IM> = o .
3. Π diverges to zero, i.e.

Σ
J 1 + (n, nj)

(18)

in which case (14) gives {{W}l {%}} = 0.
By linear extension one now obtains from the |{%}} vectors the (non-

separable) Hubert space <2jf. Similarly the |{%}} of an equivalence class
C{n} span the (separable) product space (I.D.P.S)

c
-̂  __ 7T(0) (7(2) (19^

{τi} •*• -*• ^^ p ' \ I
P

One can show that the vectors obtained from |{?ι}} by flipping a finite
number of "spins" are dense in ffl^nγ Explicitely we can construct these
vectors as follows. Denote by 2n+ a vector orthogonal to n plus i times
the vector orthogonal to the two others. Then |{̂ }) is characterized by

Define n~ = (n+)* and

p

where m^ = 0,1. Those p in (21) where m^ = 1 have their spins flipped
and the dense set is characterized by
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Regarding weak equivalence classes it is clear that the unitary operator
U{φ} defined by

U{φ} 770 K) - 770 e |̂O (23)
p P

does not lead out of Cw{n}. However for Σ I ψp -> °° it leads out of C(n).
p

w
Conversely for | ') & | ), but | '} 4* I } there is always a U^ such that

^wl'>H>
The operators we get from the σ^ by algebraic processes and weak
closure form the algebra jB# = (U σp\'.

They are, however, not all the bounded operators but one has
v. NEUMANNS Theorem :

VAζB#^>[A,Pc]=[A, E7] = 0. (I)
Here Pc is the projection operator onto an equivalence class and U is a
unitary operator of the form (23). (I) means that B# does not lead out
of an equivalence class and hence the $F ̂  reduce the representation
of the σ's. One can see easily that within an 3? ̂  the representation is
irreducible and an operator commuting with all σ^'s is a c-number in
•^{n}1. Furthermore, since the £7's transform from one C to another C
within one Cw, (I) shows that the representation of B& in all O's of a Gw

is the same. This is also the reason for our notation ffi ̂  although the
?ι's characterize only Cw and not C. To define the C one still has to know
the phase factors φ^ but (I) tells us that the representation of Bfi does
not depend on them.

§ 3. Operator convergence for Ω — ̂  oo

As it is to be expected [5] the intensive quantities show the largest
domain of convergence. This is described by2

Lemma 1.

i Ω i Ω

lim 2sβ = lim — JEX -> lim -^ Σ ^ = ^n , ^
β->oo β-»oo U p==ι β-»oo M y = ι (ΛQ)

n2 = 1 , 0 ̂  η < 1

i Ω

in these J^rn\ in which lim -— - Σ n» exists.
^ β-^«'^2, = ι

Proof.

2$Ω \{n}, {m}y = -i- Σ K(^ n*) + 2n~ (^ - n+) + (25)

1 This number may be different in 3? ̂  if I W) φ |{ '̂})
2 Our notation for convergence is =Φ uniform, ->• strong, -*• weak, the two latter

in the extended sense explained below.
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Now

i Σ *,(***,) IW. «> = ̂  Σ (-Γ* nJM, M> -> ηn\{n},
"

-̂  f < (*,<) IN. M> =^ f 1±|=>̂  n+ Kn-) |{«}, {m}> -> 0.
p=l p=l

Since ||sβ|| ̂  1 Vί3 and the |{̂ }, {m}) are dense in $P ̂  this proves
lemma 1.

Remark. One might have expected since [«s ,̂ σ'3] = *εα/3y-^- =Φ 0

that SΩ = >̂ towards a c-number. This is not the case because

\\2sΩ- ηn\\ ^ 1 V ί 3 . (26)

Since the product of strongly converging bounded operators converges
strongly to the product of the limits, lemma 1 gives the limits of intensive
quantities, f.i.

Corollary.

-
Ίi

(27)

where b is an arbitrary vector. We shall always assume that the ε^
remain bounded and vary sufficiently slowly so that the lim in (27)
exists.

Whereas the limits for intensive quantities exist in a reasonably
large class of 3f '̂ , one can give a meaning to the limits of extensive
quantities only in more restricted domains :

Lemma 2.

N in DN C JP{n} (28)

where N\{n}, {m}> = Σ mv\
p = l

and DN is the domain of N.

Proof.

W ]

2:!'
Since j?V is self-adjoint one immediately sees the

Corollary.

U0 = ei',?l

(l-( *'n*»-*e*it* in f̂ ,n} . (29)
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CO

Remark. Σ (1 ~ σs> ' n3>) nas a πieaning only in the equivalence
p = l

class determined by the {n^}. For non-equivalent {n^} this sum has
domain zero, i.e. it makes any non-zero vector infinitely long. Similarly

f.i. e^ίf/1"0*' * converges only in the equivalence class where all π's are
in the ^-direction. One might wonder why one cannot define a rotation
£7 oo around the z-axis for other equivalence classes since this is certainly
a unitary operation in 3ίf. However, for other equivalence classes ϋ ̂
leads from one ̂ ^ to another for any t =f= 0. Hence, by v. NEUMANNS
theorem this cannot be effected by limits of operators from B# like

elt

P?ισ* . Such a rotation is discontinous in the rotation angle t and hence
Stone's theorem is not applicable. Thus we cannot write U^ as eίtN in
agreement with the observation that the formal expression

CO

N — y (rr(z) — "ΠXV — £j \Op L)

p = l

has no meaning in other equivalence classes.

Extensive quantities of the type of the interaction energy have even
worse convergence properties.

One might expect that by subtracting the expectation value, now in
each factor, convergence can be achieved. What happens is described by
Lemma 3.

\Σ(^ -Y^ + i^))^ (30)

Proof. Again it is expedient to use the decomposition

On inserting and using the commutation relations of the σ's we see that
for p = pf the term of the r.h.s. of (29) remains without operators as
factors. The other contributions can be seen to converge to zero as in (25).
However, now we have a double sum and only one factor IjΩ in front. In
brief these are terms of the form

They converge weakly to zero but their norm (for mv = 0, f.i.)

<l> = -i-£l = l (32)
P,P'

does not go to zero.
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Remark. The right hand side RΩ of (30) converges weakly on the
dense set |{m}, {ft}) towards a c-number c. However it cannot converge
everywhere since \RΩ\ oc Ω and does not remain bounded uniformely in
Ω. One finds that for those states j/} for which RΩ\fy does not converge
weakly, \\RΩ |/)|| -> oo and thus the limit is not defined. We shall call c the
generalized weak limit in the same way as we interpreted N in (28) as a
strong limit in a generalized sense. The difference is that N is already
self ad joint and thus there is no further self ad joint extension.

A c-number defined on a dense set is not self -adjoint but c* is c
everywhere in & '. But c* = c** and thus it is essentially self adjoint. That
is to say c everywhere in 3? is the unique self ad joint extension of the
limit of the EΩ and contains all symmetric extensions.

Collecting our findings so far we are in the position to state the con-
vergence properties of HΩ in form of

Theorem 1.
, -j

Σ^ (<*ϊ - y (<> + i^H0-E0=- - Σ <*ϊ - ( > + i ) X

Σ - -
p,p'

_ jV*>r z>s?
? * ?~Ω~

if the "gap equation"

l=^Σ~y—lη^+n(y)ί] (34)
holds.

m

7? — V i0 τ 2fl"ri
Ό *'!_ „, (35)

p^ 1 p

Proof. Equating the coefficients of σp in (33) we see

=

^IJj, = ε,>

from which we deduce (34). The rest then follows from the lemmata 2
and 3.

The condition (34) simplifies in the strong coupling limit (ev = const.
hence all n^ parallel) to

e I Ω

(37)
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For the ground state (all η^ = 1) only in those ̂ ^ with nM = εjTc the
Hamiltonian tends towards a limit. These are the representations for
which the second frequency (5) goes to zero.

2Tcη= |/ε2+

Fixing nW (and hence the number of pairs) we are forced into those 3ί?{ny
where η and thus the percentage of ^-modes which contribute negatively
to the energy is given by (37). This peculiar situation disappears if one
uses β = H — μN where ε -> ε — μ. In this case μ is to be chosen such
that (37) is satisfied for the given value of n^ and η.

Remark. Since HΩ-EΩ-f-*HB we have eit(HQ~EQ^-h^ eitHβ. We see
this explicitely in the degenerate model

p'p'

where the ground state is all n^ in the x — ί/-plane, for instance np — i
= unit vector in x- direction. Then HB |{0}, {i}} = 0 and hence

However using well-known formulae for matrix elements of rotation
matrices we find

m + tn2

5 « ->
(s — m)! (s -f w)!s ^ / \ i /

CO

/

fl.γy} nί2

i* //t /i i Λ / ΛΠ \
—=^β s U-rtίJc) =

1/1

Generally the situation is that weak convergence of unitary operators
towards a unitary limit implies strong convergence. However if
(it)~l (eiHnt — I) ~ Gn(t) posess uniform boundedness properties on a
certain domain, Gn (t) -> G (t) V t Φ 0 implies θn (0) -> G (0) on this domain.
In our case these boundedness conditions are met and thus the weak
convergence of the time translation operators would imply HΩ — EΩ -> HB

which we know not to be the case. Nevertheless we shall now see that
HB describes in its domain the correct time dependence.

§ 4. Time dependence of operators

The crucial question for the time-dependence of the σ^s is whether the

actually tend towards constant c-numbers or show a time dependence.
Defining as usual
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we find for fixed Ω

~ (40)

(41)

In general these time derivatives are 4= 0. The reader who is surprised by
this fact should remember that lim an commutes with the operators

Ω—>oo

from J5*. However lim (HΩ — EΩ) in general does not exist and hence is

not in jβ#. Only for those ^^ which satisfy (34) and thus HΩ = EΩ

converges σn tends toward zero. With Ev = ]/ε| -f T* 2(n^z -f n^2) we
note that for Ω -> oo the r.h.s. of (40) converges strongly towards

_i_ y
2,

_:_£. y
2 2;

_ _
Q

Similarly (41) becomes

τ

2TC lim

(42)

(43)

From (40) and (41) we now conclude that all time derivatives of arbitrary
(finite) order converge strongly toward zero if (34) is satisfied.

Furthermore the sw are bounded by

'Is II <c Wnl^ V O T/7
(44)

similarly we see from (40), (41) that the n'th time derivatives are bounded
by

d»
dtn

where c is independent of Ω. Thus

Σ -
n = 0

^ N\
(45)

By chosing N sufficiently large one can always make RN arbitrarily small
and since all finite time derivatives converge strongly towards zero if (34)
holds we have shown that in these representations s converges strongly
to a constant c-number.
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Similarly for the time dependence of the βj, we obtain f 1.

Γ-γ-f TJ 1 •> Γ/τ~r ff Ί /<d.ίι\

since HB is constructed such that it has, in the limit, the same commuta-
tors with the σp's as H. If (34) holds so that the commutators of s with
HΩ converge to zero we see that the n'ih time derivative σ^ converges
strongly towards the corresponding commutator with HB. Furthermore
we have again
clude

^ cn so that by the estimate used in (45) we con-

a9(t) = eίtHΩσί)e~UHΩ~^eίtHBσ^e~ίtH8 (47)

if (34) holds. However in a general representation where (34) does not
hold, HB will give a totally incorrect time dependence. This is exhibited
immediately in the strong coupling limit where one finds

sz = const., s±(t) = s±(Q) e ±*«<2*-42Vg

i.e. a rotation around the 2-axis with the frequency 2μ of (5). HB now
gives a rotation of the 0r's around a fixed s with a frequency A. The
correct time dependence given by HΩ is this rotation around s which,
however, rotates itself around the z-axis. Only if μ = 0 and therefore
states with different N have the same energy, HB gives the correct
motion.

It should be pointed out that the convergence of the higher time
derivatives and their uniform boundedness is essential for obtaining the
correct time dependence. This is not guaranted by the fact that [HΩί b]->
-> [HBί b] V b ζ
from 12: Define

as can be seen by the following counterexample

Ω

0 0 0

0

(48)

Ω

1
β = -pr- σ£. The a, σ+ generate the B (Z2) algebra and their commuta-

tor with AΩ goes uniformly to zero as Ω -> oo. Hence A^ should be a
c-number in an irreducible representation and we see that actually
AΩ =φ> 0. Take as Hamiltonian

HΩ ^ΣaΛΩ + A+ ΣΩ = σ+ -f <τβ- 0 . (49)

Thus again HΩ converges weakly towards the limit which we obtain if
we insert for AΩ its c-number limit. Furthermore the commutator of
HΩ with all σ, σ+ goes to zero. However eiHΩtΣιe~~ίHΩt-^Σι eos2£,
because [HΩ[HΩ, Σι\] Φ 0.
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