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Abstract. We prove some elementary facts about homomorphisms and infinite
direct sums of nested Hubert spaces.

Introduction

In a previous paper [1] we have studied a class of vector spaces
endowed with, a certain "self-dual" structure. The applications to follow
— as well as mathematical decorum — require the introduction of
suitable definitions concerning isomorphisms, subspaces, group repre-
sentations etc.

All these concepts can be obtained in a standard way [2] from that
of homomorphism so our first task is to single out homomorphisms
among all operators between nested Hubert spaces.

For the special case of chains of Hubert spaces, the natural definition
can be found in PALAIS 1 [3]. The generalization to arbitrary nested
Hubert spaces is studied in Sections 2 a to 2 c below. It is preceded by a
discussion of relevant results from [1] (Sections la to le).

The last part of the paper (Sections 3 a to 3 b) deals with infinite
direct sums of nested Hubert spaces. The results are used in the ac-
companying paper which is concerned with quantized fields.

1. Preliminaries

The definition of nested Hubert space is recalled in Section 1 a that
of operator and of adjoint operator in Section 1 b. The reader should keep
in mind the definition of the set J(A) which describes the "regularity"
of the operator A with respect to the space Hj. The larger J(A), the
"better" or "smoother" A.

Operators between nested Hubert spaces behave as bounded opera-
tors between Hubert spaces as far as addition, multiplication by scalars
and the taking of adjoints go. The product of n operators is defined if and
only if the sets J (A W) (j = I , . , n) satisfy a certain condition (Section 1 c).

* Present Address: Physique Theorique, Universite Aix-Marseille.
1 I am indebted to D. RUELLE who pointed out this reference.
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All results about products and matrix elements are special cases of
results about operators (Section Id). This is so because of the existence
of a canonical bijection between vectors h^Hj and linear operators |Λ)
from complex numbers into Hj. The (operator) adjoint of \ΐι) is denoted
by (h\. Since the correspondence |^}<->{&| is bijective we are perhaps
closer to the Dirac bracket formalism than is ROBERTS [4].

a) Nested Hilbert space

A nested Hilbert space Hχ is an algebraic inductive limit of a family
Hr (r ζ/) of Hilbert spaces, taken with respect to a family Esr (r ζl,
s ^ r) of linear bounded injective operators with dense range (nestings).
The directed set / is endowed with an order-reversing involution r <-» r.
There exists a o ζ / such that 0 = 0. The natural embedding of Hr into
Hj is denoted by EIr.

If s ^ r , then EIsHs 2 EIrHr. It is assumed:
(NHJ. If r, q are any two elements of /, then there exists a p ^ r , q

such that EjyHp is the intersection of EIrHr and of EIqHq.
(NH2). There exists a family u^r of unitary mappings from Hr onto Hf

such that u00 = 1 and that, for every r ζ / and for every s ̂  r, one has

Here (Esr)*8 is the Hilbert space adjoint of Esr.

b) Operators

Let HΣ and FΓ be two nested Hilbert spaces. For every r ζ / and
every r' ζ/' consider the Banach space L ( r \ r f ) of all bounded linear
operators from the Hilbert space Hr into the Hilbert space Fr>. If r ^ 5
and r' g <$', then one has the natural maps

Ar,r^Es,r,Ar.rErs (1.1)

of L(r\τ'} into £(s; s'). An operator from #/ into jPj' is defined as an
element of the algebraic inductive limit £(#/; FΓ) of the spaces L(r, r')
with respect to the maps (1.1).

To every A ζL(Hι\FΓ) one associates the set J (A) of all pairs
{r, r'} such that A has a representative Ar>r in L(r\ r') (i.e. such that A
defines a bounded map from Hr into Fτ>).

An operator A ζ.L(.Gj;.FΓ) need not be defined on all2 of Hχ. Its
domain is the union

u

2 The notation L(Hj; Flt) may be misleading since L(X Y) is commonly used
to denote the set of continuous linear maps from all of X into Y.
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where he initial subset D(A) Q I is defined as

= prIJ(A) (1.3)

i.e. as the projection of J(A) on /. One introduces also a final subset
R(A) ςΓ defined by

= prI,J(A) (1.4)

i.e. as the projection of J(A) on /'.
It is important to realize that our definitions leave no freedom in the

choice of the domain of A. The reason is, roughly speaking, that a family
of admissible domains is built into the structure of Hl such domains are
unions of subspaces of the form ElrHr. To define A as an element of
the inductive limit L (Hl Fγ) means essentially to choose the maximal
admissible domain, i.e. the union of all subspaces ElrHr each of which is
mapped by A into some Eyr>Fr>.

An operator is fully determined by any one of its representatives,
which are bounded operators between Hubert spaces. If A r/ r is the
{r, r ̂ -representative of A, we shall write A = E2 (I x /' r, r')Ar>r.

Every A ζ:L(HI'ίFr) has a unique adjoint A* ^L(F^\ H^. The set
J(A*) consists precisely of the pairs {r', r} such that {r, r'} ζJ(A). The
representative (A*)r r> is given by

(A*)rr. = ur7(A-r,Jf7,urr.. (1.5)

One has A** = A for every A ξiL(Hl\Fl^. If, in particular, A is an
operator in a nested Hubert space, i.e. if A (:L(Hl\ HI), then A* also
belongs to L(Hιί9 H ̂ .

c) Products

Let AM ζ L(H$>\ #i2)), AW ζ L(Hψ\ H(®), . . ., AM ς L(H(n)-9

jy(w + ι)j rp]^ product J.̂ ) . . . AM is defined if and only if there exists a
"chain" of n + 1 elements rW ζK1), r<2> ζ/<2>, . . ., r^1) ς/<»+ι> such
that

It belongs to L(H(1}; H(n + l)). Its (r^1), r^+i)} -representative is
Δ(n) Δ(n— 1) /f(l)

^ir(n+i)r(n)'^Lf(»)r(»-1) -^-j ί*)^1)'

This definition requires a remark about associativity.
In order to simplify notation, consider the case n = 3. If the product

C BA is defined, then C B and BA are defined, and so are the products
C(BA) and (C B) A which are of course equal to C BA. It can happen,
however, that the products BA and C(BA) (two factors each) are
defined, while the product C BA of three factors is not defined. Examples
can be found in [1].
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In other words: Parentheses may be inserted but may not always be
removed.

d) Scalar product and matrix elements

Consider, in particular, the case that one of the spaces is the set C of
complex numbers considered as nested Hubert space. For every h ζ Hτ,
denote by \lι) (or by \h\ (7) if there is danger of confusion) the map
φ-^> φh (φ £ (7), considered as an element of L(C\ Hj). Every element
of L(C\ Hj) can be written in this way. Write (h\ to denote the adjoint
of |Λ>.

The product <j? | Λ) (h ζ H/, g £ Hj) of operators (which is defined if and
only if J(f) r\ J(g) is not empty) is a linear mapping of C into itself. One
can identify this mapping with the value it takes at φ = 1 and call the
number (cj\Ίι) the scalar product of the vectors g and h. If o ζ J(g) and
o ζ J ( h ) , then(<7|Λ> is the scalar product in HQ.

If h £ HI and / ζFΓ are arbitrary, then the product |Λ) (/| is defined.
It belongs to L(FΓ Hj).

If AζL^j Fj'), hζHj and f ζFΓ, then </| A |A> denotes the
product of the three operators {/|, A and |&). It is defined if and only if
the intersection of J(f) x J(h) and of J ( A ) is not empty. It is, again, a
linear mapping of C into itself if one identifies it with the value taken at
φ = 1 it is called the matrix element of A between / and h. If {o, o'} ζ J ( A ) ,
oζj(h), o 'ζJ(/) then {/| A \lι) = (/0/, A0>0h0) is the Hubert space
matrix element of A0>0.

While {/| A \ΐι) is a product of three factors, (J\AJι) is a product of
two factors. So it can happen that <(/1A li) is defined and {/| A \ti) is not.

e) Correspondence with operators in H0

Let A ^L(Hi\ Hj). If J (A) contains the pair {o, o}, then A can be
identified with the bounded operator A00 in H0.

If J ( A ) contains a pair {r, o} where r < o, then A can be considered
as an unbounded operator in H0, with domain containing EorHTCHQ.

If J (A) does not contain any pair {r, o} (r £ /) then A is not a reason-
able operator in H0; its domain in H0 contains only the vector 0. This is
the case e.g. with field operators at a point (see Section 2 of the accom-
panying paper). Simpler examples are easy to find; so e.g. the con-
volution by β^l is not a reasonable operator in LW (with respect to the
Lebesgue measure) but it is everywhere defined in the nested Hubert
space of Example 1.1 of [1], in which LW = H0.

2. Homomorphisms and related concepts

Roughly speaking, a homomorphism is an operator A with the
following property: If the scalar product {/|#) exists, then the scalar
14 Commun. math. Phys., Vol. 4
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product (Af\Agy also exists. If A is a homomorphism of HI into itself,
it need not map every Hubert space Hr into itself. In other words, the
set J(A) need not contain the diagonal of / x /. This is seen in the ac-
companying paper on the example of permutation and Poincare opera-
tors. This discrepancy between the definition of PALAIS [3] and ours is
due to the fact that our / is, in general, only partially ordered.

Neither homomorphisms nor arbitrary operators in Hτ coincide
with the continuous mappings of the topological vector space H^
— lim[£Γr; Esr\ I], where lim denotes the topological inductive limit.

Many "natural embeddings" are homomorphisms. This can be seen
in Section 2b and 3b.

The definition of isomorphism and of unitary isomorphism (Section 2c)
is immediate. A representation of a group G in Hτ is, by definition, a
homomorphic mapping of G into the group tfl (Hx Hj) of unitary3

automorphisms of HI.

a) Homomorphism

2.1. Definition. Let Hj and Fp be nested Hilbert spaces. An operator
A ζ L (Hi Fp) will be called a homomorphism if it satisfies the following
condition :

(Horn) : For every r ζ / there exists at least one r' ξ /' such that {r, r'} £
and{r,r'} ζ J ( A ) .

The set of all homomorphisms from Hj into F? will be denoted by

If A ζL(HI; Hj) and if J (A) contains the diagonal of / x /, then
A ξHom(J^j; Hj). (Immediate verification of (Horn)). In particular:
In any nested Hilbert space, the identity operator (with representatives
Esr) is a homomorphism.

2.2. Proposition. Let A ζHom (HI\FΓ}. Then the product A* A is
defined and belongs to Hom(#j; Hτ}. The set J(A*A) contains the diag-
onal of I x /.

Proof. Let {r, /} ζ J (A) be such that {r, r'} ζJ(A). Here r can be
arbitrarily chosen, by (Horn). Then {/, r} ξ J(A*), by (1.5).
Consequently r' ζ R(A) r\ D(A *) Φ β. This means that A* A is defined.
The representative of A* A between Hr and Hr is (A*A)rr = (A *)rr>Ar>r.
So J(A* A) contains the diagonal of J x I which proves that A* A is a
homomorphism .

2.3. Proposition. For i = 1, 2, . . . n, let

3 This is not the only possible definition. In the study of the complexificatioii
of representations it is natural to go back to L(HI; H2) where the product is not
always defined.
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Then the product of n factors

is defined and belongs to Horn (H^1 + 1)

Proof. Notice first that (Horn) implies D(A) = I for every homo-
morphism. So the product of n homomorphisms is defined. Now start
with an arbitrary H1) £/(1). Choose H2) £/<2> so that {H1), r<2>} £ J ( A W )
and { r W , r W } £ J ( A M ) . Choose r<3) so that {r<2), r<3)} £ J(.4<2)) and
{f(2)5 f(3)} ζ jμ(2)). Continue in this way to {r<*>, r<n+1)} £ J(4<n>). Then
we have

and

This proves the assertion.
2.4. Proposition. If AW . . . AW are as above and if B

then the product of n -f 1 factors A^ . . . A <2) A <χ) B is defined and belongs

Proof. Immediate verification, which utilizes only the fact that
= 7<n> for every n.

2.5. The sum of two homomorphisms need not, in general, be a
homomorphism .

2.6. Proposition. Let A ξ Horn (Hji FΓ). Let h ζ Hj, g ζ II Γ be such that
the scalar product ζh\g} is defined. Then the scalar product (Ah\Ag") is
also defined (mFr).

Proof. The assumption means that there exists an r ζ J(h) r\ J(g}\
then the representatives hγ and gr exist. Let r' be such that {r, r'} ζJ(A)
and {f, r '} ζJ(A). Then Aj,'jhγ is a representative of ^4/& and Ar rgτ is
a representative of Ag. Consequent^ r' ζJ(Ah) r\J(Ag) which shows
that {J. h I A gy is defined.

2.7. Example. -Lei Λ ζ HI be such that J (h} = /. .Lei / ζ^7/' be such that
o'ζJ(/) . T/^e^ |/><A| ζHom^j jPj,). Jϊβrβ |/> <A| is defined as in
Sec. 4e of [1], or $ec. Id o/ £Ms paper.

Indeed, it can be seen from Sec. 4e of [1] that J (\fy (h\) 2 J (h) x J (f) .
In our case, J(|/){Λ|) 2/ x «/(/). If r is any element of /, then {r, o} ζ
ζ J(|/> <A|) and also {f, o} - {f, o} ζ J(|/> <A|). This shows that |/> <A| ζ

This example shows also that the adjoint of an A ζ Horn (Jϊj Ff>)
need not belong to Hom(jPj/; Hj).

b) The operator

Let Hj be any nested Hubert space. Let / be a subset of /, satisfying
the f ollowing conditions :
14*
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(i) With the order inherited from /, the set / satisfies the conditions
(/i), (/2), (/3) of Section 2e of [1].

(ϋ) If r £ / and q ζ / are arbitrary, then there exists a p ξ J such that
p ^ r,q and that #/£#- - #/?#> n ̂ J .̂

Consider the family {#?} (£ ζ /) of Hubert spaces and the family
{#s?} r ζ ϊ, s ζϊ, s ^z r) of nestings obtained by restriction from
Hr and JSJsr. It is easy to verify that the algebraic inductive limit
Hj = [Hγ\ E$γ\ I] is a nested Hubert space.

Denote by ̂ τι the natural embedding of Hj into Hj. It can be defined
as follows :

Let r be any element of /. Denote by r the same element, considered
as belonging to /. Then the representative £r$ of $ is the identity map

2.8. Proposition. <flj is a homomorphίsm from Hj into HT.

Proof. Immediate verification of the condition (Horn).

Remark. Assume that / φ /. Then there is no natural inverse homo-
morphism from ΈLI into Hj, even if / is cofinal with / so that there exists
a canonical bijection between vectors in Hj and vectors in Hj.

c) Isomorphism

An operator A ζHom(/7/; Fχ>} is called an isomorphism if there
exists a B ξ_ Hom(jPr; Hj) such that BA is the identity in HI and that
A B is the identity in FΓ.

If A £Hom(J3j;.Fj') is an isomorphism, then the correspondence
h^Ah is bijective. Indeed, let hζHΣ be such that Ah = 0. Then
BAh = h = Q which shows that A is injective. Furthermore, every
/ ζ FΪ can be written as / = A Bf, which completes the proof.

We are here using the fact that the product of three factors A Bf is
defined. (See Section Ic, and Proposition 2.3.)

An operator U ζ L (HI F^) is said to be unitary if C7* ϋ and U C7*
are defined, and if t/* U = 1 (identity in Hτ) as well as U C7* = 1
(identity in FΓ).

A unitary operator need not be an isomorphism. For example, let
C70'0 be an arbitrary unitary mapping from the Hubert space H0 onto
the Hubert space F0>. Then the operator E2(I x /'; o, o') C70/0 (i.e. the
element of L(Hι\ FΓ) whose {o, o'}-representative is U0>0) is unitary but
— in general — not an isomorphism.

An isomorphism which is also unitary will be called unitary isomor-
phism. The set of unitary isomorphisms from Hjr onto FΓ will be denoted

by <
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Let h ζ Hj and g ζ HI be such that (h \ g) is defined. Let ϋ ζ ̂  (#j Fr) .
Then {Ϊ7&| Ug} is also defined, and

as can be immediately verified.
If U is only assumed to be unitary then the existence of (h \ $} need

not entail the existence of (Uh\Ugy-, if (Uh\Ug} exists, then it is
equal to {^|^)

3. Direct sums

The infinite direct sums to be defined now are not algebraic. A vector
oo

can belong to (J) H^ even if it has infinitely many non-zero components.
n = 0

The conditions under which a direct sum is defined (Section 3 a) are
not restrictive. They could have been incorporated into the definition of
nested Hubert space. The definition utilizes all (Hubert) direct sums
that can be built from the Hubert summands. Here again, the con-
siderations of only totally ordered 7-s would have been too restrictive.

Section 3 b is devoted to the operator of natural embedding of a
summand into the sum. Its adjoint is the projection of the sum onto the
summand. These operators are homomorphisms in the sense of Section 2 a.

These results are used in the accompanying paper in the construction
of Fock spaces.

a ) Direct sum of nested Hilbert spaces

For n — 0, 1, 2, . . . let /<w> be an ordered set that satisfies the con-
ditions (/x), (J2), (J8) of Sec. 2e of [I]. Define / = {/<°>, IV, . . . I<"), . . .}
as the set of sequences

r = (r<°), . . . r<*>, . . .} (r<w> £/<n>, τι = 0, 1, 2, . . .) •

Define in / an order by writing s^riί and only if s^ ^ Hn) for every n.
It is easy to verify that 7 satisfies the conditions (Jj), (/2), (/3) of

Sec. 2e of [1], with r = {F<°>, . . . r(n\ . . .} and o = (o<°), . . . , o(n\ . . .}.
For n = 0, 1, 2, . . ., let PI(^ - [#<*>; E(£>\ 1^] be nested Hilbert

spaces. (For the sake of typographical simplicity, the superscript n
appears only once in — say — E$; strictly speaking the notation
should be l?(*)(s<n>; r^) with r^ζl^ and «(»> ^ r<n).)

Assume :
(DS j). For any pair r ζ /, s ζ / such that s ^ r there exists a constant

7 = 7 (§. 5 Γ) (independent of n) such that

PΦI ^ y (n = o, i, 2, . . .) .
Let r ζl and ^ ζ/ be arbitrary. For every n, let 39 (n> g r(w), g^n) be

such that E($H}^ nE($H(ri = E(/$H(n\ Consider the bijective bi-
continuous operator E^^ studied in Sec. 3b of [1]. Assume
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(DS2). If r, q are arbitrary, then there exists a p ^ r, q such that, for
some constant k — & (r, q) (independent of n) we have

For every r £ /, define a Hubert space Hr as the Hubert direct sum

oo

Hr = 0 #<»> (r = {r (°>, . . . , r<»), . . . }) .r

w = 0

That is:
An element of II r is a sequence

/ __ r/(o)
/r ~~ l / ϊ >

such that

(/<»>, /<«>) < oo . (3.2)
n = 0

(Here again, the correct notation would be /<w) (Hw))).
For £ ̂  r (r ξ /) define Es r as the direct sum

E,r = 0 ί<»> .
n = 0

That is :
E i =tE(o)f(o} E(n)f(tύ \ ̂  ff\ fl(n) f(n)sr'r l^sr !r > -^sr lr ? •/ Vjy -"βr /r

M = 0

for every /£ ζ ̂ ίf .
3.1. Proposition. ̂ sr is α nesting from Hr into Hs.
Proof, (a) Eg t is bounded. Indeed,

CO OO

(E i E ί } — y (E^f E^t } < v2 y (i^ firi)} — v 2 l i/ li2

\> S.t'v ^srlrf ~ £j V^sr J r> -^sr ίr) ^ 7 ^ \/r > lr ) ~ 7 l i / i l l

(b) Eχt is injective: Estft == 0 means E(jfifyύ = 0 for every n. Since
all the E(»> are injective "it "follows that ̂  - 0 (n = 0, 1, 2, . . .) i.e.
that /£ = 0.

(c) The range of ̂ £ is dense in H^. Let ̂  ζ H^ be such that (gr£, E^f^

) = Oforevery/,. ζ Hr. Then in particular (^,^,r/r) = 0
w = 0

for every /£ of the form /£ = {0, 0, . . . , 0, fil\ 0, . . .} (#n) =j= 0). It follows
that g^ = 0, (w = 0, 1, 2, . . .) i.e. that {75 = 0. This proves the proposi-
tion.

It can immediately be verified that the family Etg (r, sζl,s^ r)
satisfies the conditions (Indj), (Ind2) of Sec. 2f of [1].

Denote by Hj the algebraic inductive limit of the Hubert spaces
Hr with respect to the nestings E8r.

3.2. Proposition. There exists a canonical bijective correspondence
between elements of Hl and sequences

{/«>) . . . fW . . .} (/<»> 6 Hp>)
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CO

which have the following property : For at least one r ζl, the sum Σ (frn^ /? w))
n = 0

oo

is finite. If r ζ J(f) and if ft = Σ f r ύ € 0 Hp* is the representative of f
n n = 0

in Hr, then the sequence corresponding to f is {E$fr°\ . . . , E$fft\ . . .}.
We shall write / - {E($fp\ . . . E{$t(?\ . . .}.

Proof, (a) Let / £ Rτ and r £«/"(/). Then the representative fr of / in
~ OG ~

Hr is an element of the Hubert direct sum Hr = 0 7 ,̂ i.e. a sequence
ii = 0

{/rΛ)} fa = 0, 1, 2 . . .) such that

Σ (#°> #°) < °° - (3-3)
ϊ t = 0

Consider the sequence {/fa)}, where /fa) = E^f^. It obviously has the
property described in the proposition, and is independent of the choice

ofr £ «/'(/)•
(b) Let {/(°), . . . /fa) . . .} be a sequence satisfying the condition of the

proposition. If r ξ 7 is such that (3.3) holds, then the sequence /^ belongs
to 0 ff<Λ) - Jϊr Consequently ^jj/^} belongs to J7£. We can write

This proves the proposition.
3.3 Theorem. Hj is a nested Hilbert space.
Proof, (a) For every r ζ 7, define %r as φ ̂ \ The condition (NH2)

n
of Sec. 3 a of [1] can easily be verified.

(b) In order to verify (NH^), let r ζ7 and q ζ7 be arbitrary. For
®*every n, let pW ^ rfa), gfa) be such that E^H* r\

and that the condition (DSZ) holds. We shall show th&tEIΊ}Hp — ETrHr r\
r\ EjqHq. It is clear that EIPHP Q EIrHr r\ EιqHq since p ^ r, q. In
order to prove the equality, consider an arbitrary t £ ELΐHL Γ\ EjqHq.

Then tr = {tl?ύ} and tq - {ί^Λ)} where ̂  (ί<n), 4Λ)) < °° and

By the definition of #>, every ίfa) ζ E(f)t^ r\ E(f^t^ has a representative
in F^Λ). So 4w) = ̂ ^n) and 4n) = E($t(»>, which means

By (DS2), there exists a constant A; (independent of τι) such that

It follows that {$*}} ζ 0 ^w) = Hp. So ί has a representative ί£ in
ίt=0

which means ί ζ EIPHP and proves the theorem.
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b) The operators ./<») and &W

Let H^ (n = 0, 1, 2, . . .) be nested Hubert spaces. Assume that the
conditions (DS-^ and (DS2) are satisfied, so that the direct sum

HI = 0 H$> is defined.
Λ = 0

We shall now study the natural embedding of H*f* into Hf considered
as an element of L(H^\ Hj). This operator Λvill be denoted by </(™>.

3.4. Proposition. Let r<n> ζ 1^ be arbitrary and let

(n> ^ r<w>. Consider the bounded operator J>($ from H^ into

Hq_ = φ #«, de/med δy

£>/<»> = {0, 0, ... 0, £<»>/<«>, 0, . . .}

= {0, o, ... o, /<»>, o, . . .} . (3'4)

Then J>^ is the r^ -representative of an operator ,/(*)
which is independent of the choice of r^ and of q (subject to the condition
q(n) ^ r ( n ) j t it satisfies

= /(«) (3.5)

= 7 (3.6)

«/(»)/(«) = {0, . . . 0, /<*>, 0, . . .}
/or every /<n) ζ ̂ w).

Proo/. (a) Let Hw> ζ /(n) and q ζ I be such that qW ^ r(w>. Let s^q
and p(w) ^ r W. Then, for eΛ^ery /<f> ζ JBT^,

(n) _ Tyj~

, . . . 0, #*>, 0, . . .} = {0, . . . 0, ̂ /^ 0, . . .

(b) Let r(Λ>, r(w> ζ/(w> and £,§ί/ be such that r<n> ^ g<Λ> and
f('/l) ^ q(n\ Let ^(n) be a common predecessor of r ̂  and of r^ let s be a
common successor of q and of g. Then, by (a),

which proves that </^ and J^ are representatives of one and the same

(c) The set J(«/(w)) contains, by (a) and (b), all the pairs {r<n), r} where

r(w) ^/(n) js arbitrary and where r ζl is such that r(n) is the n-ih com-
ponent of r. This shows, in particular, that (3.5) and (3.6) hold.

(d) Let /<") ζ Hfr be arbitrary. Let r^ ζ J(/<n>) and £ ζ / be such that
qW ^ r(«) so that {r(w), g} ζ J(«/<n>). Then (3.4) foUows from (a) and (b).

This proves the proposition.
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Define 0K»> ζ L(Hf, #<n>) as the adjoint of ./<«>. That is:

0>(n) = (,/(n))* (3.7)

which means, by (1.5), that

0% = «$('$)?,_*& (3-8)

for every g and for every f(w> such that r ̂  ̂  #(w). It follows from (3.5)
and (3.6), that

= / (3.9)

= I<»> . (3.10)

3.5. Proposition. If g = {gr<°>, . . . 0<™>, . . .} is α?ψ element of Hj then
(n)g is defined and

0>(n)g===g(n) . (3.Π)

Proof, (a) It follows from (3.11) that &Wg is defined.
(b) If q ζ J(0r) and if F<») ^ g <n> then

Indeed, let fyl) be an arbitrary element of H^\ Then

which completes the proof of the proposition.

3.6. Proposition. .For even/ w- and every m (n, m, integers ^ 0), one lias

; HL) (3.12)

>; jff^>) . (3.13)

Here δmn is the Kronecker symbol. The operator P(n) £Hom(Hf, HL)
satisfies

(p(n))* = p(n) (3 J4)

and
(p(n))2= p(n) . (3.15)

In (3.13), l(w) stands for the identity operator (with representatives
E<$) in H<F\

Proof, (a) If m φ w, then ./<»»> ̂ (»> = 0. This follows from (3.4) and
from (3.11). Similarly 0K«> «/<>»> = 0.

(b) For every w, one has <^(») ,/(")/<») = ̂ (») {0, . . ., 0, /("), 0, . . .}
- /(«) λvhich proves (3.13).

(c) (3.14) follows from (3.7).
(d) (P(*))2 = SW&WSW&W = ̂ (n)^(n) = p(n) which proves (3.15).
Notice finally that </<w) belongs to Horn (/?Jn) ffz) and that ^(w)

belongs to Hom^^; H^). Indeed, J(</(w)) contains all pairs {r(n\ r},
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where r<n) is arbitrary and r is such that r<n> is the n-ik component of r.
Then f (n> is the n-th component of f, which verifies (Horn).

This concludes the proof of the proposition.
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