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Abstract. The representation of the canonical commutation relations involved
in the construction of boson operators from fermion operators according to the
recipe of the neutrino theory of light is studied. Starting from a cyclic Fock-
representation for the massless fermions the boson operators are reduced by the
spectral projectors of two charge-operators and form an infinite direct sum of
cyclic Fock-representations. Kronig’s identity expressing the fermion kinetic
energy in terms of the boson kinetic energy and the squares of the charge operators
is verified as an identity for strictly selfadjoint operators. It provides the key to the
solubility of LurTiNcEr’s model. A simple sufficient condition is given for the
unitary equivalence of the representations linked by the canonical transformation
which diagonalizes the total Hamiltonian.

1. Indroduction

A number of theoretical physicists, among them pE BrocLIE, JORDAN,
Borx and NAGENDRA-NATH, have worked on a neutrino theory of light.
In 1938, PrycE [1] reviewed the results of the efforts up to that time
and demonstrated, that in a four-dimensional space-time version of the
theory the conditions imposed by the commutation relations for the field
amplitudes and the connection between spin and polarization are in-
compatible. PERKINS [2] in his recent formal attempt avoids this diffi-
culty but does not obtain Bose quantization for the photons.

The two-dimensional variant of the theory, which was originally
developed as a proving ground for a realistic theory, has met with some
interest in its own right, due to its connection with exactly soluble
models. On the one hand, as stressed particularly by WicHaTMAN [3], it is
closely related to the THIRRING model, while on the other hand it appears
in the context of the soluble quantum mechanical many body problem
due to LuTTINGER [4]. MATTIS and LieB [5] reconsidered this problem
and considerably improved the discussion. TomoNAGa [6] did some related
work, which was pursued further by ENGELSBERG and VARGA.

* Work supported by the National Science Foundation.
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We wish to enhance the understanding of this model and its solution
by a more refined analysis of the relation between the fermions and the
associated bosons. In particular, we establish that the representation of
the canonical commutation relations (CCR) afforded by the boson field
is an infinite direct sum of irreducible Fock-representations in the Hilbert
space of the irreducible Fock-representation of the canonical anti-
commutation relations (CAR) for the fermions. This reducibility results
from the absence of zero-momentum boson creation and annihilation
operators. More precisely, every element of the boson algebra commutes
with two selfadjoint charge operators with integral spectra, which are
formally obtained by the zero-momentum limit from the boson creation
operators. The simultaneous spectral decomposition of these charge
operators then implies the above reduction of the boson algebra. The
structure of the cyclic vacua for the boson algebra, in terms of simple
monomials in the fermion creation operators acting on the fermion
vacuum, is the only reminder of the underlying fermion description. The
special role played by momentum zero in this context is reminiscent of the
infrared difficulties occurring in the two-dimensional relativistic models
involving scalar fields [3], [7].

Having established the structure of the representation of the CCR
it is not difficult to verify that the identity derived by KroxNie between
the kinetic energy of the fermions and that of the bosons is a true operator
identity for (strictly) selfadjoint operators. This identity provides the key
to the solubility of the LurTiNgER model, since the interaction in question
is expressible as a quadratic form in the boson operators. As a result the
total Hamiltonian is essentially a quadratic form in the boson operators
and can be diagonalized by a canonical transformation & la Bocorivsov.
The requirement that the canonical transformation be unitarily imple-
mentable between Fockspaces imposes certain conditions on the inter-
action potential. A simple sufficient condition is given. It is also seen
that a local delta function interaction leads to a unitarily inequivalent
representation, a fact which correlates with the puzzling results obtained
by LurTiNaER or MaTTIS and Ligs for this potential.

In sections two and three we give the relevant definitions for the
fermions and bosons respectively, while the reduction of the boson algebra
is carried out in section four. KroNiG’s identity is discussed in section
five and employed in section six for the diagonalization of the total
Hamiltonian.

2. Fermions

Imagine a one-dimensional system of two kinds of fermions in a
(periodic) box of length L. We write a?(x) for the creation — (if ¢ = +,
annihilation — if ¢ = —) operators of type 7 and momentum x in the
5 Commun. math, Phys., Vol, 4



66 D. A. UHLENBROCK :

customary Fock-representation of the CAR with cyclic vacuum
0@ ¢ p@1,

A box quantized version of a relativistic free Hamiltonian for massless
fermions would have the form

HP = 3 wao (x) o7 () 1)
(r,x) €S X I’

with a corresponding number operator

NOY = 3 o (w) o (%) (1"
(T, ®)eS X I’

These operators are defined on the invariant dense domain D® =
= P{at}2® on which they are essentially selfadjoint. To avoid the
negative energy contributions of (1) one employs a particle-hole canonical
transformation

Bl > a8y, (0,7, %) €82 x I (2)

where (7 (x) carries momentum o7x and energy o|x|. Like the o-represen-
tation the S-representation of the CAR is required to be an irreducible
Fock-representation with cyclic vacuum 2= Q®), so that these two
representations cannot act irreducibly in the same space?.

To the operators in Egs. (1), (1’) correspond the following operators
in the f-representation (the arrows emphasize the distinction of the
representation spaces, which formally results in the appearance of infinite

VIf I(L,,I_,1,) denotes the integers (strictly positive, strictly negative, non-
zero), define I (L) = 2—;— I (similarly I (L) etc.). Define the odd-halfinteger sets

W EI_,_—%E {j|j=i—-—%,i€1+} AL =1_+ —;-andl’=lﬁ|_ U I (similarly
I’y (L) ete.). S is the set of two signs {+,—} = {+1, —1}. Let R and C be the real
and complex number fields. For » € B ¢(r) is the sign of » such that £(0) = 0.

Under “quantization’ of the free fermion field with periodic boundary condi-
tions the wave vectors of the plane waves are restricted to be elements of I(L).
Except for the discussion of a limit L — oo (in some fixed units) the dependence on
L is not particularly relevant in the formulae and we choose to normalize L to
2m;ie. I(L) = I ete. Furthermore we resort to the convenient expedient of shifting
I by% to get I'.

Subscripts f resp. b and generally the use of lower case Greek resp. Latin letters
distinguish fermion expressions from boson expressions.

Given a collection (4;)jcs of linear operators on a (complex) Hilbert space
H, M{(4;)jcs} denotes the set of all (finite) monomials in the 4;, while Z{(4;)jecs}
= LM {(4;);cs} is the (complex) linear hull of .# {4}, i.e., the corresponding set of
polynomials over C.

2 For example 2P cannot lie in #@ since it can be “approximated” in H#@
by 2,= [T of ()2 and w-limQ, = 0 while lim [|2,] = 1.

O<tx<n n—>0 n—>00
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constants)
HP > Hy= 3 1 BT 7o 3)
N> N= 3 1ffx) p; (%) 3
. (T, #)eES X I’
N= 3 BB (). 37)
(T, %) eS8 x I"

Again these operators are essentially selfadjoint on D= Z{f+}£Q,
where Z{f+}Q2 = #; H, is now non-negative while N has lost this
property of N and N therefore substitutes for N®. The interaction
will be specified in section 6.

3. Associated bosons

Heuristically the bosons are given by the Fourier components of the
quantized particle density. More specifically, as shown by MarTis and
Lies, the Fourier amplitudes of the particle density in the a-representa-
tion, which form an abelian set of operators in that representation, are
transformed by Eq. (2) into a set of operators (in the B-representation)
which is no longer abelian but in fact constitutes a representation of the
CCR.

For (s, t, k) € 82 x I one defines a set of (unbounded) boson opera-
tors by

s — 78 — —’% e(sk + %) —&(x%)
bs(tk) = bf (k) =k g; Beisk +my (E(sE + %)) Brgy (822) (4)

with invariant domain D, carrying the momentum stk and energy sk3.
These operators are well defined on D, since the infinite sums reduce to
finite ones on any element of D.

To clarify the structure of these operators we expand b*(k), k€ I,
as an example:

K b (b 2 Bl (ke + ) B ()
=k20 B (k + %) B3 () +
+ X BE(k+x) BEe)+ )

—k<x<0
+ X Bk + %) BE(x) .

n<—k

The summands in the first (third) sum of Eq. (4') do not change the total

3 The connection with the notation of BorNx and NAGENDRA-NATH or MATTIS
and LiEs is given by

BN: ﬂe_(c::;‘)(‘r”) = Oy 7 = ('y—u_r)+ ’

1
ML: Bi(k) = k™2 gi(s + &) -
5*
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number of +-particles (—-particles) but translate any occupied level by
an amount k away from the origin. These terms were interpreted in terms
of a Raman effect for the neutrino theory of light. On the other hand the
second sum is a finite sum of pair creation operators with momentum £,
and as such does not commute with N. These terms were interpreted by
the rule that a “photon” of momentum k is actually a superposition of
neutrinos and antineutrinos of momenta » + k& and x respectively. One
verifies by direct calculation that the b%(¢k) satisfy the CCR on D and
that the (strict) adjoint (b, (¢k)|y)* extends b=2(¢k)|p.

We will show that these boson operators in a unique way give rise to
a representation of the CCR in the strict sense [8] by demonstrating that
the representation involved is the restriction to D of an infinite direct
sum of copies of a cyclic Fock-representation.

In this connection it is essential to note that the value k=0 is
omitted in the definition of Eq. (4). In fact, there are two operators B,
t € 8, given formally as %I_)Ht) 1/7? 1 bf (k)

B, = Z; te (%) Biiey (%) By () ()
xel’
or
Bi=Nt=+t,x>0)—N(rt=—-tx<0),
N=B,—- B_,

so that these operators are essentially selfadjoint on D, where they also
commute with each other as well as with the b§ (k).

(%)

4. Direct sum decomposition of 57

Since the spectrum of B, as well als B_ equals I, their common
spectral resolution affords a direct sum decomposition of J# of the form
H = @ H U1 (6)
@rerr
such that all 5, are invariant subspaces for the boson algebra and one
has for ¢ € 'y,

B.¢=14, B_d=14. (6
It remains to be shown that each 5, is generated by the boson algebra
applied to a cyclic vacuum. To that end we remark first that due to
Egs. (3), (4) and (5) the degrees of freedom with &(x) -7 = + for the
fermions and ¢ = 4+ for the bosons are kinematically independent from

those with (%)t = = —.4

¢ More precisely, if #,{f7} = A {B} (x)|Te(x) =1}, P{f"} = LM {p"} and
H, = P,{f}Q, then there is a natural isomorphism between # and #_ @ #,
with 2 & Q_ ® 2, such that the operators of interest split (with some abuse of
notation) as 0% (k) > 1_® b% (k), B, > 1_Q@ B, b (k) =b_ (k) ® 1,, B_+>B_®
® l.and #p o #_ @ H#,, ete.
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In the following we shall hence treat only the case e(x)r = + and
t = +, if the alternate case can be dealt with completely analogously.
Thus in the spirit of footnote 4 we deal with b%_(k), B, in o, = LM, {f+}

=D
lel

One observes that for any I € I the following vector

—

Q,,= 7 .Be+(l) (0)Q4, (24,0=20)) (7)
0<e@) =<l
iesin /', ; and satisfies
b1 (k)Q2,,,=0, forall kclI,. (7)

Again the possibility of constructing such vacua stems from the absence
of zero momentum bosons: the pair annihilator part of b7 (k) vanishes on
Q,,,, since there are no pairs to annihilate, while the translator part
gives nothing due to the dense packing of the occupied levels between 0
and |I|; i.e., the particle of any occupied level will be shifted down by
the --translator into another occupied level with zero result, since
double occupation is ruled out by Fermi statistics. On the other hand
B, (~ b7 (0)) does not annihilate 2, ; (except I = 0).

To show that Q. ,is eyclic in #, ; under the boson algebra it suffices
to show 2{b1}Q, , = P {p*} Q.NH_, , since the closure of both sides
of this equation gives #, ;. Since b’ (k) commutes with B, and maps D
into D, Z2{b1} 2, ,C P {p*} 2. N, holds. Again in what follows
the case /< 0 is entirely analogous to the case > 0, so that we shall
agsume ! = 0 fixed.

Due to the CCR any element in {1}, ,is uniquely (up to a
factor and excluding the trivial monomial) characterized by the non-

increasing sequence of the momenta &y = ky= -+ = k,> 0 of its
7

factors b (k). It 3 k; = K€ I, then (k);cs, I,= [0,¢] NI is a par-
i=1

tition of K into non-negative integers and can be uniquely represented
by its & -graph:

Definition. Given 1 = 0, K¢ I, and a partition (k;);c;, of K into
positive integers. Consider a two-dimensional cartesian coordinate
system and the set of (horizontal) line segments of length %, =
= ky= -+ = k,> 0 each. Attach the left endpoint of the longest line

segment (k;) at the point (l —%,O), the next smaller one (k,) at

3
(l -5 1) etc. Any such rooted collection of telescoped line segments

q
will be called an #-graph £ with “norm” ||f| = K = 3 k; and “root” .
i=1
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Denote the set of projections of all left (or right) endpoints of an
& -graph f on the horizontal axis by L, (or R;). The number of distinct
partitions of K is p(K), whose generating functionis G (x) = JT (1 — a?)~!

=1
x| < 1.

Due to Eq. (7) any two elements in # {b1} Q.  , with distinet # -graphs
are mutually orthogonal, in particular also those with different total
momentum K. Hence .#{b1} £, , can be represented as the orthogonal
union over K € I, N {0} of the finite subsets with p(K) elements cor-
responding to all distinct partitions of K (for K = 0 we add the vacuum
Q,,,). Similarly 2{d1}Q, ;= KeI U{O}Jl{b |3k, =K}Q, ;.

Quite analogously, any element in .#_ {f+}£2, can be uniquely (up
to a factor) represented by its 0-graph:

Definition. Given any element of 4 {+}£2,, its 0-graph (for occupa-
tion) is the set of the momenta {x,} occurring in the factors plotted on a
(horizontal) cartesian axis; i.e. the geometrical representation by points
of the corresponding subset of I'.

If o is such a graph, let o, = oN I, o_= oNI_. o belongs to #, ,
if and only if |o,| = |o_] + 1, i.e., o, contains ! more elements than does

. Set o, = )_—,’ Joe] — l2 = 0 and denote the number of distinct

O-graphs o w1’0h o], = K €¢I, by ¢,(K). Its generating function is

1l 1 .
a~ 2! ﬂf doe ile G(x; @)
0
with
Gz, )= JT 1+ 2cospa”+ %), |zj<1.
nGI_:_

Elements in 4 {+} 0, with distinct O-graphs are mutually ortho-
gonal and 4 {f*}£2, is exhausted by all different o with ! running
through I and | o], through I, v {0}.

Lemma. For any K € I, N {0} and 1€ I one has ¢,(K) = c,(K)= (8)
= p(K).

Remark. This implies a proof of the identity

70— o)t =3t f dpe=itv JT (1 + eivar) (1 + e~iva%)
eI, nCI/

or in other words x% G (z) is the I-th fourier component of G (z; ¢) w.r.t.
the ¢ variable and identically in |z| < 1.

Proof. It suffices to take ! = 0 fixed. If o is an @-graph for > 0 with
[e]l; = 0, the involutory map

o0 =(0—-0n[0,1)uU (0,1} —0,),



Fermions and Associated Bosons 71

(i.e., reversal of occupation in the shell [0,7] N I’) maps o into an o’
corresponding to I = 0 such that o, = | o’];. Thus the cardinality of the
set of all O-graphs of type I with |o];, = K is the same as that of the set of
all o’ of type zero with 0’|, = K or equivalently ¢,(K) = cy(K).

Next it is necessary to establish a one-to-one correspondence between
the set of all &#-graphs of norm K and the set of all 0-graphs of type
{ =0 and norm K5.

Given any Z -graph f the map
f=>o(fy=R;u Ly — RN Ly

gives an @-graph, since for any element in R, there is at most one element
in L; to which it is equal, owing to the decreasing property of the parti-
tion parts and the telescoped form of f. Conversely, given any ¢-graph o,
let ¢ = %— min{x|x € o} and define L(o) =[—¢,0]Nn I, R(o) =0, U
U (L(0) — 0_), both ordered as subsets of I'. Then o— L(o) vy R(0)
yields a telescoped set of pairs (of endpoints of line segments) if one
pairs the largest elements in L (o) with the largest one in R (o), the next
smaller with the next smaller etc. One checks easily that the two maps
are injective and mutually inverse, so that p(K) = ¢y(K). The identity
then follows by comparing the generating functions for p(K), ¢o(K) and
¢, (k) respectively. Q.E.D.

This lemma implies that for any fixed / the number of linearly in-
dependent elements o in Z, {f+} 2, N A, , with [[o], = K = 0 is equal
to the number of linearly independent elements f in Z{b1}92, , with
|fl = K. Therefore one finally concludes that

FP02,, =2 U Al = K}
~ 2 U fol|o]y= K} = 2. {f*} 2. 0 # 0,

or A, ,=P{1}Q, . Recalling some of the well-known properties of the
Fock-representation [9] we arrive at the

Proposition. Let 8¢ (%), (0, 7, %) € 82 x I' be a Fock-representation of
the CAR with cyclic vacuum £2 in the Hilbert space J# = Z{81}Q; let
the boson operators b5 (k), (s, t, k) € 82 x I, and B;, t € S be defined by
Egs. (4) and (5) on D = Z{B}}Q, then the decomposition of J# in
Eq. (6) by the spectral projectors of the essentially selfadjoint B,
induces a direct sum decomposition of the reducible boson algebra into
irreducible cyclic components, each of which gives rise to a Fock-
representation of the CCR.

8 T owe the geometric idea of this map to E. NELSON,
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The unique cyclic vacuum in J#, , is expressed as

—

Q= T Br.a () Bl )2, (20,0=20). 9
0<e@yx <|V| 9)
0<e)=<|i|

Also the operators
gu(k) = 27 B (B;F (k) + b (B)), p, (k) = 2B (B;F (k) — b7 (k)

are essentially selfadjoint on D and after exponentiation give rise to a
strongly continuous representation of the CCR in the Weyl form, which
acts irreducibly in each subspace . ;.

Remark. Let By,; denote the f-monomial in Eq. (9) (ie., Oy,
= Br,1824) and define projectors v, , and 7, ; by vy, ;= (fy;)* fr; and
Py, = Pri(By)t. Then ., induces a bounded linear map f.,: #y —
= Hyy by fri(@) = Brip € Hyy for $€ Hy - fry clearly has the
canonical decomposition [10]

. - B
fri: o= Coimfyy =7y H oy — Imfy = vy Hp - Hp . 9")

Similarly the adjoint map (f,,)* is induced by (f,;)* and the inverse
chain of Eq. (9). Thus §;, (or (fy,*)) is the zero map on (1 — 7;,) #y,
(or (I — wpy) ;) and is isometric from 7,5, (or vy, ;) onto
vy Ay (Or By Hgg).

5. Identity for the fermion and boson kinetic energies

The analysis of section 4 permits us to conclude that the boson kinetic
energy
Hp = X kb (k)b (k) (10)
tRESXI,
as well as the operator

1
5 (B% + B) + HY (10)

are essentially selfadjoint on D. By adapting the notation to that of
BorN and NAGENDRA-NATH [1] one verifies that an application of their
algebraic arguments for the cases ¢t = + separately gives the identity
(due to Kronig)

1
HYf) = HY + 5 (B% + B2) on D. (11)

Since both sides of Eq. (11) are essentially selfadjoint on D, their
(strictly) selfadjoint closures coincide also and (11) extends as a true
operator identity to the domain of these closures. On the face of it this
identity is quite surprising inasmuch as the Lh.s. involves only an infinite
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sum of products of two fermion operators, while the operators appearing
on the rh.s. can be written in terms of summands with four fermion
operators each. The subtle cancellation which results in Eq. (11) is, of
course, due to the CAR, and the vanishing mass of the fermions.

6. Interacting fermions and Bogoliubov transformation

The identity (11) is the key to the solubility of the Luttinger model as
well as the feasibility of the neutrino theory of light (in one dimension).
The interaction Hamiltonian of the LuTTINGER model in the notation
of MaTT1s and L1eB takes the form (double dots indicate normal ordering)

H=X >  w(k):0:(k) oy (k):, with the 12)
2 &t k)esS*x I,

interaction potential v(0) = 0, v(k) = v(—k) = v* (k). In the f-represen-
tation H, commutes with N = B, -+~ B_ but not with &; i.e. H; does not
conserve the number of f-fermions. This is immediately obvious if
Eq. (12) is written in terms of boson operators:

H, = % Dko(k): [bH(k) + b (—k), b (—k) + b (®)1y: (129
kel,

so that with the aid of Eqgs. (10), (11) and (12’) the total Hamiltonian can
be conveniently written as

H=Hy+ Hy = (B3 + B2) + X {k(1+ v(k)) (b* (k) b7 () +
K€L,
(=) b (= B) + ke (k) (B (k) bH(— ) + B (k) b (— R)} -
It is easily derived that 2y, ; is in the domain of H if and only if

k%; BPok)?< . (11)

If v (k) is restricted such that
v(B)= —5+s, e>0, all keI, (14)

then each summand in the sum of Eq. (13) can be diagonalized by means
of a suitable Bogoliubov transformation [11]:

bs (k) — cs (k) = U (y (k) b* (k) U~ (x (k)

15
= cosh [ (B)] - b (k) + simh [ (0] - b=*(~) ")

with
2®) = (= 1) = 700 = tanh=s {LEE LI RE ) g

and

U(y (k) = exp{y (k) (0" (k) b (= k) — b¥ (k) b*(—k))}.  (15”)
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A term in Eq. (13) is then transformed into the form

k- YT+ 20(k) - (0% (k) b (k) + b+ (— k) b~ (= k) + c (k) ,

16
with ck) =1k (/1 + 20(k) — 1 — (k) . (16)

For arbitrary v (k) the product ]] U (y (k)) does not necessarily converge
k>0

to a unitary operator as N — oo [12]. To find a suitable restriction on the

v (k) which insures the unitary implementability of the canonical trans-

formation for all £ simultaneously, it is useful to recall that the Fock-

representation of the b% (k) can be constructed in the form of an incomplete

infinite tensor product of the representations for the various k-values

with the reference vector () £2, (). (Here £, ;) corresponds to the cyclic
k€T,

vector for the representation of b(k)). c$(k) has the reference vector
® Q.. U U(x(k)) implements b%(k)— c*(k) then U(x (k)2

= exp(zé )) * £, () With some real phase J (k).

Now according to a theorem of Krauper, McKEnNA and Woobs
[8] the b-representation is unitarily equivalent to the c-representation
if and only if X) £, () is weakly equivalent to ® 2., 1.e.1if and only if

keI,
k‘;o“(Qb(k)’ exp(—id(k)) U(y (k) Lym) — 1] < oo (17)
Since (.Qb > U(x(k))Qb(k)> = [cosh y (k)]~* the condition (17) amounts to
2 (1 —sechy (k)< oo, (17
k>0

which in turn is equivalent to

3 k)< oo8. (17")
k>0
It follows easily, if condition (14') is obeyed and £, is in the domain
of H (or equivalently condition (14) holds), that Eq. (17") applies also
and |C| < oo, where

C= Y klY1+20(k) — 1 —v(k)]. 18)

kel,

¢ T am grateful to O. E. Laxrorp III for calling my attention to the above
theorem and for showing me his similar derivation of Eq. (17”). The truth of the
equivalence of (17°) and (17”) follows, since 1 —sechy(k)= 1 — (1 + x(k)*)*1=

-1
= x(k)® always, and 1 —sechy (k)< 1 — (1 + S ( r coshx(k)) < % cosh y (k) X

X x(k)? = const y(k)?, if cosh (k) is bounded. Thus (17") implies (17”) directly and
conversely (17”) implies lim y (k) = O or sup cosh (k) < co and hence also (17’).
kel

k—oo
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These conditions are hence sufficient for the Hamiltonian H of
Eq. (13) to be unitarily equivalent to

~ 1
A=0C+ (B +B2)+

S (19)
+ kY1 + 20(k) {b+ (k) b= (k) + b (— k) b= (- k)} .
k>0

This solves the diagonalization problem. In each irreducible (boson) sub-
space S, ; the groundstate energy % (2 + I'2) is shifted by the constant

C of Eq.(18) and the energy spectrum is modified by the factor
]/ﬁ% (k). Condition (14') is seen to insure that this factor stays real-
valued and bounded away from zero. The trivial structure of the ex-
citations in the diagonalized form becomes quite complicated, when one
returns to the nondiagonal form by means of the canonical transforma-
tion.

7. Conclusion

The above model can be modified to include an electron-phonon inter-
action of the usual form without losing the property of being diagonaliz-
able by a simple (linear) canonical transformation [5], [6].

LuTrTiNGER was especially interested in studying the behavior of the
occupation probability n, as a function of the momentum % in the
vicinity of the Fermi momentum k. He concluded that the behavior is

characterised by a parameter oczz%v(o )%, where A= interaction

strength parameter, »(0 +)=;3m3 v(k). MaTTis and LieB confirmed his

discussion, except for the change v (0,)% -« (0)2= [1 - (@)2] R 1

For « = 0 the Fermi surface has the usual stepfunction character known
from the non-interacting case. If, on the contrary, 0< 2a< 1 (or
1< 2«) then ny is found to be continuous at k; with infinite (or finite)
slope. Perturbation theory seems to be consistent with the case 0 < 2 <
< 1. The infinite volume limit L — oo is critical here.
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